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We study the propagation of hydraulic fractures using the fixed stress splitting method.
The phase field approach is applied and we study the mechanics step involving displace-
ment and phase field unknowns, with a given pressure. We present a detailed derivation
of an incremental formulation of the phase field model for a hydraulic fracture in a poroe-
lastic medium. The mathematical model represents a linear elasticity system with fading
elastic moduli as the crack grows that is coupled with an elliptic variational inequality for
the phase field variable. The convex constraint of the variational inequality assures the
irreversibility and entropy compatibility of the crack formation. We establish existence of
a minimizer of an energy functional of an incremental problem and convergence of a finite
dimensional approximation. Moreover, we prove that the fracture remains small in the
third direction in comparison to the first two principal directions. Computational results
of benchmark problems are provided that demonstrate the effectiveness of this approach
in treating fracture propagation. Another novelty is the treatment of the mechanics equa-
tion with mixed boundary conditions of Dirichlet and Neumann types. We finally notice
that the corresponding pressure step was studied by the authors in [55][A. Mikelić and
M. F. Wheeler and T. Wick; A phase-field method for propagating fluid-filled fractures
coupled to a surrounding porous medium, SIAM Multiscale Model. Simul., 13 (1), 2015,
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1 Introduction

The coupling of flow and geomechanics in porous media is a major research topic in energy and envi-
ronmental modeling. Of specific interest is induced hydraulic fracturing or hydrofracturing commonly
known as fracking. This technique is used to release petroleum and natural gas that includes shale gas,
tight gas, and coal seam gas for extraction. Here fracking creates fractures from a wellbore drilled into
reservoir rock formations. In 2012, more than one million fracturing jobs were performed on oil and
gas wells in the United States and this number continues to grow. Clearly there are economic benefits
of extracting vast amounts of formerly inaccessible hydrocarbons. In addition, there are environmen-
tal benefits of producing natural gas, much of which is produced in the United States from fracking.
Opponents to fracking point to environmental impacts such as contamination of ground water, risks
to air quality, migration of fracturing chemical and surface contamination from spills to name a few.
For these reasons, hydraulic fracturing is being heavily scrutinized resulting in the need for accurate
and robust mathematical and computational models for treating fluid field fractures surrounded by a
poroelastic medium.

Even in the most basic formulation, hydraulic fracturing is complicated to model since it involves
the coupling of (i) mechanical deformation; (ii) the flow of fluids within the fracture and in the
reservoir; and (iii) fracture propagation. Generally, rock deformation is modeled using the theory of
linear elasticity, i.e. they are modeled as an impermeable elastic medium. Using Green’s function, an
integral equation that determines a relationship between fracture width and the fluid pressure can be
adopted. Fluid flow in the fracture is modeled using lubrication theory that relates fluid flow velocity,
fracture width and the gradient of pressure.

Fluid flow in the reservoir is modeled as a Darcy flow and the respective fluids are coupled through
a leakage term. The experiments show an analogy between hydraulic fracture propagation and crack
propagation in fracture mechanics of solids. The criterion for fracture propagation is usually given by
the conventional energy-release rate approach of linear elastic fracture mechanics (LEFM) theory; that
is the fracture propagates if the stress intensity factor at the tip matches the rock toughness. Detailed
discussions of the development of hydraulic fracturing models for use in petroleum engineering can be
found in [1, 21, 35, 47] and in mechanical engineering and hydrology in [7, 31, 36, 64] and in references
cited therein.

In the literature, numerical models of fracture can be classified into two categories: discrete and
continuum approaches. The discrete approach treats fractures as discontinuities. Its positive side
is the simplicity in terms of modeling. One disadvantage is to consider topology changes in the
implementation and mesh dependent fracture propagation is restricted to follow mesh lines. Some of
these approaches, however, have difficulties with joining or branching fracture or with heterogeneous
materials. For a detailed literature overview of various fracture propagation models, we refer the
reader to [74]. In the following, we restrict our focus to a specific continuum approach, which has
received a lot of attention.

In the last two decades, variational phase field models of brittle fracture gained popularity in fracture
mechanics. In fracture mechanics, the fracture is a lower dimensional manifold. The phase-field
variable is a smoothed indicator function that smoothly interpolates between the broken and unbroken
regions. The change from the intact medium to a fracture takes place in a narrow mushy region.
Francfort and Marigo developed in [26] a variational formulation for quasi-static fracture evolution in
a brittle material based on the minimization of the combined elastic energy in the bulk material and
the fracture energy. It has been serving as a basis for a vast literature with numerical simulations and
theoretical developments. The approach allows simulation of complex fracturing processes, such as
branching and joining. Handling heterogeneous media does not pose major additional difficulties and
updating the fracture shape is automatically contained in the model.
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Because of the above mentioned analogy between fracture mechanics and hydraulic fracturing, it is
appealing to simply borrow the approach of Francfort and Marigo. Nevertheless, it is important to
recall that contrary to fracture mechanics, where Griffiths criterion has a deep physical meaning, us-
ing a phase field approach in hydraulic fracturing corresponds to a phenomenological overall behavior.
The fractures are slender flow domains, but, nevertheless, their width is much bigger than the typical
pore size of a porous medium. The mechanical interactions of the fracture interacting with the pore
structure is not well understood and an open question. Furthermore, we do not consider the equations
of fluid-structure, posed at the pore level, but their upscaled simplified form. Consequently, flow and
deformation are described by Biot’s equations (e.g., [67]), which are not fundamental physical equa-
tions. This is a very important modeling aspect because one wants to couple the upscaled poroelastic
medium possibly with Stokes or Navier-Stokes flow in the fracture, which are first principle equations.
Here, interface conditions have to be carefully derived. An alternative is a lubrication approximation,
which does not contain enough information about (the prediction) of the tip velocity. Hence there are
difficulties with including a correct description of the interaction between the hydraulic fracture and
the surrounding poroelastic medium. More physical reasoning based on the energy could be necessary.
For correct modeling of these processes, only experiments can indicate how far the analogy of fracture
behavior with solid mechanics works.

