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Abstract: In this work, we design a posteriori error estimation and mesh adaptivity for multiple goal func-
tionals. Our method is based on a dual-weighted residual approach in which localization is achieved in a
variational form using a partition-of-unity. The key advantage is that the method is simple to implement and
backward integration by parts is not required. For treating multiple goal functionals we employ the adjoint
to the adjoint problem (i.e., a discrete error problem) and suggest an alternative way for its computation. Our
algorithmic developments are substantiated for elliptic problems in terms of four different numerical tests
that cover various types of challenges, such as singularities, different boundary conditions, and diverse goal
functionals. Moreover, several computations with higher-order finite elements are performed.
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1 Introduction
In many physical applications the target is to compute a quantity of interest up to a certain accuracy rather
than the entire solution. Moreover, fluid flow (Navier–Stokes) and aerodynamics flow simulations as well as
multiphysics problems such as fluid-structure interaction, fracture problems, poroelastic problems, Maxwell
equations, and magnetohydrodynamics are of importance. Here, several physical phenomena interact and
consequently the accurate evaluation of more than one goal functional might be of interest. However, before
we can address such nonlinear coupled PDEs, we need a reliable framework that is tested and validated for
a single PDE, different boundary conditions, and different types of goal functionals.

In this study, accurate functional evaluations are based on adaptive mesh refinement. The method of
choice is based on dual-weighted residual (DWR) a posteriori error estimation [9, 10], which is based on the
ideas presented in [18] and motivated by duality principles well known in optimization [3].

In addition to the primal problem (the given PDE), a corresponding adjoint problem needs to be solved,
whichprovides (local) sensitivitymeasureswith respect to an error goal functional. In the early stages, further
extensions of the DWRmethod have been accomplished in [1, 2, 8, 12, 21, 27–29]. Most of these studies have
in common that the strong formulation [10] for error localization is needed. Aweak formwith patchedmeshes
has been proposed in [12]. One advantage of a weak localization of the DWR technique lies in its application
to multiphysics problems because the classical localization works with strong (second-order) operators that
are costly to evaluate and additionally (often several) face integration terms need to be evaluated.
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Recently, in [31], another weakly-based localization technique has been suggested. It is straightforward
to employ and easy to implement. Here (similar to [12]), partial integration back to the strong operator is not
necessary. Therefore, no face terms need to be evaluated. Rather, solution information about neighboring
cells (which is very important in particular for low-order finite elements [15]) is gathered by employing a
partition-of-unity (PU) leading to a nodal-based error indicator representation. To realize the PU, a lowest-
order finite element is sufficient. We notice that a PU for strongly localized DWR error estimation has been
previously suggested in [26].

On the other hand, Hartmann and Houston [24] and Hartmann [23] considered multiple target function-
als. However, literature on this topic is rare and there exist a few other studies [19, 25, 33] from which [33]
is quite recent. One crucial difficulty is the computational cost, not only for single goal functional evalua-
tions due to the fact that a (linear) adjoint problem needs to be solved. But this adjoint solution must deliver
‘more’ information than the primal problem and for this reason it is usually more expensive than a linear
primal problem. Of course, for nonlinear problems, solving the adjoint problem does only correspond to one
additional Newton solve. Thus, the cost of the adjoint problem becomes much less significant.

For multiple goal functionals, say N, a naive approach would mean to solve N adjoint problems, which
makes themethodnot attractive at all. Therefore,HartmannandHouston [23, 24] consideredanadjoint to the
adjoint problem (which is equivalent to saying a discrete error problem), which only requires two additional
solutions and therefore significantly reduces the computational cost.

Based on this approach we suggest two modifications in this work. First, we apply the PU-DWR method
to multiple target functionals. Second, we propose an idea how to decouple the two additional problems
(associated with the adjoint to the adjoint problem) such that they can be performed in principle in parallel.
These algorithmic developments are complemented with a series of numerical examples using the finite ele-
ment method in which different challenges are addressed. In particular, several higher-order finite element
computations are provided, which have not yet been shown for such problems in existing literature.

This paper is organized as follows: In Section 2, the model problem is presented as well as the basics of
DWR mesh adaptivity. Then, in Section 3, the approach for treating multiple goal functionals is presented.
Next in Section 4, various numerical examples are presented that cover different aspects of smooth solu-
tions, singularities, L-shaped and slit domains. For residual-based error estimates and adaptivity in form of
graded-mesh refinement for L-shaped domains (and domains with other corners), we refer to [5]. We also
consider different boundary conditions of homogeneous and non-homogeneous Dirichlet type and homo-
geneous Neumann conditions. Moreover, different types of goal functionals are taken into account such as
point values, line integration, and domain integrals. Finally, in Section 5, we recapitulate our findings and
provide a few ideas for future work.

2 The DWR Method for Goal Functional Evaluations
In this section, we first provide the problem statement and spatial discretization. Then, we briefly review
the DWRmethod for single goal functionals and recapitulate the classical strategy and the partition-of-unity
DWR approach for goal functional evaluations.

2.1 The Model Problem

By Ω ⊂ Rd with d = 2, we denote a domain with polygonal or polyhedral boundary. The boundary ∂Ω is split
into two non-overlapping parts ΓD ∩ ΓN = 0 and ∂Ω := ΓD ∪ ΓN . On Ω, we denote by (⋅, ⋅) the L2-inner product
and by ‖ ⋅ ‖ the corresponding L2-norm. By ⟨⋅, ⋅⟩wedenote as usual the pairing betweenH−1 andH1

0 functions
[20]. By Hr+1(Ω) we denote the space of Lebesgue functions with square integrable weak derivatives up to
degree r + 1. In particular, by

V := {v ∈ H1(Ω) | v = 0 on ΓD}
we denote the space of H1(Ω) functions with trace zero on the Dirichlet boundary ΓD.
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We consider a weak form of the diffusion problem and assume that ̃f ∈ L2(Ω), the domain is sufficiently
regular so that the trace theorem (see, e.g., [37]) holds true, i.e., gN ∈ H− 12 (ΓN), and finally gD ∈ H 1

2 (Ω). The
weak form of the problem reads: Find u ∈ {gD + V} such that

(α∇u, ∇φ) = ⟨f, φ⟩ for all φ ∈ V, (2.1)

where
⟨f, φ⟩ := ∫

Ω

̃f (x)φ(x) dx + ∫
ΓN

gN(x)φ(x) dsx ,

and the diffusion coefficient α := α(x) ∈ L∞(Ω). In this setting ∫ΓN gN(x)φ(x) dsx has to be understood as
duality product as for instance in [22]. If gN ∈ L2(ΓN) then it coincides with the integral.

Remark 2.1. The classical (strong) formulation of (2.1) reads as follows:

−∇ ⋅ (α∇u) = ̃f in Ω, (2.2a)
u = gD on ΓD , (2.2b)

α∇u ⋅ n = gN on ΓN , (2.2c)

where n is the normal vector.

The non-homogeneous Dirichlet boundary condition (2.2b) is imposed on ΓD in the trace sense of a H1 func-
tion. The unknown solution u ∈ {gD + V} is approximated in a finite-dimensional function space Vh, which
is discussed in Section 2.2.

