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Exercise 1

Let us study another optimization existence problem in an infinite function
space, and which has an immediate practical application: Can we achieve (i.e.,
does there exist a solution) such that we obtain optimal heating of room of size
Ω ⊂ R3 with a desired final temperature ud? Thus we try to minimize the cost
functional:

min J(u, q) =
1

2
‖u− ud‖2L2 +

λ

2
‖q‖2L2

The term of interest is ‖u− ud‖2L2 , thus we want to match the desired temper-
ature. The second term is a so-called (Tikonov) regularization term which is
important for both theory as well as numerics, as we later see in the proof. The
above cost functional should be minimized with respect to the (stationary) heat
equation (i.e., Laplace problem): Find u such that

−∆u = βq in Ω, (1)

u = g on ∂Ω, (2)

where β > 0 is a constant. Here the important quantity is q ∈ L2(Ω) which is
the so-called optimal control. This quantity must be chosen in such a way that
J(u, q) is minimized. Several manipulations allow to replace the state variable
u ∈ H1(Ω) by the control variable q in terms of a solution operator

S : L2 → L2, with S : q → u(q)

from which we obtain the reduced cost functional:

min f(q) =
1

2
‖S(q)− ud‖2H1 +

λ

2
‖q‖2L2 .

Let us formulate the problem: Let Q and V be Hilbert spaces. Furthermore
let Qad be a bounded, closed, convex subset Qad ⊂ Q and let ud ∈ V be a given
desired state. Let the regularization parameter be λ ≥ 0 and let S : Q→ V be
a linear, bounded operator.
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1. Show that the quadratic problem

min
q∈Qad

f(q) =
1

2
‖S(q)− ud‖2V +

λ

2
‖q‖2Q,

has an optimal solution q̄.

2. Show that q̄ is unique if λ > 0 or if S is injective.

3. What are possible solution algorithms to solve min f(q) with the help of
a computer? Please outline the main steps.

4. Work plan for Question 1: Please work in the steps as shown in the
answer of Exercise 4 from last week; thus, show that an infimum of f(q)
exists, justify that a subsequence {qnk

} converges weakly to an element
q̄ ∈ Qad, show that f(q) is w.lsc., finally show (not in the exercise from
last week though), that

lim inf
k→∞

f(qnk
) = inf

q∈Qad

f(q)

and finally justify that infq∈Qad
f(q) = infq∈Qad

f(q̄).

5. Work plan for Question 2: For uniqueness we need to show that f(q)
is strictly convex. Please try to work with f ′′ > 0. But be careful with
the derivatives in function spaces (see again the answer of Exercise 4 last
week).

Answer of exercise 1

Here are the answers to Question 1 and 2 (the third question will be discussed
next week).

1. f(q) ≥ 0 it follows that infq∈Qad
f(q) exists.

2. Thus it exists a minimizing sequence {qn}n ⊂ Qad with

f(qn)→ inf
q∈Qad

f(q) (n→∞).

3. Since dim(Qad) = ∞ a bounded and closed set is not compact. But Qad

is additionally convex and Q reflexive (because Q is a Hilbert space).
Why does this statement hold true?
We work with Dirk Werner Funktionalanalysis (other books in French or
English have these two theorems as well):

• Theorem: In a reflexive spaceX, each bounded sequence has a weakly
convergent subsequence.

• However the previous statement does not yield whether the limit
element is a part of X or not. Here we use a second theorem which
yields the weak closedness: Let X be a normed space and V ⊂ X
be closed and convex. For a weakly convergent sequence {xn}n ⊂ V
with xn ⇀ x it holds that also x ∈ V , i.e., the space V is weakly
closed.
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These two previous theorems ensure that Q is weakly compact, which
means in particular that a limit q̄ ∈ Qad exists such that

qnk
⇀ q̄ for k →∞.

4. Next we need to comment on the continuity of f(·). Of course the norm
‖ · ‖ is bounded and also ‖S(q)−ud‖ is continuous since the operator S is
bounded. But in general we do not have weak continuity, namely:

qnk
⇀ q̄ ⇒ f(qnk

)→ f(q̄)

does not hold!! But f is convex and f is continuous which implies w.lsc:

qnk
⇀ q̄ ⇒ f(q̄) ≤ lim inf

k
f(qnk

).

5. In the final step we need to show the equality that the infimum is really
taken:

lim inf
k→∞

f(qnk
) = inf

q∈Qad

f(q)

But this is now trivial because of the closedness of Qad; thus q̄ ∈ Qad, it
can be inferred that

inf
q∈Qad

f(q) = f(q̄).

Thus q̄ is the minimum and there the optimal control that we seeked.
Q.E.D.

Answer to Question 2:
As long as λ > 0, we always obtain uniqueness. In the case of λ = 0 we have to
hope that S is injective. In order to show uniqueness we show that f ′′ > 0. But
the arguments of f are functions thus we work with Gt̂eaux derivatives. Let
q, δq1, δq2 ∈ Q. We calculate:

f ′(q)δq1 = (S(q)− ud, S(δq1))V + λ(q, δq1)Q,

f ′′(q)(δq2, δq1) = (S(δq2), S(δq1))V + λ(δq2, δq1)Q

Choose now δq ∈ Qad with δq 6= 0. For λ > 0 we obtain:

f ′′(q)(δq2, δq1) ≥ λ(δq, δq)Q = ‖δq‖2 > 0.

Thus f is strictly positive and therefore q̄ unique. In the case of λ = 0 and S
injective we obtain:

f ′′(q)(δq2, δq1) = (S(δq), S(δq))V = ‖S(δq)‖2V > 0

The last argument holds because of the injectivity of S and that q 6= 0 we have
S(δq) 6= 0 and thus ‖S(δq)‖2V > 0. Q.E.D.
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