In this paper, we present our phase-field fracture model for pressurized fractures in a porous
medium. Our approach is based on the observation that phase field models require the energy
functional in the case of elasticity [26] and a free energy in the case of poroelasticity [56]. The Biot
equations are obtained by upscaling and for a hydraulic fracture being a lower dimensional manifold
we do not know how to formulate such an energy functional. But in the elastic case, where the pressure
is given, we can modify the regularized phase field elastic energy of Francfort and Marigo, and study
the corresponding phase field system. We note that now the fracture is a three dimensional slender
body. Similarly, in the case of the full Biot system, one would modify Biot’s free energy by inserting
the phase field function.

Parts of this work are based on two preprints ICES-1315 [52] and ICES-1418 [53] that were published
in the years 2013 and 2014 at the Institute of Computational Engineering and Sciences at the University
of Texas at Austin.

The outline of this paper is as follows: First in Section 2, we provide general background informa-
tion. In Section 3, we introduce an incremental formulation of a phase-field model for a pressurized
crack. Here, the crack-pressure is incorporated with an interface law. In Section 4, we present a
mathematical analysis of the incremental problem. In Section 5, a numerical formulation is briefly
described. Finally in Section 6 we provide numerical experiments for classical benchmark cases, e.g.
Sneddon’s pressurized crack with constant fluid pressure (see Subsection 6.1 and [65]). Here, we also
focus on the behavior when working with mixed boundary conditions of Dirichlet and Neumann types.

2 Fundamental background information

In this section, we explain the idea of our approach and provide background information. We finish
with a current literature overview of phase-field models used for hydraulic facturing.

2.1 The Biot system and fixed-stress iterative coupling

Major difficulties in simulating hydraulic fracturing in a deformable porous medium are treating crack
propagation induced by high-pressure slick water injection and later the coupling to a multiphase reser-
voir simulator for production. A computational effective procedure in modeling coupled multiphase
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flow and geomechanics is to apply an iterative coupling algorithm as described in [54, 51].

Iterative coupling is a sequential procedure where either the flow or the mechanics is solved first
followed by solving the other problem using the latest solution information. At each time step the
procedure is iterated until the solution converges within an acceptable tolerance. There are four well-
known iterative coupling procedures and we are interested primarily in one referred to as the fixed
stress split iterative method.

In order to fix ideas we address the simplest model of real applied importance, namely, the quasi-
static single phase Biot system. Let C denote any open set homeomorphic to an ellipsoid strictly
contained in (0, L)3 ⊂ R3 (a crack set). Its boundary is a closed surface ∂C. In most applications C is
a curved 3d domain, with two dimensions significantly smaller than the dominant one. Nevertheless,
we consider C as a 3d domain and use its particular geometry only when discussing the stress
interface conditions. The boundary of (0, L)3 is denoted by ∂(0, L)3 = ∂Ω \ ∂C divided into Dirichlet
and Neumann parts, ∂DΩ and ∂N (0, L)3 respectively. We assume that meas(∂DΩ) > 0. Boundary
conditions on ∂(0, L)3 = ∂DΩ ∪ ∂N (0, L)3 for the above situation involve displacements and tractions
as well as pressure and flux.

Remark 1. We notice that in many references on fracture propagation, the crack C is considered
as a lower dimensional manifold and the lubrication theory is applied to describe the fluid flow (see
e.g. [1, 27, 30]). We recall that the 3d flow in C can be reconstructed from a lower dimensional
lubrication approximation (see [55]), except at the tips where a law for their displacements has to be
added separately.

The quasi-static Biot equations (see e.g. [67]) are an elliptic-parabolic system of PDEs, valid in the
poroelastic domain Ω = (0, L)3 \ C, where for every t ∈ (0, T ) we have

σpor − σ0 = Ge(u)− αpI; − div {σpor} = ρbg; (1)

∂t
( 1

M
p+ div (αu)

)
+ div {K

η
(ρfg −∇p)} = f, (2)

where σ0 is the reference state total stress and g is the gravity and f represents volume sources/sinks,
respectively. By I, be denote the identity matrix. In the following, we set g = 0 and σ0 = 0. The
important parameters and unknowns are given in Table 1.

SYMBOL QUANTITY UNIT

u displacement m

p fluid pressure Pa

σpor total poroelasticity tensor Pa

e(u) = (∇u + ∇τu)/2 linearized strain tensor dimensionless

K permeability Darcy

α Biot’s coefficient dimensionless

ρb bulk density kg/m3

η fluid viscosity kg/m sec

M Biot’s modulus Pa

G Gassman rank-4 tensor Pa

Kdr Drained bulk modulus Pa

Table 1: Unknowns and effective coefficients

The fixed stress split iterative method consists in imposing constant volumetric mean total stress
σv. This means that the stress σv = Kdr div uI − αpI is kept constant at the half-time step.
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The iterative process reads as follows:(
1

M
+

α2

Kdr

)
∂tp

n+1 + div {K
η

(ρfg −∇pn+1)} =

− α

Kdr
∂tσ

n
v + f = f − α div ∂tu

n +
α2

Kdr
∂tp

n; (3)

− div {Ge(un+1)}+ α∇pn+1 = 0. (4)

Remark 2. We remark that the fixed stress approach is useful in employing existing reservoir simula-
tors in that (3) can be extended to treat the mass balance equations arising in black oil or compositional
flows and allows decoupling of multiphase flow and elasticity.

Remark 3. Interest in the system (3)-(4) is based on its robust numerical convergence. Under mild
hypothesis on the data, the convergence of the iterations was studied in [54] and it was proven that
the solution operator S, mapping {un, pn} to {un+1, pn+1} is a contraction on appropriate functional

spaces with the contraction constant γFS =
Mα2

Kdr +Mα2
< 1. The corresponding unique fixed point

satisfies equations (1)-(2). Further important recent studies on the fixed-stress scheme have been
undertaken in [8, 16, 28]. For phase-field fracture, a very detailed computational analysis of the
fixed-stress scheme was performed in [43].

