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Pressure and fluid-driven fracture propagation in
porous media using an adaptive finite element

phase field model

Sanghyun Lee ∗ Mary F. Wheeler † Thomas Wick ‡

This work presents phase field fracture modeling in heterogeneous porous media. We
develop robust and efficient numerical algorithms for pressure-driven and fluid-driven set-
tings in which the focus relies on mesh adaptivity in order to save computational cost for
large-scale 3D applications. In the fluid-driven framework, we solve for three unknowns
pressure, displacements and phase-field that are treated with a fixed-stress iteration in
which the pressure and the displacement-phase-field system are decoupled. The latter sub-
system is solved with a combined Newton approach employing a primal-dual active set
method in order to account for crack irreversibility. Numerical examples for pressurized
fractures and fluid filled fracture propagation in heterogeneous porous media demonstrate
our developments. In particular, mesh refinement allows us to perform systematic studies
with respect to the spatial discretization parameter.

Keywords: Phase Field; Fluid Filled Fracture; Adaptive Finite Elements; Porous Media; Primal-
Dual Active Set

1 Introduction

Crack propagation in brittle and porous media is currently one of the major research topics in me-
chanical, energy, and environmental engineering. In this paper, we concentrate specifically on frac-
ture propagation in three dimensional heterogeneous porous media. We consider a variational ap-
proach for brittle fracture introduced by Francfort and Marigo [18] that is formulated in terms of
a thermodynamically-consistent phase field technique; see Miehe et al. [32]. Other approaches for
treating pressurized fracture include the following: cohesive zone finite elements (CZ-FEM) [17],
displacement discontinuity methods (DDM) [40, 44, 56], partition-of-unity methods and closely re-
lated XFEM/GFEM (extended and generalized finite elements) methods [21, 22, 23, 29, 45, 46, 50].
Boundary element methods have been employed in [15, 19], and peridynamics for hydraulic fractur-
ing has been considered in [27]. Discrete networks of fluid filled fractures have been investigated in
[8, 28, 30, 39, 47].
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Our motivations for employing a phase field model are that fracture nucleation, propagation, kinking,
and curvilinear paths are automatically included in the model; post-processing of stress intensity
factors and remeshing resolving the crack path are avoided. Furthermore, the underlying equations are
based on continuum mechanics principles that can be treated with adaptive Galerkin finite elements. In
fact, variational and phase field formulations for fracture are active research areas as attested in recent
years; see Bourdin et al. [10, 11], Miehe et al. [31, 32, 33], Borden et al. [9], Artina et al. [6], Burke et al.
[14], Allaire et al. [1], Schlüter et al. [48], Ambati et al. [2], Mikelić et al. [36, 38]. Here, discontinuities
in the displacement field across the lower-dimensional crack surface are approximated by an auxiliary
phase field function. The latter can be viewed as an indicator function, which introduces a diffusive
transition zone between the broken and the unbroken material.

For pressurized fractures in porous media, the pressure is a fixed, given quantity or assumed to
be computed [38, 52]. The essential aspects of a phase field-based pressurized-fracture propagation
formulation are techniques that must include resolution of the length-scale parameter ε, the numerical
solution of the forward problem and enforcement of the irreversibility of crack growth. The sum of
these requirements leads to a variational inequality. For numerical simulations, a robust computational
framework in terms of a quasi-monolithic formulation has been proposed in [24] in which a primal-dual
active set method (i.e., a semi-smooth Newton method [26]) is coupled with the Newton solver for the
nonlinear forward problem.

Our main attention in this paper is on three-dimensional applications that are challenging because
of computational cost. This is especially the case for phase-field problems because the resolution
of the crack requires (very) fine meshes. Here, uniform refinement is infeasible and we adopt a
method proposed in [24] for two-dimensional problems and extend these ideas to three-dimensional
applications. The efficiency is shown in terms of pressurized and fluid-filled phase-field fractures for
which systematic 3D studies including mesh refinements are not present in the literature.

In summary, the goal and novelty of the present paper are systematic studies of computational
stability using predictor-corrector mesh adaptivity for three-dimensional pressure and fluid-driven
phase-field fracture problems. Such studies are essential for better understanding between model
and discretization parameters in phase-field modeling for the previously mentioned applications. We
emphasize that the fluid-filled fracture framework in porous media (with Biot’s coefficient α = 1) is
itself novel where we formulate a fixed-stress iteration for the pressure system coupled to the fully-
coupled displacement-phase-field system. Here, the latter system is treated with a primal-dual active
set method. This idea is in contrast to the fluid-filled phase-field fracture framework presented in [37]
in which all equations have been decoupled.

The outline of this paper is as follows: We first state the governing equations in Section 2. Then,
we present our main algorithm and adaptive discretization in Section 3. In Section 4, we provide
numerical examples that demonstrate the potential of this approach for treating practical engineering
applications.

2 Mathematical Models for Pressurized and Fluid Filled Fractures

Let Λ ∈ Rd, d = 2, 3 be a smooth open and bounded computational domain with Lipschitz boundary
∂Λ and let [0, T ] be the computational time interval, T > 0. We assume that the crack C is contained
compactly in Λ. Here, we emphasize that the crack is seen as a thin three-dimensional volume where
the thickness is much larger than the pore size of the porous medium. The displacement of the
solid and diffusive flow in the porous medium are modeled in Ω = Λ\C̄ by the classical quasi-static
elliptic-parabolic Biot system for a linear elastic, homogeneous, isotropic, porous solid saturated with
a slightly compressible viscous fluid for every t ∈ (0, T ].
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First, we start from the constitutive equation for the Cauchy stress tensor σpor,

σpor(u, p)− σ0 = σ(u)− α(p− p0)I, in Ω× (0, T ] (1)

where u : Ω× [0, T ]→ Rd is the solid’s displacement, p : Ω× [0, T ]→ R is the fluid pressure, α ∈ [0, 1]
is the Biot coefficient, I is the identity tensor, σ0 and p0 are the given initial values when t = 0, which
are set to be zero for simplicity in this paper. The effective linear elastic stress tensor σ := σ(u) is

σ(u) = λ(∇ · u)I + 2Ge(u), (2)

where λ,G > 0 are the Lamé coefficients. The linear elastic strain tensor is given as

e(u) =
∇u +∇uT

2
. (3)

Then the balance of linear momentum in the solid reads

−∇ · σpor(u, p) = ρsg in Ω× (0, T ], (4)

where ρs is the density of the solid and g is the gravity. Next, the flow pressure equation is given by

∂t(ρFϕ
?) +∇ · (ρFv) = q in Ω× (0, T ] (5)

where

ϕ? = ϕ?0 + α∇ · u +
1

M
(p− p0) (6)

is fluid volume fraction with ϕ?0 initial value, ρf fluid density, q is the source/sink term, and Biot
modulus M > 0. The velocity is defined by Darcy law,

v = −K
η

(∇p− ρFg) in Ω× (0, T ], (7)

where η is the fluid viscosity, ρF is the fluid density, and K is the permeability.

