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Abstract. In this study, reaction-induced boundary movements in a thin chan-
nel are investigated. Here, precipitation-dissolution reactions taking place at the
boundaries of the channel resulting in boundary movements act as a precursor to
the clogging process. The resulting problem is a coupled flow-reactive transport
process in a time-dependent geometry. We propose an ALE-based method (ALE -
arbitrary Lagrangian-Eulerian) to perform full 2D computations. We derive a 1D
model that approximates the 2D solution by integrating over the thickness of the
channel. The boundary movements lead in the limit to clogging when the flow gets
choked for a given pressure gradient applied across the channel. Numerical tests of
the full 2D model are consulted to confirm the theory.

1 Motivation

Reactive flows are of great importance in a variety of fields including but not lim-
ited to porous media, biomedical applications, and biofilm growth [2,3,7,8,6]. Reac-
tive processes such as precipitation-dissolution lead to geometry changes leading to
changes in the flow which in turn affects the transport. Hence, the resulting model
must consider geometry changes, reactive processes, transport and flow problems
in a coupled manner. In this work, we consider flow in a thin channel where ions
are transported by flow and undergo molecular diffusion. The ions react to each
other at the boundaries of the channel leading to the deposition of the crystalline
material. We consider both the precipitation and dissolution processes as proto-
types of reactions. The particularity is in the reactions, namely, precipitation and
dissolution processes taking place at the boundaries of the channel leading to the
deposition of the crystal material.
We employ an ALE-based method (ALE - arbitrary Lagrangian-Eulerian) to study
coupled flow-transport phenomena in a time-dependent geometry. The initial ge-
ometry is quite simple and taken to be a thin channel which is a representative
pore scale geometry. The changes in the geometry, as already stated, result from
the reactions which are themselves functions of concentration and geometry. Hence,
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the time-dependent configuration remains an unknown and hence part of the solu-
tion variable. Since full 2D computations for the channel are expensive, we consider
a 1D upscaled model derived in [5]. Both the 2D model and its approximate 1D
model predict decreasing of strength of the flow as the channel progressively gets
narrower. We term the limit of the narrowing of the channel as clogging, which is
consistent with the intuitive notion.
The ALE method presented in this paper has been discussed in detail in [4] whereas
the upscaled 1D model has been derived in [5] for a different set of boundary condi-
tions for flow. We consider pressure boundary conditions for the flow which allows
us to investigate the choking of the flow when the channel becomes constricted.
These earlier studies did not consider the clogging process due to their choice for
the boundary conditions for the flow. Our motivation for the present investigation
stems from studying processes preceding the clogging and its effect on the flow
and transport and further being able to define both 2D and upscaled 1D equations
describing the behavior of post-clogging. Consequently, this work is a beginning in
this direction.
The outline of the article is as follows: In Section 2, we recapitulate the underlying
partial differential equations for the thin strip. Then, in Section 3, we state a 1D
upscaled model. Next, the ALE method and discretization schemes for solving the
free and moving boundary problem in the thin strip are described in Section 4. It is
followed by Section 5 where clogging is discussed. Finally, in Section 6, the numer-
ical experiments are conducted for full 2D model and we conclude by commenting
on the consistence of 1D model with full 2D computations.

2 Equations

Let Ω0 be a bounded domain in R2 representing a thin strip. The region occupied
by the flow is Ω(t) ⊂ Ω0, the precipitate layer is described by Γ (t), with the inlet
and outlet denoted by Γi and Γo. The geometry description in which the flow and
transport processes take place is given by:

Ω(t) := {(x, y) ∈ R2 | 0 ≤ x ≤ 1, −(ε− d(x, t)) ≤ y ≤ (ε− d(x, t))},
Γ (t) := {(x, y) ∈ R2 | 0 ≤ x ≤ 1, y ∈ {−(ε− d(x, t)), (ε− d(x, t))}},
Γi(t) := {(x, y) ∈ R2 | x = 0, −(ε− d(0, t)) ≤ y ≤ (ε− d(0, t))},
Γo(t) := {(x, y) ∈ R2 | x = 1, −(ε− d(1, t)) ≤ y ≤ (ε− d(1, t))}.

Due to the reactions at the boundaries,Ω and the boundaries Γ ’s are time-dependent.
The schematic illustration for the thin strip is displayed in Figure 1.

The flow and transport of the solutes (the ions) are described by the following
system of equations. The transport equation reads:

∂tc = ∇ · (D∇c− vc), in Ω(t)× (0, T ),

ρs∂td = f(c, ρsd)
√

1 + (∂xd)2, on Γ (t)× (0, T ),
f(c, ρsd) = r(c)− w, on Γ (t)× (0, T ).

