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Abstract. This contribution is the first part of two papers on the Fully Eulerian
formulation for fluid-structure interactions. We derive a monolithic variational for-
mulation for the coupled problem in Eulerian coordinates. Further, we present the
Initial Point Set method for capturing the moving interface. For the discretization of
this interface problem, we introduce a modified finite element scheme that is locally
fitted to the moving interface while conserving structure and connectivity of the sys-
tem matrix when the interface moves. Finally, we focus on the time-discretization
for this moving interface problem.

1 Introduction

The underlying difficulty of fluid-structure interactions (fsi) is the free bound-
ary character of the coupled system: as the deformation or motion of the solid
determines the interface to the fluid problem, the domains (fluid as well as
solid) are subject to change. In problems of solid mechanics, the displace-
ments are usually represented in Lagrangian coordinates, such that the com-
putational domain is always fixed. The shape of the current configuration is
expressed by the displacement field. This concept does not directly transfer
to coupled fsi problems, as fluid flows are usually considered in Eulerian co-
ordinates. A direct coupling between the fixed Lagrangian and the moving
Eulerian domain is not possible.

For stiffly coupled problems, monolithic formulations of the coupled sys-
tem are required for robust implicit discretization and solution techniques. A
simple approach is to reformulate the flow problem on a fixed coordinate sys-
tem, that matches the fluid-problem. By introducing a reference domain and
a mapping between this reference domain and the current configuration, the
fluid problem can be expressed on a fixed domain. All motion is hidden in the
transformation, which is now an unknown part of the system. This Arbitrary
Lagrangian Eulerian (ALE) formulation is one possibility out of two and is
often used and highly successful (see. e.g. the survey [2]), mostly due to the
simple structure and the very good accuracy, that can be achieved. We notice
that the reference system for the fluid problem is artificial. Problems appear,
if the fluid domain undergoes a very large deformation. The mapping between
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artificial reference domain and current configuration must be invertible and
differentiable. If the deformation gets too large, e.g. if the topology of the
domain is changed (by contact), the ALE approach will fail. By remeshing
and definition of a new reference domain, one can overcome this limitation,
however at the cost of loosing a strictly monolithic formulation.

Here, we present an Eulerian formulation for the coupled problem, which
is similar to the ALE approach, as coupling will be realized in a monolithic
variational formulation. The fluid problem is given in its natural Eulerian
framework, and the solid problem will also be mapped to Eulerian coor-
dinates, such that both sub-problems are formulated in the moving cur-
rent configuration. This approach has first been introduced by Dunne [3]
and then been further analyzed and developed into a computational method
[4,14,16,13]. Two major differences between the Eulerian and the ALE ap-
proach are of importance: First, we do not have to use artificial reference
domains. The mapping between Lagrangian and Eulerian systems is natural
and will never be the cause for a breakdown of the approach. Large motion,
deformation and contact are possible. Second, as the problems are given in
the moving current configuration on a fixed spatial coordinate system, the
formulation is of front-capturing type. The position of the interface must be
carefully followed and achieving good interface accuracy will be challenging.

The Fully Eulerian approach must be distinguished from other techniques
like Euler-Lagrange schemes based on Level-Sets [9], the XFEM dual mortar
approach [10], or Peskin’s immersed boundary method [12] where two dif-
ferent meshes are used and the information is provided by smoothed delta-
functions. The key difference of these methods to the Fully Eulerian approach
is that we neither need Lagrange-multipliers, and that we work on one com-
mon fixed background mesh, that allows us to realize the coupling by varia-
tional techniques.

The following second section is devoted to an introduction of the Fully
Eulerian formulation for fluid-structure interactions. Then, in Section 3 we
describe a spatial finite element discretization that is able to locally resolve
the interface. Section 4 discusses the temporal discretization of the coupled
system. Numerical test-cases and different applications of the Fully Eulerian
formulation are presented in the second part of this series [6].