2.1 The Phase Field Energy Functional for Pressurized Fractures

Based on the linear momentum in the solid (4), we introduce the Francfort-Marigo functional [18],
which describes the energy of a crack in an elastic medium as

E(u, C) =
1

2

∫
Ω
σ(u) : e(u) +GcH

d−1(C) dx. (8)

The Hausdorff measure Hd−1(C) denotes the length of the crack and is multiplied by a material
property Gc > 0, that is considered in fracture mechanics to be the critical energy release rate. We
consider the pressure energy by adding an additional pressure term in (1) as derived in [38, 36]. Thus
we can rewrite (8) by

E(u, p, C) =
1

2

∫
Ω
σ(u) : e(u) dx−

∫
Ω
αp∇ · u dx +GcH

d−1(C). (9)

We introduce the continuous phase field variable ϕ : Λ × [0, T ] → [0, 1] where ϕ(x, t) = 0 in the
crack region and ϕ(x, t) = 1 in the unbroken material. This introduces a diffusive transition zone,
which is controlled by the regularization parameter ε > 0; see Figure 1 for details.
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(a)

ε

ϕ = 0
ϕ ∈ (0, 1)

ϕ = 1

(b)

Figure 1: Fracture representation using the phase field ϕ. (a) The inner blue region indicates the
crack with ϕ = 0 and the outer red region indicates the unbroken zone where ϕ = 1. We
have the linear diffusive transition zone near the interface of the fracture (green region). (b)
Illustrates the transition zone with the thickness ε.

Before, we can write the full energy functional, we must model the interaction of fracture (pF ) and
reservoir (pR) pressures. This is modeled as an interface law. We assume that the fracture length (or
surface area) is much larger than its width (or aperture). Therefore a lubrication approximation of
the stress at the interface C is a plausible choice. The fracture pressure pF is in equilibrium with the
normal component of reservoir stress at the crack C such that,

σporn = (σ(u)− αpRI)n = −pFn, (10)

where n is the normal unit vector. Further assuming pressure continuity at C the pressure field p is
such that p = pF on C and p = pR in Λ\C. The fracture pressure contribution is reflected in the
surface force integral, second term in the right hand side of the functional (9) over C as:∫

C
τu dS =

∫
C
σpornu dS = −

∫
C
pun dS = −

∫
Ω
∇ · (pu) dx +

∫
∂Λ
pun dS

= −
∫

Ω
(u · ∇p+ p∇ · u) dx +

∫
∂Λ
pun dS, (11)

resulting in a volumetric representation for the pressure. We assume Dirichlet boundary conditions
for pressure on ∂Λ, and therefore the last term in (11) vanishes. Thus we have∫

C
τu dS = −

∫
Λ

(u · ∇p+ p∇ · u) dx.

We consider the global constitutive dissipation functional of Ambrosio-Tortorelli type [3, 4], for a rate
independent fracture process. This means, we extend all integrals from C and Ω to Λ. For the elastic
energy terms this has been often explained in the literature. For the pressure terms we follow [38]:

−
∫

Ω
(u · ∇p+ p∇ · u) dx → −

∫
Λ
ϕ2(u · ∇p+ p∇ · u) dx.

Then, we obtain

Eε(u, p, ϕ) =

∫
Λ

1

2
((1− k)ϕ2 + k)σ+(u) : e(u) dx+

∫
Λ

1

2
σ−(u) : e(u) dx−

∫
Λ

(α− 1)ϕ2p∇ · u dx

+

∫
Λ

(ϕ2∇p)u dx +Gc

∫
Λ

(
1

2ε
(1− ϕ)2 +

ε

2
(∇ϕ)2

)
dx. (12)
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Here ε is the thickness of the diffusive zone shown in Figure 1b and k is a small regularization
parameter, k � ε. Regarding the stress tensor split, we follow Amor et al. [5] (see also Borden et al.
[9], p. 79, for a brief discussion on the differences between different models). The stress tensor is
additively decomposed into a tensile part σ+(u) and a compressive part σ−(u) by:

σ+(u) := (
2

d
G+ λ)tr+(e(u))I + 2G(e(u)− 1

d
tr(e(u))I), (13)

σ−(u) := (
2

d
G+ λ)tr−(e(u))I, (14)

where

tr+(e(u)) = max(tr(e(u)), 0), and tr−(e(u)) = tr(e(u))− tr+(e(u)). (15)

We emphasize that the energy degradation only acts on the tensile part. Finally, we assume that crack
growth is irreversible. Here we follow [31, 32] and formulate the irreversibility condition as

∂tϕ ≤ 0. (16)

The resulting system is a variational inequality that has been mathematically analyzed by Mikelić
et al. [38].

2.2 Pressure Diffraction Equation for Modeling Fluid Filled Fractures

In order to formulate the flow equations in the porous media zone and the fracture, respectively, we
employ the phase field function as an indicator function. Thus, the flow pressure equations (5)-(6)
can be separated for the fracture and the reservoir sub-domain respectively.

We denote by ΩF (t) and ΩR(t) the open subsets of the space-time domain Λ × [0, T ] at time t.
ΩR(t) is filled with the unbroken material (reservoir domain). In the approximation, the fracture is
approximated by a volume term and C becomes ΩF (t). Thus, we define ∂C := Γ(t) := Ω̄F (t) ∩ Ω̄R(t).

To derive the flow pressure equations for each sub-domain, first we consider the two separate mass
continuity equations for the fluid in the reservoir and the fracture from (5), which we can rewrite as

∂t(ρFϕ
?
F ) +∇ · (ρFvF ) = qF − qL in ΩF × (0, T ], (17)

∂t(ρRϕ
?
R) +∇ · (ρRvR) = qR in ΩR × (0, T ]. (18)

Here ϕ?R and ϕ?F are the reservoir and fracture fluid fraction respectively and we assume ϕ?F = 1 (since
the porosity of the fracture is one). Recall the reservoir fluid fraction is given in (6). In addition, the
leak-off term qL is defined in (31), and qF and qR are source/sink terms for fracture and reservoir,
respectively.

Next, we describe the flow given by Darcy’s law at (7) for the fracture (j = F ) and for the reservoir
(j = R), respectively by

vj = −Kj

ηj
(∇pj − ρjg). (19)

We assume the fluid in the reservoir and the fracture is slightly compressible, thus we define the fluid
density as

ρj := ρ0
j exp(cj(pj − p0

j )) ≈ ρ0
j [1 + cj(pj − p0

j )], (20)

where ρ0
j is the reference density and cj is the fluid compressibility.
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Following the general reservoir approximation with the assumption that cR and cF are small enough,
we use ρR = ρ0

R and ρF = ρ0
F to rewrite the equations (17)-(18) by

ρ0
R∂t(

1

M
pR + α∇ · u)−∇ ·

KRρ
0
R

ηR
(∇pR − ρ0

Rg) = qR in ΩR × (0, T ], (21)

ρ0
F cF∂tpF −∇ ·

KFρ
0
F

ηF
(∇pF − ρ0

Fg) = qF − qL in ΩF × (0, T ]. (22)

For the fracture flow, we adopt a three-dimensional lubrication equation [37]. Inside this function,
the fracture permeability is assumed to be isotropic such that

KF =
1

12
w(u)2,

where w(u) = [u · n] denotes the aperture (width) of the fracture, which means that the jump [·] of
normal displacements has to be computed. For calculating the aperture we apply an integral form
using the phase field variable; details can be found in [51], p.51. Furthermore, we use an interpolated
permeability K in the phase field transition zone, eg. K = ϕKR + (1 − ϕ)KF . For ϕ = 1 (in the
reservoir), we have KR and in the fracture ϕ = 0, we have KF ; see Section 3.1 for more details.