2.2 Spatial Discretization

All formulations in this work are spatially discretized with a Galerkin finite element scheme, introducing H1

conforming discrete spaces Vh ⊂ V consisting of functions Qcr of degree r. Here Qcr denotes the finite element
space

Qcr := {vh ∈ [C(Ω)]d | vh|K ∈ Qr(K) for all K ∈ Th , vh|ΓD = 0},

where the mesh is denoted by Th consisting of quadrilateral elements K and the corresponding mesh size
parameter is labeled by h. Moreover,

Qr(K) := {v ∈ C∞(K) | v(x) = ∑
β∈Br

cβxβ},

with cβ ∈ ℝ and xβ := ∏d
i=1 x

βi
i and the set

Br := {β ∈ (ℕ0)d | βi ≤ r for all i ∈ {1, . . . , d}}.

Specifically, we use isoparametric tensor-product finite elements [16]. To this end, the definition of the
discrete space reads

Vh := Qcr .

Sinceweonlyworkwith continuous elements in thiswork,we setQr := Qcr . Next,wenotice thatmeshadaptiv-
ity yields locally refined cells, which leads to hanging nodes [14] in the mesh. For convenience of the reader,
we often denote explicitly the degree r for the spaces V(r)

h in order to avoid misunderstanding.
With these preparations, we state the discretized version of our problem: Find uh ∈ {gD + Vh} such that

a(uh , φh) = ⟨f, φh⟩ for all φh ∈ Vh ,

where a(uh , φh) := (α∇uh , ∇φh) and the duality product is defined as before.
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2.3 A Brief Review for Single Goal Functionals

In the followingwe describe the DWRmethod for linear goal functionals and linear primal problems. The aim
is to compute a certain quantity of interest J(u) with a desired accuracy at low computational cost. Possible
examples are mean values, line integration or point values:

J(u) = ∫
Ω

u dx, J(u) = ∫
Γ

∂nu ds, J(u) = u(x0, y0).

Remark 2.2. The second and third goal functionals are a priori not well defined. In case of the second func-
tional we know the ∇u ∈ [L2(Ω)]d. Adopting the trace theorem as in [17], we can deduce that the trace in
normal direction belongs to H− 12 (∂Ω). This however leads to the problem that the second functional is not
always well defined. Concerning the third functional, it is well known (see, e.g., [13]) that for H1 functions
in dimension d > 1 the solution u is not any more continuous and the last evaluation is not well defined. If
the domain and boundaries are sufficiently regular in 2D, the resulting solution is however H2 regular and
thanks to embedding theorems also continuous.

The above goal functionals are however computed with a numerical method leading to a discrete version
J(uh). Thus the key goal is to control the error J(u) − J(uh) in terms of local residuals, which are computable on
each mesh cell K. To address this goal, we assign an associated adjoint problem as it is standard in optimiza-
tion (for example via defining the Lagrangian); see, e.g., [3]. Such an adjoint solution yields local sensitivity
information with respect to the given error functional. For a posteriori error estimation with dual-weighted
residuals these concepts have been explained in detail in [10]. To this end, we seek the adjoint variable z ∈ V:

a(ψ, z) = J(ψ) for all ψ ∈ V. (2.3)

Specifically, the adjoint bilinear form is given by

a(ψ, z) = (α∇ψ, ∇z).

The boundary conditions on ΓD are built into V and are of homogeneous Dirichlet type. For symmetric prob-
lems (as we deal with in this work), the adjoint bilinear form a(⋅, ⋅) is the same as the original one, but differs
for non-symmetric problems like transport for example.

Existence and uniqueness of this adjoint solution follows by standard arguments. The regularity of z ∈ V
depends on the regularity of the functional J. For J ∈ H−1(Ω) it holds z ∈ H1(Ω). Given a more regular func-
tional like the L2-error J(φ) = ‖eh‖−1(eh , φ) (where eh := u − uh) with J ∈ L2(Ω)∗ (denoting the dual space),
it holds z ∈ H2(Ω) on suitable domains (convex polygonal or smooth boundary with C2-parameterization).

Inserting as special test function ψ := u − uh into (2.3) yields

a(u − uh , z) = J(u − uh),

and therefore we have now a representation for the error in the goal functional.
Next, we use Galerkin orthogonality a(u − uh , ψh) = 0 for all ψh ∈ Vh, and we obtain

a(u − uh , z) = a(u − uh , z) − a(u − uh , ψh)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

= a(u − uh , z − ψh) = J(u − uh). (2.4)

The previous step allows us to choose ψh in such a way that z − ψh can be bounded using interpolation
estimates. Indeed, sinceψh is an arbitrary discrete test function,we can for example use a projectionψh := ihz
in (2.4):

a(u − uh , z − ihz) = J(u − uh). (2.5)

Since z is an unknown itself, we cannot yet simply evaluate the error estimator because z is only known
analytically in very special cases.
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2.4 Approximation of the Adjoint Solution

In order to obtain a computable error representation, z is approximated through a discrete function zh ∈ Vh,
that is obtained from solving

a(ψh , zh) = J(ψh) for all ψh ∈ Vh .

Then,
a(u − uh , zh − ihzh) ≈ J(u − uh). (2.6)

The difficulty is that if we compute the adjoint problem with the same polynomial degree as the primal prob-
lem, then zh − ihzh ≡ 0, and thus the whole error identity defined in (2.6) would vanish, i.e., J(u − uh) ≡ 0. To
overcome this point, either a global-higher order approximation (using a higher order finite element), a solu-
tion on a finer mesh, or local higher-order approximations using a patch-wise higher-order interpolation can
be adopted [8, 10]. Clearly, the last possibility is the cheapest. In this work, however, for simplicity, we simply
use a global-higher order finite element of degree r + 1 (in case that the primal problem has been computed
with degree r).

We finally end up with the (primal) error estimator:

a(u − uh , z(r+1)h − ihz(r+1)h ) ≈ J(u − uh).

Thus, the error in the functional J(u − uh) can be expressed in terms of a residual, that is weighted by (the
local) adjoint sensitivity information z(r+1) − ihz(r+1).

As quality measure we use the effectivity index Ieff:

Ieff := Ieff(uh , zh) =
η

J(u − uh)
=
a(u − uh , z(r+1)h − ihz(r+1)h )

J(u − uh)
. (2.7)

Problems with good Ieff have the property Ieff → 1 for h → 0. For the localization of the error on each cell or
each degree of freedom, we forward the reader to the next two sections.

2.5 The Classical Way of Error Localization

We briefly recapitulate the classical way and then explain a variational technique that uses a partition-of-
unity (PU). Both techniques have in common that they start from

J(u − uh) = a(u − uh , z − ihz).