Remark 4. We finally notice that the (discretized) Biot equations (without fractures) form a mixed
system that is subject to a (discrete) inf-sup condition. Theoretical studies were undertaken in [58, 59].
Various finite element pairs have been investigated in [24, 45, 61]. More recent references can be found
in [38, 62, 39, 34]. Important is the choice of the pressure space, which should be locally mass conserva-
tive, but can be still of lowest order. For these reasons, fluid-filled phase-field fractures using the entire
Biot system have been formulated either with linear/linear elements for the displacements/pressure
(see e.g., [55]) or linear/enriched-linear elements [40], where an enriched Galerkin formulation for
the pressures ensures local mass conservation.

2.2 Focus on crack propagation in the fixed-stress elasticity step

Because of the complexity of this coupled nonlinear fluid-mechanics system, we follow the above
splitting strategy and restrict our attention to a simplified model in which we assume that the pressure
has been computed from the previous fixed-stress fluid iteration step. Our focus in this paper is
therefore on crack propagation in the framework of the fixed-stress mechanics step (4) and we call
this approach a fluid filled crack with a given pressure.

Remark 5. The extension to the full poroelastic system for crack propagation and therefore employing
a phase-field formulation of the pressure step (3) is studied in [55] and called fluid-filled crack
propagation in a poroelastic medium. In the fixed stress iterative splitting, the pressure is known in
the mechanics step and can be included into the forcing terms. Then we arrive exactly in the situation
studied in the current article.

In the following, we present an incremental formulation of the hydraulic fracture with a given
pressure field surrounded by a poroelastic medium. The mathematical model involves the coupling
of a linear elasticity system with an elliptic variational inequality for the phase field variable. With
this approach, branching of fractures and heterogeneities in mechanical properties can be effectively
treated as demonstrated numerically in Section 6.

Our formulation follows Miehe et al. in [50] and is a thermodynamically consistent framework
for phase-field models of quasi-static crack propagation in elastic solids, together with incremental
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variational principles. The work by Miehe et al. [50] is further based on the variational approach to
elastic fractures formulated by Francfort and Marigo [26]; see also [12]. Our contribution represents
an extension to a phase-field pressurized fracture model in a poroelastic medium that we describe in
the following in more detail.

Following Griffith’s criterion, we suppose that the crack propagation occurs when the elastic energy
restitution rate reaches its critical value Gc. In the classical setting the crack C is a lower dimensional
manifold and for a traction force τ applied at the part of the boundary ∂NΩ, then we associate to the
crack C the following total energy

E(u, C) =

∫
Ω

1

2
Ge(u) : e(u) dx−

∫
∂NΩ

τu dS −
∫

Ω
αpBdiv u dx+GcH2(C), (5)

where pB is the poroelastic medium pressure calculated in the previous iterative coupling step and
α ∈ (0, 1) is the Biot coefficient. In (5), the first three terms stem from (4) and the last term, GcH2(C)
is the surface energy related to the fracture.

This energy functional is then minimized with respect to the kinematically admissible displacements
u and any crack set satisfying a crack growth condition. The computational modeling of this min-
imization problem treats complex crack topologies and requires approximation of the crack location
and of its length. This was overcome by regularizing the sharp crack surface topology in the solid
by diffusive crack zones described by a scalar auxiliary variable. This variable is a phase-field that
interpolates between the unbroken and the broken states of the material, which is introduced through
a time-dependent ϕ (the crack phase field), defined on (0, L)3 × (0, T ). The functional from (5) is
regularized using the phase field unknown and the new crack functional (the last term in (5) divided
by Gc) reads

Γε(ϕ) =

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2) dx =

∫
(0,L)3

γ(ϕ,∇ϕ) dx, (6)

where γ is the crack surface density per unit volume. This regularization of H2(C), in the sense of the
Γ−limit when ε→ 0, was used in [11].

The model proposed in this paper is a simple extension of the crack functional (6) that, after
the time discretization, can be analyzed both as a minimization problem and as a variational PDE
formulation. For simplicity the presentation of the time discretized (or the incremental problem) here
is based on energy minimization, whereas our treatment of the corresponding variational formulation
can be found in [52] and the current paper. For the full quasi-static problem we refer to [57].

2.3 Energy minimization versus the variational PDE formulation

In the numerical analysis of fracture propagation in solid mechanics, solving the minimization problem
[26, 12] by considering the variational formulation is for instance treated in [14]. Most other works
also start from the energy level. We base our computational framework on the variational PDE
formulation since more additional realistic physical interfacial effects (see Fig. 1 and [1]) and associated
dissipative terms and nonlinear physical models can be employed. Moreover, the Biot system does
not correspond to an energy minimization formulation in u and p, but has a free energy linked to
a Lyapunov functional. For these reasons, the variational PDE formulations allow for more general
settings, with the drawback that only stationary points are computed and not only the minimizers.
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2.4 Literature on hydraulic phase-field fracture modeling

In our knowledge, applying the phase field approach to the simulation of propagation of pressurized
fractures in an elastic medium was initiated by the SPE conference paper [10]. The pressurized fracture
was described through a boundary term

∫
C p[u · n], with the crack C being a surface and [u · n] the

displacement jump across the crack (see also Remark 7 in Section 3.2). The phase field handling of
such terms goes back to the work presented in [18].

In the years 2013 [52] and 2014 [53], the first model for pressurized fractures in porous media
(including Biot’s coefficient α) was proposed and rigorously investigated. Here the displacement phase-
field system was modeled in a monolithic framework. Later, a decoupled model was investigated in [57]
for which a corresponding robust numerical augmented Lagrangian approach was developed in [68].
We also notice the development of a sharp interface model for pressurized fractures using variational
techniques in [3]. The efficient and robust numerical solution of pressurized phase-field models based
on quasi-monolithic approaches was presented in [33, 73]. Based on the first models [52, 53] (and also
the current paper), fully monolithic solution techniques for pressurized fractures have been developed
in [71, 72]. For a different treatment of the decoupled model [57], using the discontinuous Galerkin
(DG) formulation for the displacements, we refer to [23]. Various adaptive mesh refinement schemes
for pressurized phase-field fracture, with focus on the crack path or other quantities of interest, have
been proposed in [33, 42, 70].