2.3 Initial and Boundary Conditions

The system is supplemented with initial and boundary conditions. The initial condition for the pressure
diffraction equations (21)-(22) is given by pF (x, 0) = p0

F for all x ∈ ΩF (t = 0) and pR(x, 0) = p0
R for

all x ∈ ΩR(t = 0), where p0
F and p0

R are smooth given pressures. Also we have ϕ(x, 0) = ϕ0 for all
x ∈ Λ(t = 0), where ϕ0 is a given smooth initial fracture.

For u we prescribe Dirichlet boundary conditions on ∂Λ. Specifically, given fu : ∂Λ → Rd and
fp : ∂ΛD → R, we require that

u = fu on ∂Λ× (0, T ], (23)

p = fp on ∂ΛD × (0, T ], (24)

KR(∇pR − ρ0
Rg) · n = 0 on ∂ΛN × (0, T ], (25)

[p] = 0 on Γ× (0, T ], (26)

KR

µR
(∇pR − ρ0

Rg) · n =
KF

µF
(∇pF − ρ0

Fg) · n on Γ× (0, T ], (27)

where n is the outward pointing unit normal on Γ or ∂ΛN . The pressure boundary ∂Λ is decomposed
into two non-overlapping components ∂Λ = ∂ΛD ∪ ∂ΛN with ∂ΛN ∩ ∂ΛD = ∅. For the phase field
function, we prescribe homogeneous Neumann conditions on ∂Λ as it is usually done.

3 Numerical Methods, Algorithms and Discretization

We consider a mesh family {Th}h>0, which is assumed to be shape regular in the sense of Ciarlet, and
we assume that each mesh Th is a subdivision of Λ̄ made of disjoint elements K, i.e., squares when
d = 2 or cubes when d = 3. Each subdivision is assumed to exactly approximate the computational
domain, thus Λ̄ = ∪K∈ThK. The diameter of an element K ∈ Th is denoted by h and we denote hmin

for the minimum. For any integer k ≥ 1 and any K ∈ Th, we denote by Qk(K) the space of scalar-
valued multivariate polynomials over K of partial degree of at most k. The vector-valued counterpart
of Qk(K) is denoted QQQk(K). We define a partition of the time interval 0 =: t0 < t1 < · · · < tN := T
and denote the time step size by δt := tn − tn−1.
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Figure 2: (a) The linear indicator functions χF and χR illustrated with adjustable constants c1 and
c2. (b) We consider as the fracture zone if ϕ ≤ c1 and as the reservoir zone if ϕ ≥ c2

3.1 Decomposing the Domain into ΩF and ΩR, Leakage Term, and Well Model

In this section, we define the fracture domain ΩF and the reservoir domain ΩR by introducing two
linear indicator functions χF and χR for the two different sub-domains; they satisfy

χR(·, ϕ) := χR(x, t, ϕ) = 1 in ΩR(t), and χR(·, ϕ) = 0 in ΩF (t), (28)

χF (·, ϕ) := χF (x, t, ϕ) = 1 in ΩF (t), and χF (·, ϕ) = 0 in ΩR(t). (29)

Thus χF (·, ϕ) is zero in the reservoir domain and χR(·, ϕ) is zero in the fracture domain. In the
diffusive zone, the linear functions are defined as

χF (·, ϕ) = − (ϕ− c2)

(c2 − c1)
and χR(·, ϕ) =

(ϕ− c1)

(c2 − c1)
. (30)

Thus χR(·, ϕ) = 0 and χF (·, ϕ) = 1 if ϕ(x, t) ≤ c1, and χR(·, ϕ) = 1 and χF (·, ϕ) = 0 if ϕ(x, t) ≥ c2,
where c1 := 0.5− cx and c2 = 0.5 + cx. For simplicity we set cx = 0.1, and refer the reader to Figure
2 for more details.

We define the leak-off term as
qL := ∇ · (ρFvleak) (31)

and the effective velocity for the fracture by

vF = −KF

ηF
(∇pF − ρFg) + vleak. (32)

In particular, the gravity term g? is re-scaled and implicitly contains the leakage term. i.e., g? :=
χR(·, ϕ)g + χF (·, ϕ)(g + (K−1

eff/ρ
0
F )vleak), where Keff := χF (·, ϕ)KF + χR(·, ϕ)KR including interpo-

lation of KF and KR in the phase field transition zone [37].
The well terms qR and qF in (21)-(22) are described by suitable well models. Following Peaceman’s

model [16, 42, 43], we define the source term as,

qF := CQj (pb − p)×H(x), qR := −CQj (pb − p)×H(x), CQj :=
2πρi
√
k11k22h3

µi ln (re/rw)
, j = F,R, (33)

where re is the outer equivalent radius, rw is the inner radius, and h3 is the thickness of the well bore.
pb is a given well bore pressure and we have given anisotropic permeability K = diag(k11, k22, k33).
Here H(x) is defined as

H(x) :=

{
1 if |x−X| ≤ c.
0 otherwise,

(34)

where c is a sufficiently small positive constant, and X is a given source/sink point in the domain.
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3.2 Discretization of the Pressure Diffraction Equation

First, we discuss temporal discretization of the pressure diffraction equations (21)-(22) and afterwards
their spatial treatment.

3.2.1 Approximation in Space

The space approximation P of the pressure function p(x, t) is approximated by using continuous
piecewise polynomials given in the finite element space,

W(T ) := {W ∈ C0(Λ̄;R) | W |K ∈ Q1(K),∀K ∈ T }. (35)

Assuming that the displacement field and the phase field is known, the Galerkin approximation of
(21)-(22) is formulated as follows. Given P (x, 0) = P 0 where P 0 is an approximation of the initial
condition p0, find P ∈ C1([0, T ];W(T )) such that

χR(·, ϕ)

(∫
Λ
ρ0
R∂t(

1

M
P + α∇ · u)ω dx +

∫
Λ

KRρ
0
R

ηR
(∇P − ρ0

Rg)∇ω dx =

∫
Λ
qRω dx

)
, ∀ω ∈W(T ),

(36)

χF (·, ϕ)

(∫
Λ
ρ0
F cF∂tPω dx +

∫
Λ

KFρ
0
F

ηF
(∇P − ρ0

Fg)∇ω dx =

∫
Λ

(qF − qL)ω dx

)
, ∀ω ∈W(T ). (37)

3.2.2 Approximation in Time

We denote the approximation of P (x, tn), 0 ≤ n ≤ N by Pn, and assume u(tn+1) and ϕ(tn+1) are given
values at time tn+1. Then, the time stepping proceeds as follows: Given Pn, compute Pn+1 ∈W(T )
so that

BR(Pn+1)(ω) := χR(·, ϕ(tn+1))

(∫
Λ
ρ0
R

( 1

M

(Pn+1 − Pn

δt

)
+ α

(∇ · un+1 −∇ · un

δt

))
ω dx

+

∫
Λ

KRρ
0
R

ηR
(∇Pn+1 − ρ0

Rg)∇ω dx−
∫

Λ
qRω dx

)
∀ω ∈W(T ) (38)

BF (Pn+1)(ω) := χF (·, ϕ(tn+1))