(1)

Here, the unknowns are: c(x, y, t), concentration of the charged ions, d(x, t) free and
moving boundary resulting due to reactions, and v(x, y, t) the flow field. The known
physical parameters are: D > 0, diffusion constant, ρs, the density of ions in the
precipitate. (1)1 describes the transport of solutes due to convection and molecular
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Fig. 1. Schematic of a thin channel showing the geometry changes due to precipitate
being formed at the boundaries. The flow and transport takes place in Ω(t) and
the reactions take place at lateral boundaries Γ (t).

diffusion processes, whereas (1)2 describes the movement of the boundary due to
reaction term f . According to (1)3, the reaction rate f is imposed by the following
structure:

f(c, ρsd) = r(c)− w, (2)

where r(·) describes the precipitation part whereas w models the dissolution process.
Additionally, we assume that r(·) : R → [0,∞), is monotone and locally Lipschitz
continuous in R. The usual mass-action kinetics laws governing the precipitation
process satisfy this assumption. For the dissolution process, the rate law is given as

w ∈ H(d), where H(d) =


{0}, if d < 0,

[0, 1], if d = 0,
{1}, if d > 0.

(3)

The flow equations read:

Continuity: ∇ · v = 0, in Ω(t)× (0, T ),
Momentum: ρfv · ∇v = ∇ ·

(
µf (∇v + (∇v)T )

)
−∇p, in Ω(t)× (0, T ),

(4)

where p is the pressure field and µf = ρfνf is the dynamic viscosity. The flow and
transport equations are complemented by the initial and boundary conditions. The
initial conditions read:

c(x, y, 0) = co, d(x, 0) = do. (5)

The boundary conditions read:

c = cb, p(0, y, t) = 1, on Γi(t)× (0, T ),

∂xc = 0, p(L, y, t) = 0, on Γo(t)× (0, T ),

v = 0, ν · (−D∇c)
√

1 + (∂xd)2 = ∂td(ρs − c) on Γ (t)× (0, T ).

(6)

As stated above, at the inlet and outlet, we prescribe the pressures and further
impose that the flow takes place normal to the boundaries.
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3 A 1D averaged model

An upscaled model is obtained by integrating the equations in the y-direction. We
consider a sequence of problems depending upon the thickness of strip ε and using
formal asymptotic expansions, the unknowns are assumed to be of the form

zε = z0 + εz1 +O(ε2),

with zε denoting any of cε, dε, vε. Following the procedure in [5], the following
upscaled equations are derived

∂xv0 = 0, v0 − (1−d0)3
3µ

∂xP0 = 0,

∂t ((1− d0)c0) + ∂t(ρsd0) = ∂x (D(1− d0)∂xc0)− ∂x(v0c0),

∂td0 − f(u0, ρsd0) = 0.

(7)

As our interest is in the case of closing of the channel, the above system of equations
degenerates as d0 → 1. In this work, we consider only the flow equations, that is,
(7)1. The limit case for the reactive transport will be treated in future studies.

4 ALE based method for full thin-strip computations
and discretization

The moving boundary problem is computed with the help of the arbitrary Lagrangian-
Eulerian (ALE) approach that is mostly well-known from fluid-structure interac-
tion computations. Here, rather than computing the equations on the physical mesh
(bottom figure in Figure 2), the equations are solved on a reference mesh (top figure
in Figure 2) by transforming them with the ALE-mapping. The discretization is
based on Rothe’s method: first in time and than in space. A one-step-θ scheme is
employed for temporal discretization and a Galerkin finite element method for spa-
tial discretization including local mesh refinement with hanging nodes. Since we are
solving the incompressible Navier-Stokes equations and due to the ALE-mapping,
we deal with a nonlinear system of equations, which is solved in a monolithic fash-
ion. The linear equations are treated with a direct solver. Rather than providing
all necessary information and all important references of this section, we would like
to refer the friendly reader to [4], where all details are given. The discretization is
realized with the multiphysics template [10] based on the finite element software
deal.II [1].



ALE for reaction-induced boundary movement 5

Fig. 2. Initial (and also the reference) mesh and the deformed mesh at end time
step T = 14. Local mesh refinement with hanging nodes is used in the middle of
the channel.