The pressurized phase-field method has been then further extended to fluid-filled fractures in which
a Darcy type equation is used for modeling fracture flow [55] and similar studies have appeared
simultaneously [48, 49, 46]. A rigorous mathematical analysis including detailed numerical studies
of a fully-coupled fluid geomechanics phase-field model in porous media was first presented in [56].
Here, the important phenomenon of negative pressures at fracture tips was observed. This feature is
known to appear in such configurations, but was not yet quantified using a phase-field method. In the
year 2016, we note further contributions to fluid-filled phase-field fractures from [32, 42]. To reduce
the computational cost, we notice that parallel computation frameworks have been implemented in
most groups, e.g., [10, 33, 49, 42]. Coupling to other codes and reservoir simulators has been first
accomplished in [74]. However, further research is necessary because the current modeling, the coupling
algorithm, and the treatment of the multi-scale nature of the problem must be further improved.

Recent results concentrated on the extension to proppant flow [40], two-phase flow inside the fracture
[41], single phase-flow for nonlinear poroelastic media [22], fractures in partially saturated porous
media [15], fracture initialization with probability maps of fracture networks [44], consequences on
further multiphysics coupling of the pressurized fractures interface law [69], more accurate crack width
computations and computational analysis of fixed-stress splitting [43], a phase-field formulation (in
elasticity) with a lower-dimensional lubrication formulation [63], and a multirate analysis in which
different time steps for different regimes are used [2].

3 An incremental phase field formulation

We introduce the time-dependent crack phase field ϕ, defined on (0, L)3 × (0, T ). The regularized
crack functional is given by (6). Our further considerations are based on the fact that the evolution
of cracks is fully dissipative in nature. First, the crack phase field ϕ is intuitively a regularization of
1− 1C and we impose its negative evolution

∂tϕ ≤ 0. (7)
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3.1 A global constitutive dissipation functional

Next we follow [50] and [11] and replace the energy (5) by a global constitutive dissipation functional
for a rate independent fracture process. That is

Eε(u, ϕ) =

∫
(0,L)3

1

2

(
(1− k)ϕ2 + k

)
Ge(u) : e(u) dx−

∫
∂NΩ

τu dS−∫
(0,L)3

αϕ2pBdiv u dx+Gc

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2

)
dx. (8)

We remark that ∂NΩ contains both the outer boundary and the fracture boundary. Moreover, k is a
positive regularization parameter for the elastic energy, with k � ε, e.g., [13]. We notice that k > 0
is necessary for quasi-static phase-field fracture models in order to avoid a singular discrete system.
For dynamic fracture, k = 0 may be chosen, see e.g., [6]. Due to the presence of the acceleration term,
in the limit ϕ→ 0 non-zero respective matrix entries are assured, removing the degeneracy.

We note that the pressure cross term reads∫
(0,L)3

αϕ2pBdiv u dx,

instead of ∫
(0,L)3

αϕpBdiv u dx.

This is linked to the behavior for negative values of the phase field variable. Moreover, if ϕ ≤ 0, there
should be no contribution. Therefore instead of∫

(0,L)3
αϕ2pBdiv u dx,

we use ∫
(0,L)3

αϕ2
+pBdiv u dx.

Using ϕ2
+ yields a higher regularity and avoids difficulties in the differentiation since we need first and

second order derivatives for Newton’s method. We notice that for 0 ≤ ϕ ≤ 1, using ϕ2
+, instead of ϕ+

in the pressure cross term should not affect the phase field approximation. If ϕ = 1C , we do not see
any difference.

We explain this choice in more detail in the following. In the incremental formulation, the entropy
condition ∂tϕ ≤ 0 leads to a condition similar to the obstacle problem, which guarantees that ϕ ≤
1. On the contrary, the presence of the pressure gradient can lead to negative values of the phase
field variable. Later in Theorem 2, we show for the incremental, continuous in space problem that
ϕ ≥ 0. For the formulation which is discretized in space, the approximation for ϕ is not necessarily
nonnegative. It becomes nonnegative only when passing to the space continuous problem. For this
reason, working with ϕ+ is a safeguard choice, which in the end does not modify the original problem
and is numerically stable. There are formulations with good estimates for the time derivatives in
which ϕ is nonnegative only in the space-time continuous formulation, which has been proven in [57].

In the following, we consider a quasi-static formulation where velocity changes are small. First, we
derive an incremental form, i.e., we replace the time derivative in inequality (7) with a discretized
version; more precisely

∂tϕ→ ∂∆tϕ = (ϕ− ϕp)/(∆t),
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where ∆t > 0 is the time step and ϕp is the phase field from the previous time step. After time
discretization, our quasistatic constrained minimization problem becomes a stationary problem, called
the incremental problem.

3.2 Interface coupling of a pressurized crack with a porous medium

The crack is filled with a fluid and, consequently, it is pressurized. However, the energy Eε given by (8)
is incomplete though and we need to include the crack-pressure. To this end, we work with an internal
interface between the fracture and the porous medium and derive appropriate interface conditions.
A general description of a crack embedded in a porous medium is illustrated in Figure 1. Here, we
consider a setting in which the complex interface crack/pore structure is simplified. We notice that
such a complex structure would require the solution of a variational problem since the formulation as
energy minimization might not be well defined. Furthermore, we assume that the crack is a 3d thin
domain with a width much less than its length, then lubrication theory can be applied. Hence, the
leading order of the stress in C is −pfI.

At the crack boundary, we assume the continuity of the pressures and the continuity of contact
forces:

pf = pB, σn = (Ge(u)− αpBI)n = −pfn, (9)

where pf denotes the fracture fluid pressure and n the normal vector. We recall that ∂Ω consists of
∂C, ∂NΩ \ ∂C = ∂N (0, L)3 and ∂DΩ = ∂D(0, L)3. The Neumann and interface boundary parts can be
written as ∂NΩ = ∂N (0, L)3∪∂C. On ∂D(0, L)3 we set the Dirichlet condition u = 0 and on ∂N (0, L)3,
we have σn = τ .