(∫
Λ
ρ0
F cF

(Pn+1 − Pn

δt

)
ω dx +

∫
Λ

KFρ
0
F

ηF
(∇Pn+1 − ρ0

Fg)∇ω dx

−
∫

Λ
(qF − qL)ω dx

)
, ∀ω ∈W(T ) (39)

Formulation 1. Find Pn+1 ∈W(T ) for all times tn+1 such that

B(Pn+1)(ω) = BR(Pn+1)(ω) +BF (Pn+1)(ω) = 0 ∀ω ∈W(T ). (40)
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3.3 A Fully-Coupled Formulation of the Euler-Lagrange Equations for u and ϕ

In this section, we present a fully-coupled Euler-Lagrange formulation for U and Φ (approximat-
ing u, ϕ), respectively. We consider a time-discretized system in which time enters through the
irreversibility condition. The spatial discretized solution variables are U ∈ C1([0, T ];VVV0(T )) and
Φ ∈ C1([0, T ];Z(T )), where

VVV0(T ) := {W ∈ C0(Λ̄;Rd) | W = 0 on ∂Λ,W |K ∈QQQ1(K),∀K ∈ T }, (41)

Z(T ) := {Z ∈ C0(Λ̄;R)| Zn+1 ≤ Zn ≤ 1, Z|K ∈ Q1(K), ∀K ∈ T }. (42)

Moreover, we extrapolate Φ (denoted by E(Φ)) in the first terms (i.e., the displacement equation)
in Formulation 2 in order to avoid an indefinite Hessian matrix:

E(Φ) = Φn−2 +
(t− tn−1 − tn−2)

(t− tn−1)− (t− tn−1 − tn−2)
(Φn−1 − Φn−2).

This heuristic procedure has been shown to be an efficient and robust method as discussed in [24].

In the following, we denote by Un,Φn the approximation of U(tn),Φ(tn) respectively.

Formulation 2. Let us assume that Pn+1 is a given approximated pressure at the time tn+1. Given
the initial conditions U0 := U(0) and Φ0 := Φ(0) we seek {Un+1,Φn+1} ∈ VVV0(T )× Z(T ) such that

A(Un+1,Φn+1)(w, ψ−Φn+1) =

∫
Λ

(1−k)(E(Φn+1)2+k)σ+(Un+1) : e(w) dx+

∫
Λ
σ−(Un+1) : e(w) dx

−
∫

Λ
(α− 1)E(Φn+1)2Pn+1∇ ·w dx +

∫
Λ
E(Φn+1)2∇Pn+1 ·w dx

+ (1− k)

∫
Λ

Φn+1σ+(Un+1) : e(Un+1) · (ψ − Φn+1) dx

− 2(α− 1)

∫
Λ

Φn+1Pn+1∇ ·Un+1 · (ψ − Φn+1) dx+

∫
Λ

2Φn+1∇Pn+1 ·Un+1 · (ψ − Φn+1) dx

−Gc
∫

Λ

1

ε
(1−Φn+1)·(ψ−Φn+1) dx+Gc

∫
Λ
ε∇Φn+1 ·∇(ψ−Φn+1) dx ≥ 0, ∀{w, ψ} ∈ VVV0(T )×Z(T ).

(43)

This nonlinear variational inequality is solved by combining two Newton methods into one New-
ton iteration. The first Newton iteration is necessary for solving the nonlinear forward problem
A(Un+1,Φn+1)(w, ψ) = 0. The second iteration is from the constraint Φn+1 ≤ Φn that is realized
via a semi-smooth Newton method that is equivalent to a primal-dual active set strategy. Further
details are presented below in Section 3.5 and Algorithm 2.

Remark 1 (Further remarks on time-dependencies). The full system is time-dependent although not
all equations contain time derivatives. The pressure equation has a time derivative whereas ‘time’
in the phase field equation enters through the irreversibility constraint. The displacement solution
changes in time since the time-dependent variables of the other two equations enter.

Remark 2 (Directional derivative). For later purposes of solving the nonlinear Formulation 2, we
compute the Jacobian that is build by computing the directional derivative A′(Un+1,Φn+1)(δUn+1, δΦn+1,w, ψ).
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Then find {δUn+1, δΦn+1} ∈ VVV0(T )× Z(T ) such that

A′(Un+1,Φn+1)(δUn+1, δΦn+1,w, ψ − Φn+1) =

∫
Λ

((1− k)E(Φn+1)2 + k)σ+(δUn+1) : e(w) dx

+

∫
Λ
σ−(δUn+1) : e(w) dx

+(1−k)

∫
Λ
δΦn+1σ+(Un+1) : e(Un+1) ·(ψ−Φn+1) dx+(1−k)

∫
Λ

2Φn+1σ+(δU) : e(U) ·(ψ−Φn+1) dx

− 2(α− 1)Pn+1

∫
Λ

(δΦn+1∇ ·Un+1 + Φn+1∇ · δUn+1 · (ψ − Φn+1)) dx

+ 2

∫
Λ
δΦn+1∇Pn+1 ·Un+1 · (ψ − Φn+1) dx + 2

∫
Λ

Φn+1∇Pn+1 · δUn+1 · (ψ − Φn+1) dx

+Gc

∫
Λ

1

ε
δΦn+1 · (ψ − Φn+1) dx +Gc

∫
Λ
ε∇δΦn+1 · ∇ψ dx ≥ 0, ∀{w, ψ} ∈ VVV0(T )× Z(T ). (44)

3.4 The Fixed Stress Split Iterative Method

3.4.1 Basics

The fixed-stress split iterative method is a standard approach in petroleum engineering for decoupling
geomechanics and (multiphase) flow in porous media. The fixed stress split iterative method consists
of imposing constant volumetric mean total stress. This means that the stress

σv = σv,0 +Kdr∇ · (u− u0)− α(p− p0), (45)

is kept constant at the half-time step. Here the fixed stress coefficient is Kdr = 3λ+2µ
3 . The iterative

process reads as follows: for l = 0, 1, 2, · · · ,(
1

M
+

α2

Kdr

)
∂tp

l+1 +∇ ·
(
K

η
(ρFg −∇pl+1)

)
= − α

Kdr
∂tσ

l
v + f

= f−α∇ · ∂tul +
α2

Kdr
∂tp

l (46)

−∇ · σpor(ul+1)+α(∇pl+1) = 0 (47)

until it meets the convergence criteria. As stopping criteria, we either use simply max{‖ul−ul−1‖L2(Λ), ‖pl−
pl−1‖L2(Λ)} ≤ TOLFS or take the residual with respect to the porosity, e.g. [35].

3.4.2 Fixed-Stress Algorithm for the Discretized Fluid Filled Fracture System

As previously explained, we first solve for the pressure, which is in the case of fractures realized as a
pressure diffraction problem:

Formulation 3. For each time tn+1 we iterate for l = 0, 1, 2, 3, . . . to find P l+1 ∈W such that

[B(Pn+1)(ω)]l+1 = [BR(Pn+1)(ω)]l+1 + [BF (Pn+1)(ω)]l+1 = 0 ∀ω ∈W(T ),

where

[BR(Pn+1)(ω)]l+1 := χR(Φl+1)

(∫
Λ
ρ0
R

( 1

M
+

3α2

3λ+ 2µ

)(P l+1 − Pn

δt

)
·ω dx+

∫
Λ

KRρ
0
R

ηR
(∇P l+1−ρ0

Rg)∇ω dx

+

∫
Λ
α∇ ·

(Ul −Un

δt

)
· ω dx−

∫
Λ

( 3α2

3λ+ 2µ

)(P l − Pn
δt

)
ω dx−

∫
Λ
qRω dx

)
, ∀ω ∈W(T ), (48)
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Algorithm 1 Fixed-stress for phase field fluid-filled fractures in porous media

At each time tn

repeat
Solve two-field fixed-stress (inner loop).