2 Fluid-structure interactions in Eulerian coordinates

Let Ω ⊂ Rd be a two- or three-dimensional domain, that is split into a
fluid-domain F and a solid-domain S and a common interface I by Ω =
F ∪ I ∪ S. By Ω = Ω(0), F = F(0) and I = I(0) we denote the stress-free
reference configuration. On the sub-domain F we prescribe the incompressible
Navier-Stokes equations, while S is governed by an elastic structure. The
two problems are coupled on the common interface by prescribing continuity
of velocities vf = vs as well as continuity of normal stresses σσσfn = σσσsn,
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where by σσσf and σσσs we denote the Cauchy stresses of fluid and solid and n
denotes the normal vector. By the dynamics of the coupled problem, the solid
domain will undergo a motion or deformation S → S(t) and the fluid-domain
will move along, such that the joint domain Ω(t) = F(t) ∪ I(t) ∪ S(t) will
neither overlap nor produce gaps. The main task for a monolithic variational
formulation of the coupled problem is to state the solid equations on this
moving Eulerian domain S(t). Details on the derivation of the equations as
well as differences to the traditional ALE formulation are presented in detail
in the literature, see e.g. [4].

Here, by vs and us we denote solid velocity and displacement in the Eu-
lerian framework. By the relation x̂ := x−u(x, t) we define the mapping of a
Eulerian coordinate x ∈ S(t) back the reference coordinate x ∈ S = S(0) of
the particle. By F := I −∇u we denote the Eulerian displacement gradient
with determinant J := det F. It holds F = F̂−1, where F̂ is the usual La-
grangian displacement gradient [4]. Finally, the Green Lagrange strain tensor
has the Eulerian representation E := 1

2 (F−TF−1 − I). This notation allows
to state various constitutive laws of elastic materials in Eulerian coordinates.
For simplicity, we restrict all considerations to the St. Venant-Kirchhoff ma-
terial, where the Cauchy stresses are given by

σσσs := JF−1 (2µsE + λs tr(E)I)F−T ,

with Lamé coefficients µs and λs.

2.1 Variational formulation in Eulerian coordinates

We start by defining the correct functional spaces for the solution of the cou-
pled problem. As velocities of fluid and solid are continuous on the complete
domain Ω(t) = F(t) ∪ I(t) ∪ S(t), we define a global function space that
directly incorporates the kinematic coupling condition

v ∈ vD + V, V := H1
0 (Ω(t);ΓD(t))d,

where ΓD(t) is that part of the domain’s boundary, where Dirichlet conditions
are prescribed and vD ∈ H1(Ω(t))d is an extension of the Dirichlet data
into the domain. Fluid and solid velocities are given by restriction of v to
the subdomains vf := v|F(t) and vs := v|S(t), respectively. Considering
compressible elastic structures, the pressure is only given in the fluid domain

pf ∈ Lf := L2(F(t)).

As the Eulerian formulation does not involve transformation of the fluid-
domain, no additional displacement variable (like in the ALE approach) is
required. We find the solid displacement in the form

us ∈ uD
s +Ws, Ws := H1

0 (S(t);ΓD
s (t))d,



4 Stefan Frei, Thomas Richter, and Thomas Wick

where by ΓD
s (t) we denote the Dirichlet part of the solid boundary and by

uD
s ∈ H1(S(t))d an extension of the Dirichlet values into the solid domain.

Finally, velocities v ∈ vD + V, displacement us ∈ uD
s +Ws and pressure

pf ∈ Lf are defined by the system:

(ρf (∂tvf + vf · ∇vf ),φf )F(t)+(Jsρ
0
s(∂tvs + vs · ∇vs),φs)S(t)

+(σσσf ,∇φf )F(t) + (σσσs,∇φs)S(t) = (ρf ff ,φf )F(t) + (Jρ0sfs,φs)S(t) ∀φ ∈ V
(∂tus + vs · ∇us,ψs)S(t) = (vs,ψs)S(t) ∀ψs ∈ Ws

(div vf , ξf )F(t) = 0 ∀ξf ∈ Lf ,
(1)

where by ρf and ρ0s we denote the densities of fluid and solid in reference
state, by σσσf := −pfI + ρfνf (∇vf +∇vT

f ) the fluid stresses with kinematic
viscosity νf . The global definition of the test-function φ ∈ V ensures the
dynamic coupling condition of the normal stresses. As for the velocities, we
use the notation φf := φ|F(t) and φs := φ|S(t).