In the classical way, the error identity (2.5) is treatedwith integration by parts on everymesh element K ∈ Th,
which yields

J(u − uh) = ∑
K∈Th

⟨f + ∇ ⋅ (α∇uh), z − ihz⟩K + ∫
∂K

α∂nuh ⋅ (z − ihz) ds. (2.8)

Remark 2.3. In praxis, this primal error estimator needs to be evaluated in the dual space. Here, we proceed
as follows:
∙ Prolongate the primal solution uh into the dual space.
∙ Next, we compute the interpolation ihz(r+1)h ∈ Qr with respect to the primal space.
∙ Then,we compute z(r+1)h − ihz(r+1)h (here, ihz(r+1)h is prolongated toQr+1 in order to compute thedifference).
∙ Evaluate the duality product ⟨⋅, ⋅⟩ and face terms.

From (2.8), we can set-up the error estimator. Following the usual procedure for residual based error estima-
tors [34], we combine each two boundary integrals over element edges to a normal jump and proceed with
Cauchy–Schwarz to get

|J(u) − J(uh)| ≤ η := ∑
K∈Th

ρKωK ,
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with
ρK := ‖ ̃f + ∇ ⋅ (α∇uh)‖K +

1
2h
− 12
K ‖[α∂nuh]‖∂K , ωK := ‖z − ihz‖K + h

1
2
k ‖z − ihz‖∂K ,

where by [α∂nuh]we denote the jump of the uh derivative in normal direction. The residual part ρK only con-
tains the discrete solution uh and the problem data. On the outer Dirichlet boundary ΓD, we set [α∂nuh] = 0
and on the Neumann part we evaluate α∂nuh = gN . Of course, we implicitly assume here that gN ∈ L2(ΓN)
such that these terms are well-defined.

2.6 A Variational Error Estimator with PU Localization

In this section, we recapitulate an alternative way and use a localization approach based on the variational
formulation [31]. This idea combines the simplicity of the approach proposed in [12] (as it is given in terms of
variational residuals) in terms of a very simple structure, which makes it particularly interesting for coupled
PDE systems (see further comments below). Localization is based on introducing a partition of unity (PU)
{ψ1, . . . , ψM} =: VPU with dim(VPU) = M and the property ∑ψi ≡ 1. We then insert the PU into the global
error identity (2.5):

Proposition 2.4. For the finite element approximation of (2.1), we have the a posteriori error estimate

|J(u) − J(uh)| ≤ η :=
M
∑
i=1

|ηi|, (2.9)

where
ηi = {−a(u − uh , (z − ihz)ψi)},

and more specifically for our diffusion problem:

ηi = {⟨f, (z − ihz)ψi⟩ − (α∇uh , ∇(z − ihz)ψi)}. (2.10)

To set-up the PU, one can simply workwith lowest-order finite elements, i.e., a bilinear function on quadrilaterals
in two dimensions. Thus, as finite element space we can choose VPU := V(1)

h .

The previous error indicators ηi are node-wise contributions of the error. Mesh adaptivity can be carried out
in two ways:
∙ In a node-wise fashion: if a node i is picked for refinement, all elements touching this nodewill be refined.
∙ Alternatively, one could also first assemble element-wise for each K ∈ Th indicators by summing up all

indicators belonging to nodes of this element and then carry out adaptivity in the usual element-wise
way.
On adaptive meshes with hanging nodes, the evaluation of the PU indicator is straightforward: First,

the PU is assembled in (2.10) employing the basis functions ψi ∈ VPU for i = 1, . . . ,M. In a second step,
the contributions belonging to hanging nodes are condensed in the usual way by distribution to the neigh-
boring indicators. This localization technique can be readily applied in two and three dimensions [31] and
has also been extended to general polygonal meshes [35]. As it has been already demonstrated for the simi-
lar approach (for a single goal functional) proposed in [12], for instance for variational inequalities in solid
mechanics [32] or fluid-structure interaction [30], a major advantage of a weak localization is the easy ap-
plication to nonlinear coupled PDE systems, where the evaluation of strong residuals can be cumbersome.
We refer the reader again to fluid-structure interaction [30, 38] as example. On the other hand, a first ap-
plication of PU-DWR to nonlinear-coupled PDE problems has been recently undertaken in [36]. Finally, we
want to comment that it is well known that for dual-weighted residual goal-oriented adaptivity we have no
theoretical justification for convergence and optimality of the adaptive algorithm, but only excellent practical
observations.
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3 PU-DWR for Multiple Goal Functionals
In the previous section we recapitulated the DWR method for computing a single goal functional. Now we
assume that we are given N linear functionals with N ∈ ℕ. Let J be defined as J := {J0, . . . , JN−1}. We can use
(2.9) for each Ji ∈ Jwhere i ∈ {0, . . . , N − 1} to compute the node-wise contributions of the error. But to do so
we have to solve N adjoint problems. Therefore we seek amethod to avoid these computations. We follow the
idea from [23, 24] of combining the functionals in J. We create a linear combination of the goal functionals
to one functional ̃Jc resulting in

̃Jc(ψ) :=
N−1
∑
i=0

wiJi(ψ) for all ψ ∈ V,

where wi ∈ ℝ. We call ̃Jc the combined functional. Now we have to find out how to choose the weights wi.
One crucial aspect is the sign of wi because it may lead to error canceling. Furthermore, we are interested in
having similar relative errors in our functional evaluations. One idea (as in [23, 24]) is to choose wi as

wi :=
sign(Ji(u) − Ji(uh))ωi

|J(uh)|
, (3.1)

where ωi describe some self-chosen, but positive weights. This choice leads to no error canceling and also
the relative errors are similar (if the weights ωi are almost equal). But unfortunately we do not know Ji(u).
Hence,wehave to findaway to get sign(Ji(u) − Ji(uh)). To do so,we consider the adjoint to the adjoint problem
(which is akin to saying a discrete error problem) [23, 24]: Find the error function e such that

a(e, ψ) = ⟨Ruh , ψ⟩ for all ψ ∈ V, (3.2)

where ⟨Ruh , ψ⟩ := ⟨f, ψ⟩ − a(uh , ψ).
By solving this problem, we obtain e where e = u − uh. Therefore we can compute Ji(u) − Ji(uh). The ad-

joint to the adjoint problem provides information with respect to the error in the goal functionals Ji(u), but it
does not yield local error information, which are required for mesh refinement. Thus the solution is to solve
both the adjoint to the adjoint problem and another adjoint problem leading to two additional problems.
In summary, using this approach for multiple goal functionals, three problems need to be solved: primal,
adjoint, adjoint to the adjoint.

For treating the adjoint to the adjoint problemwe again have to solve a PDE discretized by finite elements.
For this problem we have to use a discrete subspace V(r+1)

h ⊂ V which fulfills Vh ⊊ V(r+1)
h because otherwise

⟨Ruh , ψh⟩ = 0 for all ψh ∈ Vh, whichmust be avoided. Moreover, we have to solve the primal problem to com-
pute uh and then compute e as solution of the adjoint to the adjoint problem, so we have to solve two systems
sequentially.