Solve the (linear) pressure diffraction Formulation 3.
Solve the (nonlinear) fully-coupled elasticity phase field Formulation 4 using Algorithm 2.

until Stopping criterion

max{‖P l − P l−1‖, ‖Ul −Ul−1‖, ‖Φl − Φl−1‖} ≤ TOLFS, TOLFS > 0

for fixed-stress split is satisfied.
Set: (Pn,Un,Φn) := (P l,Ul,Φl).
Increment tn → tn+1.

[BF (Pn+1)(ω)]l+1 := χF (Φl+1)

(∫
Λ
ρ0
F cF

(P l+1 − Pn

δt

)
ω dx +

∫
Λ

KFρ
0
F

ηF
(∇P l+1 − ρ0

Fg)∇ω dx

−
∫

Λ
(qF − qL)ω dx

)
, ∀ω ∈W(T ). (49)

Then, we solve for the displacement-phase-field inequalitity:

Formulation 4. We solve for the displacements Ul+1 ∈ VVV0(T ) and the phase field Φl+1 ∈ Z(T ) such
that:

A(Ul+1,Φl+1)(w, ψ − Φl+1) ≥ 0 ∀{w, ψ} ∈ VVV0(T )× Z(T ), (50)

where

A(Ul+1,Φl+1)(w, ψ−Φl+1) =

∫
Λ

((1−k)(E(Φl+1)2 +k)σ+(Ul+1) : e(w) dx+

∫
Λ
σ−(Ul+1) : e(w) dx

−
∫

Λ
(α−1)E(Φl+1)2P l+1∇·w dx+

∫
Λ
E(Φl+1)2∇P l+1·w dx+(1−k)

∫
Λ

Φl+1σ+(Ul+1) : e(Ul+1)(ψ−Φl+1) dx

− 2(α− 1)

∫
Λ

Φl+1P l+1∇ ·Ul+1(ψ − Φl+1) dx+

∫
Λ

2Φl+1∇P l+1 ·Ul+1(ψ − Φl+1) dx

−Gc
∫

Λ

1

ε
(1−Φl+1)(ψ−Φl+1) dx +Gc

∫
Λ
ε∇Φl+1 ·∇(ψ−Φl+1) dx ≥ 0, ∀{w, ψ} ∈ VVV0(T )×Z(T ).

(51)

Remark 3 (Stopping criterion). The iteration between Formulation 3 and 4 is completed if

max{‖Ul+1 −Ul‖L2(Λ), ‖P l+1 − P l‖L2(Λ), ‖Φl+1 − Φl‖L2(Λ)} < TOLFS .

Then we set

Pn+1 = P l+1, Φn+1 = Φl+1, Un+1 = Ul+1.

Here we choose TOLFS = 10−4.

Remark 4. For pressurized fractures, no fixed-stress splitting is necessary, since the pressure (flow)
is a given right-hand-side quantity (e.g. α = 0 and p = const) and only for fluid filled fractures (e.g.
α = 1), the fixed stress iteration has to be employed.
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3.5 Solution Algorithm for Solving the Displacement-Phase-Field Problem (Formulation
4)

The nonlinear variational inequality presented in Formulation 2 (i.e., Formulation 4, respectively)
is solved with Newton’s method in which two nonlinear iterations are combined. The first Newton
iteration is required to solve the nonlinear forward problem and the second (semi-smooth) Newton
method is a realization of a primal-dual active set strategy to treat the crack irreversibility constraint.
The resulting scheme is outlined in Algorithm 2. In order to enhance the convergence radius, a standard
backtracking line search algorithm is employed. Within Newton’s method, the linear equations, are
solved with GMRES with diagonal block-preconditioning from Trilinos [25]. Algorithm 1 presents the
overall fixed-stress phase field approach for fluid filled fractures in which the geomechanics-phase-field
system is coupled to the pressure diffraction problem.

Algorithm 2 Primal-dual active set for pressurized fractures ([24])

At a given time tn compute for each Newton step k = 0, 1, 2, . . .
repeat

Assemble residual R(Uk; Φk) for Formulation 2.
Compute active set Ak = {i | (B−1)ii(Rk)i+c(δΦk)i > 0}, where (B)ii is a diagonal mass matrix

(see [26]).
Assemble matrix G = A′(U,Φ)(δU, δΦ,w, ψ) and right-hand side F = −A(U,Φ)(w, ψ).
Eliminate rows and columns in Ak from A′(U,Φ)(δU, δΦ,w, ψ) and A(U,Φ)(w, ψ).
The reduced systems are denoted with Ã′(U,Φ)(δU, δΦ,w, ψ) and Ã(U,Φ)(w, ψ), respectively.
Solve the linear system

Ã′(Uk,Φk)(δUk, δΦk,w, ψ) = −Ã(Uk,Φk)(w, ψ), ∀{w, ψ} ∈ VVV0(T )× Z(T ).

Find a step size 0 < γ ≤ 1 using line search (see Remark 5) to obtain

Uk+1 = Uk + γδUk, Φk+1 = Φk + γδΦk (52)

with R̃(Uk+1; Φk+1) < R̃(Uk; Φk).
until Stopping criterium:

Ak+1 = Ak and R̃(Uk) < TOL .

Remark 5 (Line search). A crucial role for (highly) nonlinear problems includes the appropriate
determination of γ. A simple strategy is to modify the update step in (52) as follows: For given
γ ∈ (0, 1) (in our numerical tests, we choose γ = 0.6) determine the minimal l∗ ∈ N via l = 0, 1, . . . , Nl,
such that

R(Uh
k+1,l) < R(Uh

k,l),

Uh
k+1,l = Uh

k+1 + γlδUh
k .

For the minimal l, we set
Uh
k+1 := Uh

k+1,l∗ .

In this context, the nonlinear residual R(·) is defined as

R(Uh) := max
i

{
A(Uh)(Ψi)− F̂ (Ψi)

}
∀Uh = {w, ψ} ∈ VVV0(T )× Z(T ),
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where {Ψi} denotes the nodal basis of VVV0(T )×Z(T ). This algorithm works quite well for our problems
and is applied to both the nonlinear forward model and the semi-smooth Newton method to realize the
primal-dual active set.

3.6 Adaptive Mesh Refinement along the Fracture

A crucial issue in phase-field methods is the resolution of the interface (i.e., here the fracture) such
that ε > h is guaranteed. Local mesh refinement is a well-known technique to only refining the mesh
in regions where high accuracy of the solution or resolution of certain features is needed. However, in
fracture propagation the path of the fracture is (in most cases) unknown and it is a priori not clear
where mesh refinement should be carried out. Moreover, ε is only to be required small in the crack
region

Φ(xK , t) ≤ CR, (53)

where xK is the barycenter of a cell K. This enables us to choose a priori a small ε that ensures the
condition ε > h locally (in the crack region). The challenge is that the crack might grow into regions
where ε > h is violated. For two-dimensional applications a solution in terms of predictor-corrector
adaptivity has been developed in [24]. This technique has been extended in the present paper to
three-dimensional applications:

• First, the future crack path is first predicted by solving once the system;

• Then, the mesh is refined in the predicted region using as refinement indicator the phase-field
variable itself with a treshold CR such that all cells refined in which Φ(xK , t) ≤ CR;

• Next, the old time step solution is taken again and the system is solved once more but now on
the new refined mesh, which now satisfies ε > h.