This system of equations in not closed, as the motion of the domains is
determined in an implicit sense only. Without knowledge of the solution, the
affiliation of a coordinate x ∈ Ω(t) to either solid- or fluid-domain is not
immediately possible. The next section will focus on this issue.

2.2 The Initial Point Set method

One common possibility to capture the interface in fixed mesh methods is to
use Level-Set functions [15] that transport the interface as zero contour of a
signed distance function with the fluid and solid velocity. Eulerian Level-Set
methods for fsi problems are discussed in the literature [7,8]. Here, we refrain
from using Level-Sets due to two reasons: first, Level-Sets have difficulties
capturing sharp edges. And second, an additional equation has to be solved
and the problem complexity increases. Instead, we base the interface cap-
turing on a transportation of the complete reference domain instead of the
interface:

∂tΩ(t) + v · ∇Ω(t) = 0.

Within the solid domain, the displacement us exactly takes this role. For
x ∈ S(t), the displacement vector points back to the reference domain x −
us(x, t) ∈ S = S(0). Hence, if x and u are available, we can decide, whether
x − u is part of the reference solid or not. To apply this concept, we must
define a displacement field u on the complete domain Ω(t). Then, the Initial
Point Set [3,13] is given as

ΦIPS(x, t) :=

{
x− us(x, t) x ∈ S(t),

x− ext(us)(x, t) x ∈ F(t).

The extension of the solid displacement is only required in a close neighbor-
hood of the interface [13]. Given the initial point set, the domain affiliation
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Fig. 1. Left: triangulation Ωh with interface I. Patch P is cut by I at xP1 and xP2 .
Right: subdivision of reference patches P̂1, ..., P̂4 into eight triangles each.

of x ∈ Ω(t) is determined by ΦIPS(x, t) ∈ S(0) for the solid domain and
ΦIPS(x, t) 6∈ S(0) for coordinates in the fluid domain F(t). Here, we stress
one detail in the realization: a coordinate x ∈ Ω(t) belongs to the fluid
part, if the Initial Point Set ΦIPS maps out of the reference solid domain.
No mapping between F(0) and F(t) is required, see [13] for a discussion.
The extension can be embedded into the variational system and the coupling
condition uf = us is realized by finding a global displacement field on the
whole domain u ∈ uD +W, where W := H1

0 (Ω(t);ΓD
s )d.

3 Finite element discretization

Typically, in fluid-structure interaction problems the overall dynamics of the
system strongly depend on the dynamics in the interface region. Hence, one
key ingredient for both stability and accuracy reasons is to capture the inter-
face accurately. The combined velocity consisting of solid and fluid part typ-
ically shows a kink at the interface. It is important to resolve this kink accu-
rately in our discretization scheme. One standard approach to include jumps
or kinks into the discrete space is the Extended Finite Element Method [11]. A
drawback of the XFEM method is the addition and elimination of degrees of
freedom which leads to a local distortion of the connectivity and structure of
the system matrix. Furthermore, one may have to deal with so called “blend-
ing” cells lying next to the interface cells that might distort the method’s
accuracy. Finally, the condition number of the system matrix does not nec-
essarily remain bounded. Here, we present a method [5], that avoids these
issues. The idea is to use a fixed background mesh consisting of patches that
remains unchanged for all time steps. Inside the patches we adjust degrees of
freedom locally by choosing a special parametric finite element space.

Locally modified parametric finite element scheme Let Ωh be a form and
shape-regular decomposition of the domain Ω ⊂ R2 into open quadrangles.
The mesh Ωh does not necessarily resolve the partitioning Ω(t) = F(t) ∪
I(t) ∪ S(t) and the interface I(t) can cut the elements K ∈ Ωh. We further
assume, that the mesh Ωh has a patch-hierarchy in such a way, that each four
adjacent quads arise from uniform refinement of one common father-element,
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Fig. 2. Different types of cut patches. From left to right: A, B, C and D. The
subdivision can be anisotropic with r, s ∈ (0, 1) arbitrary.

see Figure 1. The interface I may cut the patches in the following way: Each
(open) patch P ∈ Ωh is either not cut P ∩I = ∅ or cut in exactly two points
on its boundary: P ∩ I 6= ∅ and ∂P ∩ I = {xP1 , xP2 }.