The dependence of the adjoint and adjoint to the adjoint problem slightly limits the possibility to further
reduce the computational cost. Therefore, we suggest the following alternative in case we approximate the
solution in our discrete subspace V(r+1)

h , r ≥ 1:

Proposition 3.1. Let a : V × V → ℝ be a bilinear form, f ∈ V∗, where V∗ is the dual space of V, fulfilling the
assumptions of Lax–Milgram (e.g., [20, 22]). Let uh, u(2)h , e(2)h be the solutions of the following problems, respec-
tively: Find uh ∈ Vh and e(2)h , u

(2)
h ∈ V(2)

h such that

a(uh , ψh) = ⟨f, ψh⟩ for all ψh ∈ Vh , (3.3)

a(u(2)h , ψ
(2)
h ) = ⟨f, ψ(2)

h ⟩ for all ψ(2)
h ∈ V(2)

h , (3.4)

a(e(2)h , ψ
(2)
h ) = ⟨Ruh , ψ

(2)
h ⟩ for all ψ(2)

h ∈ V(2)
h , (3.5)

where Vh ⊂ V, V(2)
h ⊂ V and ⟨Ruh , ψ

(2)
h ⟩ are defined as in (3.2). Then there exists a projection P[V(2)

h ] : V → V(2)
h

such that
e(2)h = u(2)h − P[V(2)

h ]uh . (3.6)

Specifically, if Vh ⊆ V(2)
h , it holds

e(2)h = u(2)h − uh . (3.7)
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Proof. Let uh be the solution of (3.3). Then there exists a unique fuh ∈ V∗ such that

a(uh , ψ) = ⟨fuh , ψ⟩ for all ψ ∈ V. (3.8)

If we want to approximate the solution of (3.8) on the finite element space V(2)
h , we obtain the approximation

uuh of uh which is given by the unique solution of the problem: Find uuh ∈ V
(2)
h such that

a(uuh , ψ
(2)
h ) = ⟨fuh , ψ

(2)
h ⟩ for all ψ(2)

h ∈ V(2)
h .

It can be shown that the mapping uh Ü→ uuh is a projection, which is denoted by P[V(2)
h ]. For this projection, it

holds
a(uh − P[V(2)

h ]uh⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
uuh

, ψ(2)
h ) = ⟨fuh , ψ

(2)
h ⟩ − ⟨fuh , ψ

(2)
h ⟩ = 0 for all ψ(2)

h ∈ V(2)
h .

A simple calculation shows

a(e(2)h , ψ
(2)
h ) = ⟨Ruh , ψ

(2)
h ⟩

= ⟨f, ψ(2)
h ⟩ − a(uh , ψ(2)

h )

= a(u(2)h , ψ
(2)
h ) − a(P[V(2)

h ]uh , ψ
(2)
h )

= a(u(2)h − P[V(2)
h ]uh , ψ

(2)
h ) for all ψ(2)

h ∈ V(2)
h .

The Lax–Milgram lemma yields a unique solution in the space V(2)
h and we can conclude that

e(2)h = u(2)h − P[V(2)
h ]uh ,

hence
a(e(2)h , ψ

(2)
h ) = ⟨Ruh , ψ

(2)
h ⟩ = a(u(2)h − P[V(2)

h ]uh , ψ
(2)
h ) for all ψ(2)

h ∈ V(2)
h .

And this shows the first statement (3.6). If Vh ⊆ V(2)
h holds, then P[V(2)

h ]uh = uh because uh ∈ V(2)
h and hence-

forth (3.7) has been shown.

Remark 3.2. The assumptions of the Lax–Milgram lemma can be relaxed by any condition which guarantees
only that a(u, ψ) = ⟨f, ψ⟩ for all ψ ∈ V, (3.3), (3.4) and (3.5) have unique solutions for all f ∈ V∗.

Remark 3.3. Furthermore, we notice that our previous theory does hold not only for V(1)
h ⊂ V(r+1)

h but for
general spaces which are not necessarily subspaces of V(r+1)

h .

Corollary 3.4. From Proposition 3.1 we obtain that if we work on the spaces Vh and V(r+1)
h , the error can be

simply computed as
e(r+1)h = u(r+1)h − uh .

In particular, the two subproblems for obtaining u(r+1)h and uh can be computed in parallel without communica-
tion using the spaces Vh and V(r+1)

h .

Furthermore to avoid problems with prolongation operators in programming, we can compute immediately
Ji(uh) and just communicate this value. With the help of Proposition 3.1, the combined functional ̃Jc is ap-
proximated by Jc with

Jc(ψ) :=
N−1
∑
i=0

Ji(ψ)
sign(Ji(u(r+1)h ) − Ji(uh))ωi

|Ji(uh)|
for all ψ ∈ V, (3.9)

for some self-chosen but positive weights ωi. Now we can use the PU approach for the functional Jc in a
similar way as discussed in Section 2.6, resulting in the following proposition.
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Proposition 3.5. For the finite element approximation of (2.1), and considering N goal functionals Ji(⋅)we have
the a posteriori error estimate

|Jc(u) − Jc(uh)| ≤ η :=
M
∑
i=1

|ηi|,

where
ηi = {⟨f, (z − ihz)ψi⟩ − (α∇uh , ∇(z − ihz)ψi)}. (3.10)

Specifically, the adjoint problem is given by: Find z ∈ V such that

a(φ, z) = Jc(φ) for all φ ∈ V,

for which Jc has been constructed by (3.9).

Remark 3.6. Since in praxis we are in general not able to compute the exact adjoint solution z (see also Sec-
tion 2.4), we approximate z by zh solving the following problem: Find zh ∈ V(r+1)

h such that

a(φh , zh) = Jc(φh) for all φh ∈ V(r+1)
h ,

for which Jc has been constructed by (3.9).

Remark 3.7. An advantage of this approach is that we have to solve (as in [23, 24]) only two linear systems
instead of N, and furthermore we do not lose the possibility of parallelization.

Remark 3.8. If we use the same finite element space for the second primal problem and the adjoint problem,
then we just have to assemble one matrix instead of the two system matrices Aprimal, Aadjoint since it holds
Aadjoint = ATprimal.

3.1 The Adaptive Algorithm

Let error tolerances TOLi begiven for each Ji ∈ Jand i ∈ {0, . . . , N − 1}whereN is thenumber of functionals of
interest. Mesh adaptation is realized by extracting local error indicators ηi from the a posteriori error estimate
in Proposition 3.5 in which the adjoint solution has been approximated as explained in Remark 3.6. To this
end, we can adapt the mesh using the following strategy:
(1) Solve two primal problems: Compute the primal solutions uh and u(r+1)h for two finite element spaces,

respectively. This can be done completely in parallel.
(2) Construct combined functional: Construct Jc as in (3.9).
(3) Solve the adjoint problem: Compute the adjoint solution z(r+1)h by solving the adjoint problem a(φh , zh) =

Jc(φh) on a larger FE-space than for uh.
(4) Estimate:

∙ Determine the indicator ηi at each node i by (3.10).
∙ Compute the sum of all indicators η := ∑i ηi.
∙ Check if the stopping criterion η < TOLc is satisfied, where TOLc := inf i∈{0,...,N−1}{ωiTOLi/|Ji(uh)|}.

If this criterion is satisfied, stop the computation since Jc(uh) has been computed with a desired
accuracy. Otherwise, proceed to the following step.