Despite solving the system twice from time to time, this method has been shown to work very efficiently
for 2D applications. The key question remains how this idea performs for 3D problems is still open,
and will be studied for some test cases in the numerical section.

Of course in our applications ε is chosen reasonably small such that 3−5 predictor steps are necessary
at most in order to satisfy the criterion ε > h. In particular, the smallest ε is chosen at the beginning
of the computation and this choice is kept during the entire computation.

4 Numerical Experiments

In this final section, we present numerical studies that demonstrate the capabilities of our method.
All examples are computed with the open-source finite element package deal.II [7]. In particular, the
three dimensional implementation of Algorithm 2 is an extension of the two dimensional MPI-parallel
framework proposed in [24].

In the beginning, we start from illustrating pressurized fracture propagation (α = 0) examples for
studying the performance of our algorithm by comparing with analytical and physical benchmark
problems. Thus, in the first example, we compute a test with increasing pressure and verify the
volume-radius relationship derived by Sneddon/Lowengrub’s theory [49]. Then, well known multiple
parallel fractures interacting in the stress shadowing effect are presented in Section 4.2 and joining
and branching fractures in homogeneous and heterogeneous media are studied in Section 4.3. To
date, detailed studies with respect to mesh dependencies and computational cost are missing in the
literatures because global mesh refinement becomes prohibitive for such configurations because of
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CPU times. In this paper, those studies are accomplished by using parallel computing and adaptive
mesh refinement. Thus, we investigate these two aspects in the first three examples for pressurized
fractures. We emphasize that we restrict our attention to h-refinement while keeping ε fixed. The
task of letting h and ε going to zero is non-trivial to show. We also provide the examples in Section
4.4 - 4.6 to emphasize our fluid filled fracture model with α = 1. In the fifth and sixth example, we
concentrate on other aspects that are related specifically to reservoir engineering and towards realistic
configurations; namely we present a well model and study dependence of the crack path on the critical
energy release rate Gc.

We briefly describe the fixed parameters and boundary conditions assumed in all of our computa-
tional results. The initial thickness of fractures is set to ε = 2hmin as illustrated on Figure 3b, where
hmin is the minimum mesh size. We assume u = 0 and homogeneous Neumann boundary condition
on ∂Λ for the pressure. In addition, we set the regularization parameter k = 10−10 × hmin, and all
contour figures are plotted for ϕ ≤ 0.1 with given CR = 0.8.

4.1 Sneddon’s Theory with Step-Wise Increasing Pressure

In this example, we consider a standard benchmark setting for a pressurized penny-shape fracture in
an elastic medium. Here, the theory of Sneddon and Lowengrub [49] applies. Findings for a fixed
pressurized fracture using variational and phase field methods have been presented for instance in
[12, 52]. We now extend Sneddon’s benchmark for the case of a propagating fracture in order to study
the evolution of radius, volume and pressure as it has been recently done in [12, 23].

(a)

r2hmin

ε

(b)

Figure 3: Example 4.1: (a) Initial penny shape crack is centered at (5 m, 5 m, 5 m) on y = 5 m−plane
with the mesh refinement. (b) Illustrates the thickness of the fracture (2hmin), radius of the
fracture (r) and phase field parameter (ε)

In the computational domain Λ = (0, 10 m)3, the initial penny shape crack is centered at (5 m, 5 m, 5 m)
on y = 5 m−plane and we refine around the crack (CR = 0.8); see Figure 3a for the setup. We perform
8 computations with different radii r = 1, 1.25, 1.375, 1.5, 1.625, 1.75, 1.875, and 2.0 m. Each growing
radius corresponds to different values (Gc) by

Gc =
4

πE′
p2r, (54)

where E′ = E/(1− ν2) and Gc = 1. The mechanical parameters are Young’s modulus and Poisson’s
ratio E = 1.0 and ν = 0.2. The relation to the Lamé coefficients G and λ is given by standard
relations.

For each step, the constant pressure opens the initial crack with the different values of r and Gc, and
afterwards we measure the crack opening displacement. The theory of measuring the crack opening
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r 1.0 1.25 1.375 1.5 1.625 1.75 1.875 2.0

p 0.9908 0.8862 0.8450 0.8090 0.7773 0.7490 0.7236 0.7006

Table 1: The value of pressure (p) related to the radius (r).

Volume

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Radius

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Exact Value
h=0.5412(4+1)
h=0.2706(4+2)
h=0.1353(4+3)
h=0.0676(4+4)

Figure 4: Example 4.1: We observe the convergence of the value VN (58) under the spatial mesh
refinement.

displacement (COD) in 3D at the center (x = 5) is presented in [49] and the numerical approximation
is given as

uy =
4(1− ν2)pr

πE
≈ 1

2
[u · n+]. (55)

We take ε = 2hmin, and we approximate the COD value at the point (5, 5 + hmin, 5); see Figure 3b for
the details.

Figure 4 shows the relation between the volume and the radius of the crack. These tests are
computed in a quasi-stationary manner: that is, we solve several pseudo-time steps until the residual
< TOL = 10−5 is reached. The theoretical relation between the radius and volume is given in [12, 23]
and is based on [49]. In the following, we recapitulate the principal ideas: From the volume of an
ellipsoid,

V =
4

3
πa1a2a3,

with a1 = a2 = r and a3 = uy, we obtain

V =
16

3E′
pr3,

by (55). From (54), we rewrite the pressure by

p =

√
GcπE′

4r
, (56)

then we get the relationship

V =

√
64Gcπr5

9E′
. (57)
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The relation between the radius and pressure used in the test is presented on the Table 1. To compare
with our numerical computations, we approximate the volume V

V ≈ VN :=
4

3
πr2uy, (58)

and compare VN with (57). The result is given at the Figure 4.

4.2 Multiple Parallel Fractures

(a) (b)

Figure 5: Initial setup for Section 4.2.1 and Section 4.2.2 in the domain Λ = (0, 4 m)3. (a) Two
initial parallel fractures. The radius of both initial penny shape fractures is r = 0.5 m and
they are centered at x = 1.5 m and x = 2.5 m-plane, respectively. (b) Three initial parallel
fractures. The radius of all three penny shape initial fractures is 0.5 m and they are centered
at x = 1.5 m, 2 m and x = 2.5 m-plane, respectively.

In this section, we present and study the interaction between multiple parallel fractures in three
dimensional domains to verify our algorithm. Here, we study that close enough parallel fractures
interact with each other under the stress shadowing effect, see [13, 15, 41, 54].

4.2.1 Two Parallel Fractures

In the domain Λ = (0, 4 m)3, we set two initial penny shape fractures as shown in the Figure 5a. The
left fracture is centered at (1.5 m, 2 m, 2 m) with radius r = 1 m on x = 1.5 m-plane and the right
fracture is centered at (2.5 m, 2 m, 2 m) with radius r = 0.5 m on x = 2.5 m-plane. Here Gc = 1.0 Pa m
and Lamé coefficients are given as G = 4.2× 107 Pa and λ = 2.8× 107 Pa. The fractures grow by a
given constant pressure in space and linearly increasing in time; p = t × 5× 104 Pa, where t is the
current time. The discretization parameters are δt = 0.005s and hmin = 0.027 m.