C

Ω

(0, L)2

Figure 1: Illustration of our approach for a 2d situation: a crack C ⊂ R embedded in a porous medium
(0, L)2. Here, the dimensions of the crack are assumed to be much larger than the pore scale
size (black dots) of the porous medium.

Before introducing the phase field variable, we eliminate the traction crack surface integrals and
obtain ∫

Ω
αpBdiv w dx+

∫
∂C
σnw dS

=

∫
Ω
αpBdiv w dx−

∫
∂C
pfwn dS

=

∫
Ω
αpBdiv w dx−

∫
Ω

div (pBw) dx+

∫
∂N (0,L)3

pBwn dS

=

∫
Ω

(α− 1)pBdiv w dx−
∫

Ω
∇pBw dx+

∫
∂N (0,L)3

pBwn dS, (10)
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where w · n denotes the normal component of the vector function w, where n is oriented towards
interior of C.

Remark 6. To date, in most studies dealing with pressurized fractures, the outer domain boundary
conditions are of homogeneous Dirichlet type. Here, the test function w cancels

∫
∂N (0,L)3 pBwn dS.

However, this last integral is important when Neumann boundary conditions are prescribed, where the
test function w does not vanish. We present such a case in Section 6.2.

In the above calculations, surface integrals are now treated with Gauss’ divergence theorem:

−
∫
∂N (0,L)3

τw dS +

∫
∂C
pwn dS −

∫
Ω
αp div w dx

= −
∫

Ω
(α− 1)p div w dx+

∫
Ω
∇pw dx−

∫
Ω

div (T w) dx

= −
∫

Ω
(α− 1)p div w dx+

∫
Ω

(∇p− div T )w dx−
∫

Ω
T : e(w) dx, (11)

where T is a smooth symmetric 3 × 3 matrix with compact support in a neighborhood of ∂(0, L)3,
such that T n = τ + pn on ∂N (0, L)3. The tensor T is introduced in order to handle the phase field
only in volume terms. Assuming that the crack C does not interact with ∂NΩ, it can be eliminated
by using Green’s formula. Hence the solution does not depend on the choice of T . We set

F = −(α− 1)pI − T , f = ∇p− div T . (12)

In the case of ∂NΩ = ∅, we have T ≡ 0. Then, the terms in (12) for F and f reduce to F = −(α−1)pI
and f = ∇p.

After the above transformation and after taking σ0 = 0 and neglecting the gravity term ρbg, the
weak formulation of problem (1) reads as follows

0 =

∫
Ω
σpor : e(w) dx−

∫
∂NΩ

τ ·w dS

=

∫
Ω
Ge(u) : e(w) dx−

∫
Ω

(α− 1)p div w dx+

∫
Ω
∇p ·w dx

−
∫
∂NΩ\∂C

(τ + pn) ·w dS

=

∫
Ω
Ge(u) : e(w) dx+

∫
Ω

(
F : e(w) + f ·w

)
dx (13)

for all w ∈ {w ∈ H1(Ω)3| w = 0 on ∂DΩ}. To the variational equation (13) corresponds the following
variant of the energy functional (8):

Ẽε(u, ϕ) =

∫
(0,L)3

1

2

(
(1− k)ϕ2 + k

)
Ge(u) : e(u) dx

+

∫
(0,L)3

ϕ2(F : e(u) + f · u) dx

+Gc

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2

)
dx. (14)

Remark 7. We note that introduction of the phase field approximation of the pressured fracture in

this section was introduced, differs from [10]. In fact, the presence of the term

∫
Ω
pu · ∇ϕ dx must be
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treated carefully numerically and we have derived therefore a different phase field energy functional.
The Γ−limit of our formulation was calculated for a particular one dimensional setting in [23], which
leads to the same formulation for the lower dimensional fracture as in [10].

Remark 8. We emphasize that the previous choice pB = pf on the fracture boundary is one possible
modeling choice. It may be justified to assume that pf � pB such that a discontinuous pressure could
be more appropriate. Such a modeling is left for future studies.

Remark 9. In the fixed stress splitting F and f depend on the pressure. For details we refer the
reader to [56].

3.3 The final energy functional

In the case of elastic cracks it can be shown that the phase field unknown satisfies 0 ≤ ϕ ≤ 1. In order
to establish this property for the spatially continuous incremental problem, we first modify (14) for
negative values of ϕ. As previously discussed, we now use ϕ+ instead of ϕ in terms where negative ϕ
could lead to incorrect physics in the bulk energy, traction and pressure forces. With this modification,
the final energy functional reads

Eε(u, ϕ) =

∫
(0,L)3

1

2

(
(1− k)ϕ2

+ + k
)
Ge(u) : e(u) dx

+

∫
(0,L)3

ϕ2
+(F : e(u) + f · u) dx

+Gc

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2

)
dx. (15)

As functional space of admissible displacements, we choose

VU = {z ∈ H1((0, L)3)3 | z = 0 on ∂DΩ }.

The entropy condition (7) is imposed in its discretized form and we introduce a convex set K:

K = {ψ ∈ H1((0, L)3) | ψ ≤ ϕp ≤ 1 a.e. on (0, L)3}, (16)

where ϕp(x) is the value of the phase field from the previous time step. The incremental minimization
problem now reads:

Definition 1. Find u ∈ VU and a nonnegative ϕ ∈ K such that

Eε(u, ϕ) = min
{v,ψ}∈VU×K

Eε(v, ψ). (17)

Note that the value of the phase field unknown ϕ from the previous time step enters only the convex
set K, as the obstacle ϕp. The goal of Section 4 is to establish a solution to the minimization problem
(17).