We define the finite element trial space Vh ⊂ H1
0 (Ω) as iso-parametric

space on the triangulation Ωh. If a patch is not cut by the interface, we use
the standard space of bilinear functions Q̂ (bilinear on each of the four sub-
quads) for both reference element transformation and finite element basis. If
a patch P ∈ Ωh however is cut, we use the space Q̂mod of piecewise linear
functions (linear on each of the eight triangles) for transformation and basis.
Depending on the position of the interface I in the patch P , three different
reference configurations are considered, see the right sketch in Figure 1. Note
that the functions in Q̂ and Q̂mod are all piecewise linear on the edges ∂P ,
such that mixing different element types does not affect the continuity of the
global finite element space.

Next, we present the subdivision of interface patches P into eight trian-
gles each. We distinguish four different types of interface cuts, see Figure 2:
Configurations A and B are based on the reference patches P̂2 and P̂3, con-
figurations C and D use the reference patch P̂4, see Figure 1. If an edge is
intersected by the interface we move the corresponding point ei on this edge
to the point of intersection. The position of the midpoint xm depends on
the specific configuration. As the cut of the elements can be arbitrary with
r, s → 0, the triangle’s aspect ratio can be very large, considering h → 0 it
is not necessarily bounded. We can however guarantee, that the maximum
angles in all triangles will be bounded away from 180◦. This result allows us
to define stable interpolation operators and to derive error estimates [5].

To cope with the condition number of the system matrix, that can be
unbound for some configurations r, s → 0, we modify the parametric basis
in a hierarchical way. By splitting of the finite element space Vh = V2h + Vb,
where V2h is the standard space of linear functions on the patches P ⊂ Ωh and
Vb is the space with only local contributions, the effect of the interface motion
is kept locally. This modification allows us to show an interface-independent
condition number for the system matrix of elliptic problems [5].
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Fig. 3. Extract of the space-time domain with moving interface I(t). We use an
ALE time stepping scheme near the interface to track the interface movement ac-
curately. The transformations Tm and Tm+1 are indicated by arrows. Outside of
the interface region, we use a standard θ-scheme.

4 Outlook - Accurate Temporal Discretization

As time-stepping scheme we use the implicit Euler method. The implicit Euler
method has excellent stability properties, may suffer from strong dissipation,
however. Due to the hyperbolic character of the structure equation, it is de-
sirable to use a scheme with better dissipation properties. Furthermore, for
stability and accuracy reasons, it is important to capture the interface move-
ment accurately. The combined functions v and u both typically show kinks,
their gradients are typically discontinuous across the interface. A standard
time-stepping scheme for the first equation in (1) reads

k−1(ρf (vm
f −vm−1

f ),φf )F(tm)+(θvm
f ·∇vm

f +(1−θ)vm−1
f ·∇vm−1

f ,φf )F(tm)+. . .

Implementation of this scheme is not straightforward, however, as the do-
mains F and S change with time. Points belonging to S at time tm−1 might
lie in F at time tm. In this case the fluid velocity vm−1f is not defined in some
parts of F(tm).

In order to capture the velocity kinks accurately and not depend on ar-
tificial extensions, we propose the use of a moving mesh technique at each
time step in the interface region. Similar to the ALE Method, we define a
transformation Tm from a fixed reference domain (e.g. Ω(tm)) back in time
to the time slab Q(t) =

{
(x, t)

∣∣ t ∈ (tm−1, tm), x ∈ Ω(t)
}

that maps F(tm)
to F(t), S(tm) to S(t) and I(tm) to I(t). We use this transformation in a
neighborhood of the interface I(tm) only, outside we set Tm = id the identity
(cf. Figure 3). The reference domain (e.g. Ω(tm)) changes in every time step.
A similar method has been proposed by Baiges and Codina [1]. In order to
avoid the need for remeshing around the interface, we use the same mesh
in all time steps, with the only difference that -as explained in Section 3-
patches cut by the interface are arranged in such a way that the interface
is captured. Note that with this technique the interface motion is tracked
accurately by a moving mesh line that moves with the interface.
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