As we observe in the Figure 6, if the distance between the fractures is sufficiently close, then they
influence each other via their stress fields, often referred to by engineers as the stress shadowing
effect. The leading edges of the fractures start to grow by curving out from the initial cracks. The
interaction between the fractures increases when the fractures become larger. Similar studies with
analogous findings have been carried out in [13, 15, 41, 54].

To illustrate the performance of the algorithm, we computed the above example by using fifteen
Intel(R) Xeon(R) CPU X5670 @ 2.93GHz processors. The average wall clock time for each time step
including predictor-corrector adaptive step is approximately 826.078s and the computation requires
74 time steps plus 71 additional predictor-corrector adaptive iterations. Consequently, the total wall
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(a) n = 60 (b) n = 71 (c) n = 74

Figure 6: Example 4.2.1: Propagation of two parallel fractures for increasing pressure for each time
step n. For each figure, the inner bold penny shape fractures indicate the initial two parallel
fractures and red wire lines illustrates the part of adaptive meshes. We observe the stress-
shadowing effect that causes the two fractures to curve away.

clock time for this computation was approximately 17 hours. The space discretization is adaptively
modified after each time step and he maximum number of total degrees of freedom is 4, 074, 532 and
the minimum number is 318, 846. The average wall clock time per degree of freedom per time step is
approximately 4.929× 10−5s.

4.2.2 Three Multiple Parallel Fractures

(a) Initial fractues (b) n = 68 (c) n = 72

Figure 7: Example 4.2.2: Growth of three parallel fractures for each time step n.

Here we increase the number of fractures from two to three, but all other mechanical and numerical
constants are the same as in the previous example. Between the two initial fractures in the Figure 5a,
we add an additional fracture at x = 2 m-plane with the same radius as the others; we refer to Figure
5b for the setup. Following Figure 7 shows the propagation of the fractures for each time step. The
middle fracture does not grow as pressure is increased because of the stress-shadowing effect.

In addition, we perform another test by enlarging the radius of the initial fracture only in the
middle (on x = 2 m-plane). Here, the radius of the middle fracture is now r = 0.75 m. In this case,
the stress-shadowing effect from the middle fracture prevents the growth of the two other fractures as
it can be observed in Figure 8.
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(a) Initial
fractues (b) n = 55 (c) n = 58 (d) n = 60

Figure 8: Example 4.2.2: Growth of three parallel fractures with larger initial radius in the middle for
each time step n. The darker region inside indicate the initial fractures. The larger middle
fracture grows faster than the others.

4.3 Two Perpendicular Fractures in Homogeneous and Heterogeneous Media with
Locally Refined Meshes

(a) Initial fractures (b) (c) Heterogeneity

Figure 9: Example 4.3: Initial setup for two perpendicular fractures in the locally refined three di-
mensional domain Λ = (0, 4 m)3. (b) Cut through the z = 2 m-plane to observe the initially
refined meshes near the fractures.(c) Random heterogeneity by Young’s modulus E value
range of the shale rock region; E ∈ [1 GPa, 10 GPa].

In this section, we predict two initial fractures in arbitrary positions propagating by a given increas-
ing pressure. We emphasize the joining and branching of the fractures in 3D domain with the locally
refined meshes. We also observe non-planar fractures especially in heterogeneous media.

Figure 9 presents the initial setup with hanging nodes for the multiple fractures on the locally
refined domain Λ = (0, 4 m)3. The top penny shape fracture is centered at (2 m, 3 m, 2 m) with radius
r = 0.5 m in y = 3 m-plane and the bottom fracture is centered at (2.5 m, 2 m, 2 m) with radius
r = 0.5 m in x = 2.5 m-plane. The mechanical parameters are ν = 0.2 and E = 104 Pa for the
homogeneous domain but E ∈ [1 GPa, 10 GPa] for the heterogeneous domain, see Figure 9c [53]. Here
the pressure is given by p = t×103 Pa and p = t×1 MPa, for homogeneous and heterogeneous domain,
respectively. The discretization parameters are δt = 0.01 and hmin = 0.054 m.

The following Figures 10 and 13 show each time step n of non planar fractures propagating with
joining and branching in homogeneous and heterogeneous media, respectively. We take detailed snap-
shots for joining and branching of fractures; see Figure 11a- 11b. Those are automatically captured
by the proposed phase field model.

In Figure 11c, the bulk and crack energies are presented in time. Recall that the bulk energy and
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(a) n = 16 (b) n = 16 (c) n = 18 (d) n = 22

Figure 10: Example 4.3: Multiple fracture propagation in homogeneous media in 3D. Two fractures
first join and later branch. Employing the predictor-corrector mesh adaptivity technique,
the locally refined mesh follows the crack patterns. This strategy allows for high resolution
of ε around the crack pattern but keeps the overall computational cost reasonable since the
number of degrees of freedom grows with the cracks.

(a) Joining (n = 15)
(b) Branching (n =

18)
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(c) Evolution of energies

Figure 11: Example 4.3: Detailed snapshots of the areas where the cracks are (a) joining of two
fractures at n = 15 and (b) strats branching after joining at n = 18. (c) Evolution of bulk
and crack energies. The crack energy (dotted line) starts increasing when the two fractures
start growing at n = 10 (equal to t = 0.1). The bulk energy (solid line) remains increasing
even for propagating fractures since the applied pressure is still increasing.

the crack energy are given by

EBulk =
1

2

∫
Λ

((1− k)ϕ2 + k)σ(u) : e(u) dx, and ECrack =
Gc
2

∫
Λ

(
1

ε
(1− ϕ2) + ε|∇ϕ|2) dx.

We observe that the crack energy remains constant while the cracks are not growing and this energy
increases for growing fractures. In addition, we fix the ε = 0.2165 but refine hmin (= 0.2165, 0.1082
and 0.0541) and observe the spatial convergence of both energies with respect to hmin.

We emphasize the predictor-corrector mesh refinement in the Figure 9b and Figure 10a. Finally, in
Table 2, we study the number of predictor-corrector mesh refinement iterations for each different time
step. For total 22 time steps, the mesh was changed 38, 50 and 52 times in the test with CR = 0.4, 0.6
and 0.8, respectively. We see more predictor-corrector iteration steps for larger CR values, which is
clear since we mark more cells in a larger area near the fracture to refine. Not only the iteration
numbers, but also larger CR results in more degrees of freedom. For instance, the maximum numbers
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for total degrees of freedom are 1449500, 1880008, and 2394108 for CR = 0.4, 0.6 and 0.8, respectively.
However, the evolution of the energies are compared to be similar; see Figure 12.
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Figure 12: Example 4.3: Evolution of bulk and
crack energies with different CR values
are similar.

Time steps (n)
Predictor-Corrector iterations

CR =
0.4

CR =
0.6

CR = 0.8

i) 1 - 9 5 15 16
ii) 10 - 15 13 15 15
iii) 16 - 22 20 20 21

Table 2: Example 4.3: Display of the average
number of predictor-corrector iterations
for different time intervals: i) before the
fractures grow, ii) before it joins, and iii)
while branching. Each column represents
a different value of the treshold value CR.