(5) Mark all cells Ki that touch nodes that have values ηi above the average αη
N (where N denotes the total

number of cells of the mesh Th and α ≈ 1).
(6) Refine the mesh.
(7) Go back to 1.

Remark 3.9. The reason for the special choice of TOLc is to ensure that |Ji(u) − Ji(uh)| < TOLi holds for all
functionals Ji, where we tacitly assume that the exact adjoint solution would be known.
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Remark 3.10. Despite that we formulated our algorithm for r and r + 1, we notice that we could also have
worked with the same polynomial degree but locally using finer meshes to obtain the second space. This is
very similar to the various options that we have to approximate the adjoint problem itself as described in
Section 2.4.

4 Numerical Tests
In this section, we consider several numerical tests to substantiate our algorithmic developments. More
specifically, the algorithm was tested for the Poisson equation. Furthermore, we used always ωi = 1 for the
weights in Jc (as in (3.9)) and for simplicity the diffusion coefficient has been chosen to be α = 1. In more
detail, we analyze our algorithm with the help of the following examples:
∙ Example 1a, b: Smooth and discontinuous right-hand sides on an L-shaped domain.
∙ Example 2a, b: Eigenvalue of the Laplacian as right-hand side on the unit square. In Example 2a, we

particularly focus on whether global refinement can deliver better results than local refinement for one
functional. In Example 2b,we use again the L-shaped domain andwe are especially interested if the sign,
i.e., sign(Ji(u(r+1)h ) − Ji(uh)), needs to be computed in every step.

∙ Example 3: Singular right-hand side f for which f ̸∈ L2(Ω) but f ∈ L2−ε(Ω) for all ε > 0 on an L-shaped
domain. Here, we also perform comparisons with higher-order finite elements.

∙ Example 4a, b: Zero right-hand side on a slit domainwith non-homogeneous Dirichlet and homogeneous
Neumann conditions. In Example 4b, we focus again on higher-order computations.
For all examples in this sectionwe always consider the error in J as the relative error |J(uh) − J(u)|/|J(uh)|.

Furthermore we consider one refinement step for global refinement as refining every single element and one
refinement step for DWR as one step of the algorithm in Section 3.1. Our programming code is based on the
open-source finite element package deal.II (see [6, 7]).

4.1 Example 1

4.1.1 Example 1a

Configuration. In the first example we considered the Poisson equation on an L-shaped domain

Ω = (−1, 1) × (−1, 1) \ (−1, 0) × (−1, 0)

with smooth right-hand side:

−∆u(x, y) = f(x, y) for all (x, y) ∈ Ω,
u(x, y) = 0 for all (x, y) ∈ ∂Ω,

where
f(x, y) = x(8 − 2x2 − 6y2 + e3y(1 − 3y(4 + y) + x2(−7 + 3y(4 + 3y)))).

Here the exact solution u is given by

u(x, y) = x(y2 − 1)(x2 − 1)(e3y − 1).

Goal Functionals of Interest. We consider the following three goal functionals:

J0(u) := u(0.5, 0.5), J1(u) := ∫
Ω1

u(x, y) d(x, y), J2(u) := ∫
Γ1

∇u(x, y).n d(x, y),

where Ω1 = (−0.5, 0) × (0.5, 1) and Γ1 = {1} × (0, 1).
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Figure 1. Example 1a: Ieff for Jc vs. refinement steps. Figure 2. Example 1a: Comparison of relative errors.

Figure 3. Example 1a: Comparison of relative errors for differ-
ent refinements for J0.

Figure 4. Example 1a: Comparison of relative errors for differ-
ent refinements for J1.

Details on Discretization. To solve the first primal problem (to obtain uh as discussed in Section 3) we used
the Galerkin finite element scheme with the discrete space Vh ⊂ V. Here r = 1, which results in the space of
bilinear functions Q1 as defined in Section 2.2. For the second primal problem (to obtain u(2)h as discussed in
Section 3) and the adjoint problemwe used the discrete space V(2)

h ⊂ V which is the space of Q2 functions on
the same quadrilateral elements as in Vh. In the following sections, we always use this discretization if not
otherwise denoted.

Discussion of Our Findings. First of all, we take a look at the Ieff (as in (2.7)) for Jc whichmeasures how good
we estimate the true error of Jc with our error estimator. In Figure 1we observe that for this problemwe obtain
Ieff ≈ 1 which shows that we almost approximate the real error with our error estimator.

In the following, let us have a look at the errors in the goal functionals Ji. In Figure 2 we observe that the
error in Jc nearly approximates the functional with the largest error. Furthermore we recognize that the error
in the other functionals behaves more inconsistent with more than 1000 DOFs. We compare the error using
localmesh refinementwith the error using global refinement for the single goal functionals. The relative error
for the refinement for Jc shown in Figure 3 decreases almost as well as if we just use DWR for J0. The relative
error is less than 10−5 with approximately 7 × 104 DOFs (degrees of freedom) for DWR for Jc, 5 × 104 DOFs
for DWR for J0 and 25 × 104 DOFs for global refinement. Therefore both refinements deliver better results
than global refinement. The same behavior also appears for the error in J1 shown in Figure 4. But the most
interesting part is the error in J2 shown in Figure 5.

From the observation in Figure 2, we deduce that Jc shows similar behavior as the functional with the
largest error. At the beginning of the algorithm we observe that we have worse convergence for refinement
with respect to Jc in comparison to J2. But later, we achieve a very similar rate because the weight w2 is
the dominating one. For the error in J2 we obtain a big advantage. To get an error below 10−2 we just need
approximately 5000 DOFs instead of 5 × 104 and to get an error below 10−3 we need for global refinement
more than106 DOFs andwe just need about 5 × 104, sowe obtain an error of 10−3 instead of 10−2 for the same
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Figure 5. Example 1a: Comparison of relative errors for different refinements for J2.

Figure 6. Example 1a: Mesh for DWR for J0 after
7 refinement steps.

Figure 7. Example 1a: Mesh for DWR for J1 after
7 refinement steps.

Figure 8. Example 1a: Mesh for DWR for J2 after
9 refinement steps.

Figure 9. Example 1a: Mesh for DWR for Jc after
9 refinement steps.

number of DOFs. However, the results we obtained are not as good as when using DWR just for J2 through the
effect at the beginning, but we also get the reduction in the other functionals of interest.

Finally, we take a look at the refined meshes in Figures 6–9. The corresponding initial mesh is displayed
in Figure 14. We observe that the mesh created by refinement with respect to Jc looks like a combination of
themesheswhere refinement for one functional is used.Wemonitor that J2 is again the dominating part in Jc.
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Figure 10. Example 1b: Ieff for Jc vs. refinement steps. Figure 11. Example 1b: Comparison of relative errors.

Figure 12. Example 1b: Comparison of relative errors for
different refinements for J0.

Figure 13. Example 1b: Comparison of relative errors for
different refinements for J2.

4.1.2 Example 1b

In this part, we work with the same domain and same discretization as before, but consider a discontinuous
right-hand side

f(x, y) =
{
{
{

√|x| + √|y| if x2 + y2 < 1,
−x2 + y else.

Here no exact solution u is known.