5 Clogging of the channel

When the channel starts getting narrower, the flow profile alters because of changing
geometry. However, as the channel starts getting clogged, the flow is expected to
decrease and eventually, the channel should be closed. For the upscaled model,
following calculations show that the flow becomes zero as the channel closes. Using
(7)1

∂x(
(1− d0)3

3µ
∂xP0) = 0, leading to

(1− d0)3

3µ
∂xP0 = C,

and hence,

P0(x, t) =

∫ 1

x

C

(1− d0(ξ, t))3
dξ,

where C is obtained by using the boundary conditions for P0,

v0(t) = C(t) =

{∫ 1

0

1

(1− d0(ξ, t))3
dξ

}−1

. (8)

Now considering (8), formally, one sees that the integral is dominated by the regions
where 1 − d0 is small and the flow v0(t) decreases as (1 − d0)3. Hence, wherever
locally d0 → 1, we get that the flow in the channel tends to zero, allowing us to
conclude that in the limit (clogging), the flow becomes zero. Since the 2D model is
quite complicated, an analytical treatment is rather difficult. We resort to numerical
computations to study this process in the following section.
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6 Numerical tests

We conduct numerical tests using the full 2D model and study the pressure and flow
profiles. These 2D tests are based on the second numerical example presented in
[4]. Specifically, we have a right-hand side force function (representing an analytical
expression for a point source)

f(x, y) = a exp(−b(x− xm)2 − c(y − ym)2),

where a = 1000, b = c = 100 and xm = 0.5, ym = 0.05, representing a source with
maximum strength at (xm, ym) and having an exponential decay and causing the
precipitation in the middle of the thin channel Ω := [0, 1] × [0, 0.1]. All material
parameters and geometry information are described in the previously mentioned
article [4]. In contrast, the flow is now driven by pressure difference such that we
have p = 1 on the inflow (left boundary) and p = 0 at the right (outflow) boundary.
The initial concentration is c = 1 for all x ∈ Ω. In addition, we prescribe c = 0
at the left boundary. The goal of our present study is now different from [4]. We
are specifically interested in the pressure behavior along the x-axis and the validity
of approximating the behavior through the lower-dimensional lubrication equation
(7)1.
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Fig. 3. Results of the 2D numerical simulation: Profiles at final time T = 14 for
the pressure, its gradient, and the key observation quantity ∂xpw

2 shown in the
first three figures. Each of the quantities of interest is computed on a sequence of
three locally refined meshes to have numerical evidence of convergence. In the final
figure, the velocity component in normal flow direction integrated over the cross
section is shown on the finest mesh for the inlet and the middle (narrow part of the
channel).
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Figure 3 shows the pressure and the pressure gradient at T = 14 when the
channel has closed by ≈ 92 percent. Furthermore, the two bottom figures show
w2∂xp (w is the width of flow domain) and the vx velocity with respect to time. The
choice of this scaling w2 is motivated by considering (7) 1; since the total flow follows
the cubic law, the average flow obeys a square law. For the 2D model, achieving the
limit is not possible since the mesh will degenerate as the channel is closed. (This
drawback in the numerics is investigated in terms of a standard fluid-structure
interaction framework in [9]). However, the amount of channel constriction is pretty
close to the process of clogging. The profile shows that the pressure gradients are
blowing up as the channel gets smaller. However, when this is weighted with 2(ε−
d)2, that is with square of the opening width of the channel, the resulting quantity
goes to zero. This quantity is proportional to the flow and showing similar behavior
as displayed in Figure 3. This suggests that the flow strength vanishes as the channel
progressively gets clogged. This is consistent with the case of upscaled model. Figure
4 displays the plot of concentration for two different times.

Fig. 4. Results of the 2D numerical simulation: Concentration at the first time step
and the end time step T = 14. At the initial time, the concentration is c = 1 in
the whole channel. Starting the simulation, c = 0 is applied at the inlet boundary
(blue) and the source term f increases the concentration in the middle (red).

7 Conclusion

In this work, we investigated a coupled flow-reactive transport model in a time-
dependent thin channel where the geometry changes are induced by reactive bound-
ary conditions. The 2D model is solved using ALE-based method. A pressure gra-
dient is applied across the channel and as the channel gets constricted, the flow
strength diminishes so that in the limit we get no-flow across the channel. The
approximating 1D model can be analytically studied and formal arguments are em-
ployed to obtain the same observations. The study highlights that a local clogging
leads to the closing (in the sense of flow) of the channel. In addition, this study
provides some hints that the derived 1D upscaled model with appropriate bound-
ary conditions will allow us to capture the clogging phenomenon and continue the
solution thereafter. The findings of this work serve as precursor for future studies
of post-clogging processes.
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