3.4 The Euler-Lagrange equations in strong form

From the energy functional, we obtain by differentiation and application of the fundamental lemma
of calculus of variations the strong formulation: Find u : (0, L)3 → R3 and ϕ : (0, L)3 → R such that

− div

((
(1− k)ϕ2

+ + k
)
Ge(u)

)
+ ϕ2

+f − div (ϕ2
+F) = 0 in (0, L)3, (18)

u = 0 on ∂D(0, L)3, (19)(
(1− k)ϕ2

+ + k
)
Ge(u)n = −ϕ2

+Fn on ∂N (0, L)3, (20)
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and

∂∆tϕ ≤ 0 on (0, L)3 and
∂ϕ

∂n
= 0 on ∂(0, L)3, (21)

−Gcε∆ϕ−
Gc
ε

(1− ϕ) + (1− k)Ge(u) : e(u)ϕ++

2ϕ+(F : e(u) + f · u) ≤ 0 in (0, L)3, (22){
−Gcε∆ϕ−

Gc
ε

(1− ϕ) + (1− k)Ge(u) : e(u)ϕ++

2ϕ+(F : e(u) + f · u)

}
∂∆tϕ = 0 in (0, L)3, (23)

where (23) is the strong form of Rice’ condition (which is a well-known complementarity condition).
This two-field formulation can be compared with the Model I formulation given in [50] (see page 1289).
The main difference is that the system (18)-(23) is a variational inequality; and in [50] a penalization
term is used for solving the inequality.

4 Well-posedness of the model

4.1 Existence of a minimizer to the energy functional Eε
In this section, we seek for a solution to the minimization problem (17). The strategy is to consider the
integrand of (15), using the notation z := (v, ϕ), and ξ stands for the components of the gradient of the
displacements and the gradient of the phase-field function. With z4, we access the fourth component
of z, namely the phase-field function. Lastly, z4+ denotes the positive part of the phase-field unknown.
Then,

g(x, z, ξ) =
1

2

(
(1− k)(inf{z4+, 1})2 + k

) 3∑
i,j,k,r=1

Gijkrξkrξij +Gc(
1

2ε
(1− z4)2+

ε

2
|∇z4|2) + (inf{z4+, 1})2(

3∑
i,j=1

Fijξij +

3∑
i=1

fizi), (24)

defined on (0, L)3 × R4 × R12 → R ∪ {+∞}. It is convex in ξ and we will prove that it is

(i) a Caratheodory function (i.e. a continuous function on R4 × R12 for every x from (0, L)3 and a
measurable function on (0, L)3 for every {z, ξ} from R4 × R12);

(ii) the energy functional (15) is coercive.

Then Corollary 3.24, page 97, from Dacorogna’s monograph [20] yields the lower semi-continuity of
the energy functional. Proving existence of at least one point of minimum is then a classical task.

We start with a result which follows directly from the basic theory:

Lemma 1. Let f and F ∈ L2; and Gc, b be nonnegative constants. Let ε be a positive small parameter.
Then the integrand g(·, ·, ·) given by (24) is a Caratheodory function.

Proposition 1. Under the assumptions of Lemma 1, the functional

Φ(v, ϕ) =

∫
(0,L)3

g(x, {v, ϕ}, {e(v),∇ϕ}) dx (25)
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is coercive over VU ×H1((0, L)3) ∩K, i.e.

lim Φ(v, ϕ)→∞, when ||v||VU + ||ϕ||H1 →∞. (26)

Proof. Let us introduce the abbreviation ϕ̃ = inf{ϕ+, 1}. Let c be a generic constant. We estimate
all terms one by one:

|
∫

(0,L)3
(ϕ̃)2(fv + F : e(v) dx| ≤ ||v||L2 ||f ||L2 + ||ϕ̃e(v)||L2 ||F||L2 . (27)

The elastic energy terms yield∫
(0,L)3

(
(1− k)(ϕ̃)2 + k

)
Ge(v) : e(v) dx ≥ ck||e(v)||2L2 + c(1− k)||ϕ̃e(v)||2L2 . (28)

We recall that, by Korn’s inequality,

||v||H1((0,L)3) ≤ CK ||e(v)||L2((0,L)3), ∀v ∈ VU . (29)

Therefore, putting together (27) and (28), and using (29), yields

Φ(v, ϕ) ≥ Gc
∫

(0,L)3

((1− ϕ)2

2ε
+ε|∇ϕ|2

)
dx+

ck

4
||e(v)||2L2+

c(1− k)

4
||ϕ̃e(v)||2L2 −

||F||2L2

c(1− k)
−
C2
K ||f ||2L2

ck
. (30)

The coerciveness property (26) follows from (30).

Our goal is to prove the following theorem:

Theorem 1. (Existence of a minimizer to the incremental phase field problem) Let ε, k > 0 and F ,
f ∈ L2, ϕp ∈ H1, 0 ≤ ϕp ≤ 1 a.e. on (0, L)3. Then the minimization problem (17) has at least one
solution {u, ϕ} ∈ VU ×K and ϕ ≥ 0 a.e. on (0, L)3.

Proof. Let {uk, ϕk}k∈N ∈ VU × K be a minimizing sequence for the minimization problem (17) for
Φ; that is a sequence of elements of VU ×K such that Φ(uk, ϕk)→ infVU×K Φ(v, ϕ). By proposition
(1) and the inequality (30) infVU×K Φ(v, ϕ) 6= −∞. The sequence {uk, ϕk}k∈N is uniformly bounded
in VU × K and {ϕk+}k∈N is uniformly bounded in L∞((0, L)3). Therefore there exists {u, ϕ} and a
subsequence, denoted by the same superscript, such that for k →∞

{uk, ϕk} → {u, ϕ} weakly in VU ×H1((0, L)3),

strongly in Lq((0, L)3)4, q < 6,

and a.e. on (0, L)3. (31)

Next, inequality (30) yields

g(x,v, ξ) ≥ 〈a(x), ξ〉+B, for {v, ξ} ∈ R4 × R12 and a.e. x ∈ (0, L)3,

with a ∈ L2((0, L)3) and B ∈ R. Consequently, we are in a situation to apply Corollary 3.24, page 97,
from [20]. This result yields the weak lower semicontinuity of the functional Φ and hence

Φ(u, ϕ) ≤ lim inf Φ(uk, ϕk) = inf
VU×K

Φ(v, ϕ). (32)
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Since

Φ(v, ψ) = Eε(v, ψ) on Vu ×K,

we have proven that {u, ϕ} ∈ VU ×H1((0, L)3) ∩K is a solution for the minimization problem.