Goal Functionals of Interest. We consider the following three goal functionals:

J0(u) := u(0.5, 0.5), J1(u) := ∫
Ω2

u(x, y) d(x, y), J2(u) := ∫
Γ2

∇u(x, y).n d(x, y),

where Ω2 = (−1, −0.5) × (0, 0.5) and Γ2 = {1} × (0, 1). Since the exact solution is not known,we approximate
the exact functional values on a very fine mesh:

J0(u) ≈ 0.15389345606, J1(u) ≈ −0.012801283700, J2(u) ≈ −0.36864857768.

Discussion of Our Findings. The effectivity index Ieff in this case is shown in Figure 10. It is not as close to 1
as for Example 1a. This may happen through the loss of regularity.

Hence we do not always get the optimal refinement. As before, the interesting part is the error in the
functionals which is analyzed in Figure 11. We detect that the decrease of the error in Jc is again similar to
the decrease of the functional with the largest error. Hence Jc changes the behavior after the error of J2 starts
to dominate. As it can been seen in Figure 12, the refinement with respect to Jc even delivers worse results
for J0 than for global refinement at the beginning, but we get a better decrease in the error afterwards. This
raises the question whether it can happen that the refinement with respect to Jc does deliver a worse error
than global refinement with the same number of DOFs for a single functional. This question will be answered
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Figure 14. Initial mesh used in Example 1, 2a, and 3. Figure 15. Example 1b: Mesh for DWR for Jc after
9 refinement steps.

in Example 2a. In J2 we again monitor a similar behavior as in Example 1a (see Figure 13). To achieve an
error less than 10−3 we have to use approximately 106 DOFs and for the refinement with respect to Jc we just
need approximately 3 × 104 DOFs. However we see that the error in J2 even increases for one refinement step
and this occurs in the global and the refinement for Jc.

If we take a look at the mesh in Figure 15, we can also see that the DWR method captures low regularity
areas like the vertex (0, 0) in the corner of the L-shaped domain.

4.2 Example 2

In this example we consider an eigenfunction of the Laplacian as right-hand side on the unit square
Ω = (0, 1) × (0, 1) and an L-shaped domain Ω = (−1, 1) × (−1, 1) \ (−1, 0) × (−1, 0), respectively, with ho-
mogeneous Dirichlet boundary conditions. The discretization is the same as in Section 4.1.

4.2.1 Example 2a

Configuration. Find u such that

−∆u(x, y) = f(x, y) for all (x, y) ∈ Ω,
u(x, y) = 0 for all (x, y) ∈ ∂Ω,

where
f(x, y) = 10 sin(πx) sin(3πy).

The exact solution u is given by
u(x, y) = sin(πx) sin(3πy)

π2
.

The initial mesh is displayed in Figure 17.

Goal Functionals of Interest. We consider the following three goal functionals:

J0(u) := u(0.5, 0.5), J1(u) := u(0.75, 0.25), J2(u) := ∫
Γ3

∇u(x, y).n d(x, y),

where Γ3 = {1} × (0, 1).

Discussion of Our Findings. The effectivity index Ieff has values in (1.06, 1.45), which is better than in Ex-
ample 1b but worse than in Example 1a.
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Figure 16. Comparison of relative errors for Example 2a.
We note that the error in J0 and J1 for global refinement coincides.

Figure 17. Initial mesh used for Example 2a. Figure 18.Mesh after 7 refinement steps for Example 2a.

With regard to the error, we make the following observations. In Figure 16 it is observed that we hardly
achieve an advantage at the beginning for J2, but at one specific refinement stepweget amuchbetter decrease
in the error than in the other steps. But in this stepwe also get a worse error reduction in the other functionals
and in J0 even an increase.We also observe that we do not necessarily obtain a better result for one functional
(here J0) if we use DWR with respect to Jc than for global refinement. An interesting fact is that the errors
of J0 and J1 exactly coincide for global refinement but for the refinement using Jc they do not. One reason
could be that the errors accumulate and therefore some of the refinement areas for the single functionals are
geometrically connected (as visualized in Figure 18).

4.2.2 Example 2b

In the second part of Example 2, we compute now on an L-shaped domain with other functionals of interest
and we investigate the sign of the combined functional Jc.

Goal Functionals of Interest. We consider the following three goal functionals:

J0(u) := u(0.5, 0.5), J1(u) := ∫
Ω4

u(x, y) d(x, y), J2(u) := ∫
Γ4

∇u(x, y).n d(x, y),

where Ω4 = (0.75, 1) × (0, 0.25) and Γ4 = {1} × (0, 1).

Discussion of Our Findings. The relevant effectivity index Ieff is always in (1.03, 1.08) except on the coarsest
mesh in step 0 where Ieff = 0.75. In the examples before, we were mostly concerned about the error. But if we
construct Jc as in (3.9), we have (as explained in Section 3.1) to solve a bigger linear system just to get a sign
for each weight. The question is whether this is really necessary. Therefore, we investigate in the following
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Figure 19. Example 2b: Adjoint solution after 6 refinement
steps.

Figure 20. Example 2b: Adjoint solution after 7 refinement
steps.

the adjoint solution in more detail. Comparing Figures 19 and 20, we monitor that there is indeed a change
of the sign of w0 (as defined in (3.1)) during the computation. Hence the computation of the sign cannot be
avoided in the algorithm presented in Section 3.1.

4.3 Example 3

In this numerical testwe consider anon-homogeneousDirichlet boundary conditionon theL-shapeddomain.
The right-hand side is non-homogeneous and has a pole at (0, 0). Moreover, we perform computations with
higher-order finite elements.

Configuration. Find u such that

−∆u(x, y) = −
1

‖(x, y)‖l2
for all (x, y) ∈ Ω,

u(x, y) = ‖(x, y)‖l2 for all (x, y) ∈ ∂Ω,

where
Ω = (−1, 1) × (−1, 1) \ (−1, 0) × (−1, 0).

The exact solution u is given by
u(x, y) = ‖(x, y)‖l2 .

The initial mesh is displayed in Figure 25.

Goal Functionals of Interest. We consider the following three goal functionals:

J0(u) := u(0.5, −0.5), J1(u) := u(0.5, 0.5), J2(u) := ∫
Γ5

∇u(x, y).n d(x, y),

where Γ5 = (0, 1) × {−1}. The exact solution u yields

J0(u) = √0.5, J1(u) = √0.5, J2(u) = log(1 + √2).

Discretization. Here we use higher-order finite elements for discretization. We denote the configuration,
where we used Qr for the first primal problem and Qr+1 for the second primal problem and the adjoint prob-
lem, by Qr/Qr+1 finite elements. We use
∙ Q1/Q2 finite elements,
∙ Q4/Q5 finite elements,
∙ Q8/Q9 finite elements.

Remark 4.1. In our numerical test we do not see any effect when using Qr/Qs finite elements, where s > r + 1
in comparison to Qr/Qr+1. Since the latter is less computational work, we always use this FE combination.
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Figure 21. Ieff for Example 3. Figure 22. Example 3: Error using Q1/Q2 finite elements.

Figure 23. Example 3: Error using Q4/Q5 finite elements. Figure 24. Example 3: Error using Q8/Q9 finite elements.