(a) n = 11 (b) n = 13 (c) n = 16

Figure 13: Example 4.3 in heterogeneous media: Sequence of snapshots of fractures propagating at
each time step number n in three dimensional heterogeneous media. Both fractures grow
non-planarly, then they join at n = 11 and start branching at n = 13. In these examples,
we observe non-planar fracture propagation.

4.4 Fluid Filled Fractures

(a) Phase field (b) Pressure (c) Pressure vs Volume Injection

Figure 14: Example 4.4: (a) Phase field, (b) the pressure value at t = 1, and (c) the average pressure
in the fracture by volume injection.

From this section on, we study the fluid filled fracture propagation examples (α = 1). The pressure
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diffraction problem is fully coupled with the displacement-phase field system as outlined in Section
3.5 and Algorithm 1.

First, the initial fracture is centered at (2 m, 2 m) with the length l = 0.25 m in the two dimensional
domain Λ = (0, 4 m)2. The mechanical parameters are ν = 0.2 and E = 108 Pa for the homogeneous
domain. The fluid is injected at the center of the fracture with the constant volume rate of qF = 200
for point source injection and qL = 0. The fluid parameters are given as µF = µR = 1× 10−3 Ns/m2,
ρR = ρF = 1000 kg/m3. Also other parameters are KR = 1× 10−12, g = 0, cF = 1× 10−8, and the
Biot modulus is M = 2.5× 108. Figure 14a and 14b illustrate the phase field and the pressure values
at the final time t = 1. Here hmin = 0.022 m and the time step is δt = 0.01s. The pressure increases
until the fracture starts propagating and then drops as expected from previous studies; see Figure 14c.
In addition, we fix the phase field parameter as ε = 0.045 and the initial thickness of the fracture as
0.02 m then refine hmin = 0.022, 0.011, 0.0055m to see the convergence of the average pressure value
in the fracture with respect to hmin.

In the three dimensional domain Λ = (0, 4 m)3, the initial penny shape fracture is centered at
(2 m, 2 m, 2 m) on y = 2 m−plane with the radius r = 0.25 m. The fluid is injected at the center of the
fracture and all the parameters are the same as previous two dimensional example. Here hmin = 0.05 m
and the time step is δt = 0.01s.

(a) n = 10 (b) n = 20 (c) n = 40 (d) n = 50

Figure 15: Example 4.4: Sequence of snapshots of fractures propagating at each time step number n
in three dimensional homogeneous media. (d) The red dot in the middle of the fracture
indicates the injection well point.
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Figure 16: Example 4.4: Pressure increases until the fracture starts to propagate and then drops.

Figure 15 illustrates each step of the fracture propagation by the injection of fluid. In addition,
we vary the cx values for the pressure diffraction system to study the differences. In Figure 16 the
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maximum pressure in the fracture and the radius of the fracture is plotted by the fluid injection
volume. In this example, we use (14) to split the stress; thus the energy degradation only acts on the
tensile part and additional fractures do not develop because of the compression.

4.5 Multiple Fluid Filled Fractures Growing From a Well Bore

(a) n = 1 (b) n = 25 (c) n = 50 (d) n = 92

(e) n = 1 (f) n = 25 (g) n = 50 (h) n = 92

Figure 17: Example 4.5: (a)-(d) Sequence of snapshots of fluid filled fractures propagating, and (e)-(h)
pressure distribution for each time step number n.

The computational domain is given as Λ = (−2 m, 2 m)2\O, where O := {x | |x − c| ≤ r} is the
circle with the center c = (0 m, 0 m) and the radius r = 0.1 m, which represents the well bore. The
initial fractures are positioned at (0− hmin, 0 + hmin)× (0.1, 0.5) and (0.1, 0.5)× (0− hmin, 0 + hmin),
thus the length are 0.4 m; see Figure 17a. The mechanical parameters are ν = 0.2 and E = 108 Pa and
the fluid parameters are the same as in the previous example, where hmin = 0.01 m and the time step
is δt = 0.01s. Here two injection stages are positioned at (0 m, 0.25 m) and (0.25 m, 0 m), and we apply
the suggested well model (33). The well model constants are chosen as re = 20.25 exp((−3π/4)hmin),
rw = 10−4hmin, for outer and inner radius, given initial well bore pressure is pb = 50 MPa, and
h3 = 2 m for the depth of the well, following [16]. Figure 17 illustrates the fluid filled fracture
propagation handling multiple injection points with the pressure values for each time step.

4.6 Fracture Propagation in Layers with Different Gc Values

In the last example, we study fracture propagation in a layered elastic media. Specifically, Gc is varied
in the domain Λ = (0, 4 m)2 We focus on fracture propagation from a soft layer to a rigid layer
as studied in [55]. The initial crack is centered at (2 m, 2.05 m) with the length l = 0.225 m. Here
hmin = 0.011 m and the time steps are chosen as δt = 0.01s. The fluid is injected at the center of the
crack and the fluid, well model and the mechanical parameters are given as same as the previous well
bore example. In this study, we separate the layers with different values for Gc. Here Gc = 10 Pa m
for y > 3, y < 1, x > 3 and x < 1. (the outer darker region in Figure 18), and Gc = 1 for 1 ≤ y ≤ 3,
and 1 ≤ x ≤ 3. We observe kinking of the fracture when it approaches the rigid layer and subsequent
fracture growing along the layer in Figure 18.
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(a) n = 1 (b) n = 30 (c) n = 70 (d) n = 190

Figure 18: Example 4.6: Fracture propagating in surrounded layered media. The fracture is positioned
at the soft layer and it propagates toward the rigid layer (darker region). We observe the
kinked crack near the interface as we see from the experiment [55].

We finally observe that the active set solver performs well in all examples and shows similar con-
vergence rates as presented in [24]. Moreover, the fixed-stress algorithm for phase field-based fracture
coupled with the pressure diffraction problem works robustly but is not yet optimized with respect to
stabilization parameters. Here, we refer to previous and related studies performed by [34] for the stan-
dard Biot system and recent extensions to a non-propagating lower-dimensional fracture in a porous
medium [20]. Numerical analysis of further extensions to propagating fractures including phase field
is nontrivial and currently underway.

5 Conclusion

In this paper, we presented a phase field formulation for pressurized and fluid filled crack propagation
in porous media. The first novelty is a coupling of a pressure diffraction equation to a fully-coupled
displacement-phase field approach. This coupling is realized in terms of a fixed-stress splitting in
which we first solve for the pressure and then for the displacement-phase field variables. Here, the
latter system is treated with a primal-dual active set approach that include treatment of the crack
irreversibility. In addition to these algorithmic advancements, several numerical examples are con-
sulted for verification in the case of pressurized fractures as well as demonstration of our scheme for
fluid filled fractures in heterogeneous porous media. Specifically, we demonstrate that the phase field
approach allows us to study complex fracture patterns including non-planar crack growth, joining and
branching phenomena. In extension to existing studies, we also considered 3D simulations. From the
computational point of view, local mesh adaptivity has been employed in order to enhance the local
resolution of the phase field regularization parameter while keeping the computational cost reasonably
low. Computational stability of our model has been shown for certain functionals on different spatial
meshes. We believe that a decoupling approach, such as fixed-stress, will be useful for treating more
complex flow in fractured porous media problems.
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