It remains to prove that ϕ is nonnegative. We evaluate the functional Φ at the point {u, ϕ+}.
Obviously ϕ+ ∈ K. A direct calculation yields

Φ(u, ϕ+) = Φ(u, ϕ)− Gc
2ε

∫
(0,L)3

ϕ−(ϕ− − 2) dx− εGC
2

∫
(0,L)3

|∇ϕ−|2 dx. (33)

Therefore {u, ϕ} can be a point of minimum only if ϕ− = 0 and we conclude that ϕ ≥ 0 a.e. on
(0, L)3.

Corollary 1 (Euler-Lagrange weak PDE formulation). Let the hypotheses of Theorem 1 be satisfied.
Then the Euler-Lagrange equations corresponding to the minimization problem (17)∫

(0,L)3

(
(1− k)ϕ2 + k

)
Ge(u) : e(w) dx+

∫
(0,L)3

ϕ2(F : e(w) + f ·w) dx = 0, (34)

(35)

for all w ∈ VU , and∫
(0,L)3

(1− k)ϕψGe(u) : e(u) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ)ψ + ε∇ϕ · ∇ψ

)
dx

+2

∫
(0,L)3

ϕb(f · u + F : e(u))ψ dx ≤ 0, (36)

for all ψ ∈ H1((0, L)3), ψ ≥ 0 a.e. on (0, L)3, and∫
(0,L)3

(1− k)ϕ(ϕp − ϕ)Ge(u) : e(u) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ)(ϕp − ϕ)+

ε∇ϕ · ∇(ϕp − ϕ)
)
dx+ 2

∫
(0,L)3

ϕb(f · u + F : e(u))(ϕp − ϕ) dx = 0, (37)

admit a solution {u, ϕ} ∈ VU × H1((0, L)3) ∩ K, such that ϕ ≥ 0 a.e. on (0, L)3. We observe that
equation (37) is the Rice condition (see e.g. [25]).

In the next result, we show that our crack cannot become a ‘fat’ (balloon-like) crack, but remains
tiny in the third direction:

Corollary 2. Let the hypotheses of Theorem 1 be satisfied. Let in addition the previous phase-field
values ϕp satisfy ∫

(0,L)3
(1− ϕp)2 dx = ||1− ϕp||2L2((0,L)3) = Cε

and

‖
√
ε∇ϕp‖L2((0,L)3) ≤ C.
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Then the current phase-field variable ϕ satisfy the same estimates:

∫
(0,L)3

(1− ϕ)2 dx = ||1− ϕ||2L2((0,L)3) = Cε

and ∫
{ϕ≤q}

dx = meas{ϕ ≤ q} ≤ Cε

(1− q)2
∀q ∈ [0, 1).

Proof. We evaluate

Φ(0, ϕp) = Gc

∫
(0,L)3

( 1

2ε
(1− ϕp)2 + ε|∇ϕp|2

)
= Gcε

∫
(0,L)3

|∇ϕp|2︸ ︷︷ ︸
≤c

+
Gc
2ε

∫
((0,L)3)

(1− ϕp)2 dx

≤ C.

Since Φ(u, ϕ) ≤ Φ(0, ϕp) we use (30) and obtain the claimed estimates.

Remark 10. This theoretical property in Corollary 2 has also been confirmed in our numerical simu-
lations in Section 6 in which the crack stays tiny in the second (2d) or third direction (3d), but grows
into the other (2d) or two other (3d) directions.

4.2 A finite dimensional approximation

The finite dimensional approximation serves for two purposes. First, we continue our well-posedness
study. Secondly, by specifying the discrete basis function through finite element functions with small
support, we obtain a numerical procedure for a computer implementation. Let {ψr}r∈N be a basis for
H1((0, L)3) and {wr}r∈N be a basis for VU . We start by defining a finite dimensional approximation
to the minimization problem (17).

Definition 2 (of a penalized approximation). Let us suppose the assumptions of Theorem 1 and
a penalization parameter δ ∈ R and in particular, let δ := M ∈ N in this section. Let ϕ̃ = inf{1, ϕ+}.
The pair {uM , ϕM}, uM =

∑M
r=1 arw

r and ϕM =
∑M

r=1 brψr, is a finite dimensional approximative
solution for problem (17) if it is a minimizer to the problem

inf
VMU ×WM

{Φ(v, ϕ) +

∫
(0,L)3

δ

2
(ϕ− ϕMp )2

+ dx}, (38)

where VM
U = span {wr}r=1,...,M , WM = span {ψr}r=1,...,M and ϕMp is a projection of ϕp on WM .

Formulation 1 (Discrete weak formulation). Each solution for the problem (38) satisfies the discrete
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variational formulation ∫
(0,L)3

(
(1− k)(ϕ̃M )2 + k

)
Ge(uM ) : e(wr) dx+∫

(0,L)3
(ϕ̃M )2(F : e(wr) + fwr) dx = 0, ∀r = 1, . . . ,M, (39)

Gc

∫
(0,L)3

(
− 1

ε
(1− ϕM )ψr + ε∇ϕM · ∇ψr

)
dx+

∫
(0,L)3

δ(ϕM − ϕMp )+ψr dx+

2

∫
(0,L)3

(ϕ̃M )b(F : e(uM ) + f · uM )ψr dx+∫
(0,L)3

(1− k)ϕ̃MψrGe(uM ) : e(uM ) dx = 0, ∀ r = 1, . . . ,M. (40)

Proposition 2. We assume the hypotheses of Theorem 1. Then there exists a penalized finite dimen-
sional approximation for problem (38) that satisfies the a priori estimate

Gc

∫
(0,L)3

(1− ϕM )2

ε
dx+

∫
(0,L)3

M(ϕM − ϕMp )2
+ dx+

k||e(uM )||2L2 + ||ϕ̃Me(uM )||2L2 ≤ c, (41)

where c is independent of M .

Proof. This is a consequence of (30) in Proposition (1) and the continuity of the integrand.