Discussion of Our Findings. In this example we do have a singularity in the right-hand side and we are inter-
ested in the behavior of our algorithm employing different finite elements. For the Ieff we obtain the following
results:
∙ Ieff ∈ (0.5, 1.6) for Q1/Q2 finite elements,
∙ Ieff ∈ (0.07, 0.65) for Q4/Q5 finite elements,
∙ Ieff ∈ (0.15, 13.5) for Q8/Q9 finite elements.

Observing our findings,weobtain an error estimator thatworks quitewell ifweuseQ1/Q2 finite elements,
but it also seems that for a higher polynomial degree the error estimator gets worse. However if we take a
look at Figure 21 we can see that the high and low values for higher polynomial degrees appear just at the
beginning and the end of our algorithm. This may happen through the worse approximation due the coarse
grid at the beginning and numerical errors at the end of our computation, because our error estimator just
estimates the discretization error and not the numerical error. Nevertheless, in the steps between, our error
estimator is still better for Q1/Q2 finite elements than for higher order.

As in the previous examples, we are also interested how the error is affected in the functionals of interest.
For Q1/Q2 finite elements we monitor in Figure 22 that we have a high inconsistency in the decrease of error
and we even get some increases in both point evaluations. If we use higher polynomial degrees, we nearly
always have a similar reduction in all errors (except at the end where the error for J2 increases because of
numerical errors). Comparing the errors themselves, we do get much better results if we use Q4/Q5 finite
elements or Q8/Q9 finite elements. On the other hand, once we work with higher order, we do not conclude
an advantage of using very high polynomial degrees. Consequently, there is a big advantage of going from
Q1/Q2 to Q4/Q5. But even higher polynomial degrees do not pay off.

We note that the error increase towards the maximal refinement steps in Figures 23 and 24 results from
numerical inaccuracies towards low tolerances, e.g., from solving the linear system or more likely that the
flux evaluation is not accurate enough (sincewedealwith a derivative). If we take a look at our refinedmeshes
shown in Figures 26–28, we see that we always obtain refinements at the position of the singularity of the
right-hand side. This effect becomes stronger if we use polynomials with higher degree. Here, very localized
mesh refinement is observed.
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Figure 25. Example 3: Initial mesh (solution for Q1/Q2 finite
elements).

Figure 26.Mesh for Q1/Q2 finite elements after
9 refinement steps (71565 DOFs).

Figure 27. Example 3: Mesh for Q4/Q5 finite elements
after 10 refinement steps (65463 DOFs).

Figure 28. Example 3: Mesh for Q8/Q9 finite elements
after 8 refinement steps (59639 DOFs).

4.4 Example 4: A Slit Domain

4.4.1 Example 4a

In this final example we consider a slit domain with displacement discontinuity (which can be interpreted as
a crack) as pictured in Figure 29. On the slit, homogeneous Neumann boundary conditions are prescribed. In
Example 4a, non-homogeneousDirichlet and homogeneousNeumann conditions are prescribed on the outer
boundary. In Example 4b, non-homogeneous Dirichlet on the entire outer boundary are used for which, on
the other hand, a manufactured solution can be constructed.

Configuration. We consider the Laplace equation on a slit domain: Find u such that

−∆u(x, y) = 0 for all (x, y) ∈ Ω,
u(x, y) = g(x, y) for all (x, y) ∈ ΓD ,

∇u(x, y) ⋅ n(x, y) = 0 for all (x, y) ∈ ΓN ,

where
Ω = (−1, 1) × (−1, 1) \ {(x, 0) | −1 ≤ x ≤ 0}.

The boundary parts are given as

ΓD = {(−1, y) | −1 ≤ y ≤ 1}, ΓN = ∂Ω \ ΓN .

Here, g(x, y) is defined as

g(x, y) := sign(y) λGc
√2

√√x2 + y2 − x,

where λGc = 1. This coefficient is a material parameter and related to the fracture toughness.
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Figure 29. Example 4a: Discontinuity location (in red; left figure) and related numerical solution in a 3D plot (right)
to Example 4b, which additionally highlights the non-homogeneous Dirichlet boundary conditions and the jump of
displacements across the crack.

These conditions introduce a discontinuity on the boundary at (−1, 0) and consequently a crack with
displacement discontinuity as displayed in Figure 29.

Goal Functionals of Interest. We deal with the following four goal functionals (but we notice that not always
all goal functionals are simultaneously considered):

J0(u) := u(0.75, 0.75), J1(u) := u(−0.5, −0.25),

J2(u) := ∫
Γ6

∇u(x, y).n d(x, y), J3(u) := ∫
Ω6

u(x, y) d(x, y),

where Γ6 = {−1} × (−1, −0.25) and Ω6 = (0, 1) × (−1, 0).
However no exact solution is known, and therefore we approximate the exact functionals by values that

have been obtained from a very fine mesh:
∙ J0(u) ≈ +0.18949212064,
∙ J1(u) ≈ −0.66061009755,
∙ J2(u) ≈ −0.54411579542,
∙ J3(u) ≈ −0.18268521784.

Discussion of Our Findings. First, we consider detailed studies for a single goal functional. The reason is that
this test might serve as kind of benchmark for testing algorithms which compute fractures. Even for single
goal functionals the existing literature is rare. A fracture in 2D is nothing else than a discontinuity along a
line in the primal (displacement) solution. Thus the slit domain is a limiting case for a fracture setting. After
having revisited a single goal functional, we add as in the previous examples more quantities of interest. We
use four different configurations for our goal functionals:
∙ Configuration 1: evaluating J0(u),
∙ Configuration 2: evaluating J0(u) and J1(u),
∙ Configuration 3: evaluating J0(u), J1(u) and J2(u),
∙ Configuration 4: evaluating J0(u), J1(u), J2(u) and J3(u).

In Figure 30 we see that in all configurations, the error in Jc is underestimated, but we cannot expect to
have Ieff = 1 for this problem due to the loss of regularity. Furthermore the Ieff seems not to differ that much
for the different configurations. In Figures 31–34 we observe that for all configurations we get a much better
reduction for our refinement if we compare to global refinement. An interesting aspect is that in this example
all errors are of similar order and we also have a similar reduction in the error.

Another interesting observation can bemade in Figure 35where we even obtain better results if we refine
for Jc instead for J0. Usually we would expect a worse result if we try to refine for more than one functional
at the same time. But unfortunately we do not have such findings in general as it can be monitored in Fig-
ure 5 for J2. Nevertheless, we observe that the results are also good for less regular problems even if the error
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Figure 30. Example 4a: Ieff for Configurations 1–4. Figure 31. Example 4a: Error for Configuration 1.

Figure 32. Example 4a: Error for Configuration 2. Figure 33. Example 4a: Error for Configuration 3.

Figure 34. Example 4a: Error for Configuration 4. Figure 35. Example 4a: Error for J0 for Configurations 1–4.

estimator is not that accurate. We also find that our refinement scheme takes care of low regularity domains
for all our configurations as displayed in Figures 36–39. That is why the mesh is also refined at the fracture
tip in the middle of the domain. We finally notice that the initial mesh for these computations is shown in
Figure 49.

