



## Numerics of Partial Differential Equations – Tutorial 7

**Exercise 7.1** [weak formulation with inhomogeneous Neumann boundary] Given Poisson's Problem on the following domain  $\Omega = [0, 1] \times [0, 1]$ :

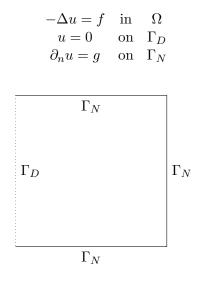


Figure 1: domain  $\Omega$ 

Using integration by parts derive the weak formulation of this problem. **Hint:** split the boundary integral into the two boundary parts.

## Exercise 7.2

On Cauchy-Sequences. Let  $\Omega = (0, 2)$ .

We investigate the function space  $C(\Omega)$  with corresponding  $L_2$ -norm

$$\|u\|_{L^2} := \left(\int_{\Omega} u^2 \, dx\right)^{1/2}$$

Let  $(u_n)_{n \in \mathbb{N}} \subset C(\Omega)$  be a sequence of functions satisfying

 $u_n(x) = \min\{1, x^n\}.$ 

- (a) Show that indeed,  $(u_n)$  is a Cauchy-sequence.
- (b) Show that the limit u is not an element of  $\{C(\Omega), \|\cdot\|\}$ .
- (c) What does this result mean from the viewpoint of functional analysis?

Home Assignment 7.3 [weak formulation with inhomogeneous Neumann boundary] Given Poisson's Problem on the following domain  $\Omega = [0, 1] \times [0, 1]$ :

$$\begin{aligned} -\Delta u &= f & \text{in} \quad \Omega \\ u &= 0 & \text{on} \quad \Gamma_D \\ a \, u + b \, \partial_n u &= h & \text{on} \quad \Gamma_R \end{aligned}$$

Using integration by parts derive the weak formulation of this problem.

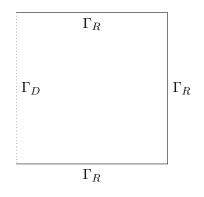


Figure 2: domain  $\Omega$ 

## Hints:

Rearrange the boundary condition with respect to  $\partial_n u$ .

Split the boundary integral into the two boundary parts.

In the end all integrals containing u should be on the left hand side and all other integrals on the right hand side.

## Home Assignment 7.4

Show that  $C_0^{\infty}$  is a dense subset of  $L^p(\Omega)$ . That means for every  $f \in L^p(\Omega)$  there exists a sequence  $(u_n)_{n \in \mathbb{N}} \subset C_0^{\infty}$  satisfying  $||u_n - f|| \to 0$  for  $n \to \infty$ .