4.4.2 Example 4b

In this example, one goal is to perform studies for different polynomial degrees. As in Example 4a, we con-
sider the Laplace equation on a slit domain with displacement discontinuity (i.e., the crack) as pictured in
Figure 29. The domain and location of the crack are chosen in such a way that we can work with the manu-
factured solution constructed in [4, 11]:

u(x, y) = λGc r1/2 sin(ϕ/2), λGc = 1, 0 ≤ ϕ < 2π,
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Figure 36. Example 4a: Mesh for Configuration 1
after 7 refinement steps (56809 DOFs).

Figure 37. Example 4a: Mesh for Configuration 2
after 7 refinement steps (49883 DOFs).

Figure 38. Example 4a: Mesh for Configuration 3
after 8 refinement steps (68809 DOFs).

Figure 39. Example 4a: Mesh for Configuration 4
after 8 refinement steps (58425 DOFs).

in polar coordinates. In Cartesian coordinates the solution reads

u(x, y) = sign(y) λGc
√2

√√x2 + y2 − x.

We prescribe

g(x, y) := sign(y) λGc
√2

√√x2 + y2 − x,

on the entire outer boundary.

Goal Functionals of Interest. We consider the following four goal functionals:

J0(u) := u(0.75, 0.75), J1(u) := u(−0.5, −0.25),

J2(u) := ∫
Γ7

∇u(x, y).n d(x, y), J3(u) := ∫
Ω7

u(x, y) d(x, y),

where Γ7 = {−1} × (−1, −0.25) and Ω7 = (0, 1) × (−1, 0).

Discretization. Hereweuse different FE for discretization (as in Example 3).WedefineQr/Qr+1, whichmeans
that we use Qr for the first primal problem and Qr+1 for the second primal problem and the adjoint problem.
We work with the combinations Q1/Q2, Q2/Q3, Q3/Q4, Q4/Q5.

Discussion of Our Findings. First, we are interested in how the error decreases with respect to the number
of refinement steps. Here, we observe that for all tested polynomial degrees, we achieve a similar decrease
as O(h) for global refinement. In more detail, the error of each functional for both refinement methods and
all tested polynomial degrees is approximately halved at each refinement step as we detect in Figures 40–43.
Therefore, we almost get the same behavior as global refinement in the errors if we just compare it to the
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Figure 40. Example 4b: Error versus refinement steps
for Q1/Q2 finite elements.

Figure 41. Example 4b: Error versus refinement steps
for Q2/Q3 finite elements.

Figure 42. Example 4b: Error versus refinement steps
for Q3/Q4 finite elements.

Figure 43. Example 4b: Error versus refinement steps
for Q4/Q5 finite elements.

Figure 44. Example 4b: Increase in DOFs for different finite
elements and refinement schemes.

Figure 45. Example 4b: Error in J0 for different finite
elements and refinement schemes.

refinement steps. However, as we monitor in Figure 44, we save many DOFs for our refinement scheme in
comparison to global refinement (behaves like O(h−2)) for almost the same accuracy. If we now compare the
different polynomial degrees, we observe that for a higher polynomial degree, we start with a higher number
of DOFs, but we do get less increase than for lower polynomial degrees such that we get less DOFs for a higher
polynomial degree after a certain number of refinement steps. With regard to the maximal number of DOFs,
we remark that the plot curves for global refinement stop because we did not solve linear systems with more
than 1100000 unknowns. The behavior of the last refinement steps shown in Figures 42 and 43 results from
numerical errors.

But as we visualize in Figure 44 the advantage of Q4/Q5 finite elements compared to Q3/Q4 finite ele-
ments is not as big as if we compare Q3/Q4 and Q2/Q3 finite elements. Since all errors for all polynomial
degrees show a similar behavior, we take a look at the error in J0 in this example. If we plot the error in J0
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Figure 46. Example 4b: Mesh and solution for Q1/Q2 finite
elements after 8 refinement steps (60119 DOFs).

Figure 47. Example 4b: Mesh and solution for Q2/Q3 finite
elements after 18 refinement steps (58289 DOFs).

Figure 48. Example 4b: Mesh and solution for Q4/Q5 finite
elements after 18 refinement steps (63403 DOFs).

Figure 49. Example 4b: Initial mesh and solution for
Example 4a (Q4/Q5 solution for Example 4b).

against the DOFs as shown in Figure 45, we see the advantage of the algorithm in Section 3.1. Here we again
see the advantage of using higher polynomial degrees. To reach an error less than 10−6 we need for Q1/Q2
finite elements of about 5 × 105 DOFs and forQ4/Q5 finite elements of about 9000DOFs. But also the findings
for Q1/Q2 finite elements are satisfying in comparison to global refinement for all tested polynomial degrees.

By taking a look at the meshes constructed by our algorithm (Figures 46–48), one can observe that for
higher polynomial degrees more refinements in low regularity regions than in specific functional areas take
place. This is in agreement with our findings in Example 3.

5 Conclusions
In this work, we further developed dual-weighted residual error estimation for multiple goal functionals with
application to elliptic problems. We addressed in Section 3.5 a variational localization of the error estimator
using a partition-of-unity. Next, we proposed an alternative way to solve the adjoint to the adjoint problem.
In Section 4, we provided extensive numerical computations for various domains, different boundary con-
ditions, and different types of goal functionals as well as higher-order finite element calculations. From our
observations we can deduce that the functional Jc (introduced in (3.9)) delivers a similar behavior than the
functional, contained in J, with the highest relative error if the self-chosen weights ωi from (3.9) are equal.
This leads to a better decrease in the error of this functional but not necessarily for the other functionals (as
shown in Example 2a). However, we do obtain a better decrease in the maximal relative error than global
refinement. If the errors in the different functionals are of similar order, we observe a decrease in each func-
tional as shown in Figures 23 and 24 and Figures 32–34. Example 2b demonstrates that the computation
of the sign of the procedure described in Section 3.1 can unfortunately not be avoided. We found out that
there can be a big advantage using a higher polynomial degree, even we may get a worse error estimator (as
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shown in Example 3). Furthermore we also obtained very good findings for a problem on a low regularity
domain (as shown in Example 4a). Also for singular right-hand sides, we obtained satisfying results and we
found that for higher polynomial degreeswe domore refinement steps at the low regularity regions (see again
Example 3). We briefly comment that we also observed the general benefit of using an adaptive algorithm:
using global refinement limits significantly to reach low tolerances because the linear systems are simply
too big and memory-consuming. For instance, in Example 4b we could only reach a tolerance of 10−5 us-
ing global mesh refinement. Finally, we notice that the last test, namely Example 4, might serve as basis for
developing mesh adaptivity for sophisticated computational methods for treating fracture (or damage) set-
tings (in which the crack is not nicely alignedwith themesh) such as extended/generalized finite elements or
phase-field methods. Thus the provided methodology has an immediate potential to be extended for current
practical applications.

Acknowledgment: We want to thank Professor Ulrich Langer for supporting this work at the Institute of
Computational Mathematics at JKU Linz.
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