Theorem 2. Assume the hypotheses of Theorem 1. Then there exists a subsequence of {uM , ϕM} ∈
VM
U ×WM , denoted by the same symbol, and {u, ϕ} ∈ VU × H1((0, L)3) ∩ K, ϕ ≥ 0 a.e., being a

minimizer to the problem (17) and such that

{uM , ϕM} → {u, ϕ} in VU ×H1((0, L)3). (42)

Proof. By Proposition 2 there is a solution {uM , ϕM} for problem (38), satisfying the a priori estimate
(41). Therefore there exists {u, ϕ} and a subsequence, denoted by the same superscript, such that

{uM , ϕM} → {u, ϕ} weakly in VU ×H1((0, L)3),

strongly in Lq((0, L)3)4, q < 6,

and a.e. on (0, L)3, as M →∞. (43)

Obviously (ϕM − ϕMp )+ → 0, as M →∞, and ϕ ∈ K.

Next, let

ϕ ∈ KN = {z ∈WN : z(x) ≤ ϕMp (x) a.e. on (0, L)3}, N ≤M.

Then we have

Φ(uM , ϕM ) +

∫
(0,L)3

M

2
(ϕM − ϕMp )2

+ dx ≤ Φ(v, ϕ),

for all {v, ϕ} ∈ V N
U ×WN ∩K. The limit M →∞ yields

Φ(u, ϕ) ≤ Φ(v, ϕ), ∀{v, ϕ} ∈ V N
U ×WN ∩K.
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After passing to the limit N → ∞, we conclude that {u, ϕ} ∈ VU ×H1((0, L)3) ∩K is a solution to
problem (17). As before, it still can be shown that ϕ is nonnegative.

It remains to establish strong convergence of the gradients. Passing to the limit in equation (39) is
straightforward and we conclude that {u, ϕ} satisfies equation (34). Next we choose w = uM as test
function in (39) and pass to the limit M →∞. Thus,∫

(0,L)3

(
(1− k)(ϕ+)2 + k

)
Ge(u) : e(u) dx+

∫
(0,L)3

(ϕ+)2(F : e(u) + f · u) dx = 0. (44)

Therefore we have the convergence of the weighted elastic energies

lim
M→∞

∫
(0,L)3

(
(1− k)(ϕ̃M )2 + k

)
Ge(uM ) : e(uM ) dx =∫

(0,L)3

(
(1− k)(ϕ+)2 + k

)
Ge(u) : e(u) dx. (45)

Using Fatou’s lemma we have∫
(0,L)3

lim inf
M→∞

(
(1− k)(ϕ̃M )2 + k

)
Ge(uM ) : e(uM ) dx

≤ lim inf
M→∞

∫
(0,L)3

(
(1− k)(ϕ̃M )2 + k

)
Ge(uM ) : e(uM ) dx

=

∫
(0,L)3

(
(1− k)(ϕ+)2 + k

)
Ge(u) : e(u) dx. (46)

Consequently

uM → u strongly in VU , as M →∞. (47)

For every ψ ∈ L∞((0, L)3) ∩H1((0, L)3), (47) implies

lim
M→∞

|
∫

(0,L)3
ϕ̃MψGe(uM − u) : e(uM − u) dx| → 0, as M →∞,

and ∫
(0,L)3

ϕ̃MψGe(uM ) : e(uM ) dx =

∫
(0,L)3

ϕ̃MψGe(uM − u) : e(uM − u) dx+

2

∫
(0,L)3

ϕ̃MψGe(uM ) : e(u) dx−
∫

(0,L)3
ϕ̃MψGe(u) : e(u) dx→∫

(0,L)3
ϕ+ψGe(u) : e(u) dx, as M →∞. (48)

Next we use Minty’s lemma and write equation (40) in the equivalent form∫
(0,L)3

(1− k) inf{ϕM+ , 1}(ψ − ϕM )Ge(uM ) : e(uM ) dx+Gc

∫
(0,L)3

((ψ − 1)

ε
(ψ − ϕM )

+ε∇ψ · ∇(ψ − ϕM )
)
dx+ 2

∫
(0,L)3

(inf{ϕM+ , 1}) (f · uM + F : e(uM ))(ψ − ϕM )dx

+

∫
(0,L)3

M(ψ − ϕMp )+(ψ − ϕM ) dx ≥ 0, ∀ ψ ∈WM . (49)
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After taking ψ = ϕMp , we use the convergence (48) pass to the limit M → ∞ (see e. g. [37]), and
obtain

lim
M→∞

Gc

∫
(0,L)3

ε|∇ϕM |2 dx = −
∫

(0,L)3
(1− k)ϕ(ϕ− ϕp)Ge(u) : e(u) dx+∫

(0,L)3

(Gc
ε

(1− ϕp)(ϕ− ϕp)−
Gc
ε

(ϕ− ϕp)2 + ε∇ϕ · ∇ϕp
)
dx−

2

∫
(0,L)3

ϕ1 (f · u + F : e(u))(ϕ− ϕp) dx = Gc

∫
(0,L)3

ε|∇ϕ|2 dx. (50)

This finishes the proof.

5 Numerical approximation

We now formulate finite element approximations to (36) - (34), which are analogous to equations (39)–
(40). For spatial discretization, we apply a standard Galerkin finite element method on quadrilaterals
(2d) and hexahedra (3d), respectively. Specifically, we approximate displacements by continuous
bilinears (2d) or trilinears (3d) and refer to the finite element space as Vh. Also, we take ϕ to be
bilinears (2d) and trilinears (3d), and denote this space as Wh; see e.g. [19]. Here h represents the
standard approximation parameter. We deal with:

Formulation 2 (Weak form). Find {uh, ϕh} ∈ Vh ×Wh such that∫
(0,L)3

(
(1− k)(ϕ̃h)2 + k

)
Ge(uh) : e(w) dx+∫

(0,L)3
(ϕ̃h)2(F : e(w) + f ·w) dx = 0 ∀w ∈ Vh, (51)

Gc

∫
(0,L)3

(
− 1

ε
(1− ϕh)ψ + ε∇ϕh · ∇ψ

)
dx+

∫
(0,L)3

δ(∂∆tϕ
h)+ψ dx+

2

∫
(0,L)3

(ϕ̃h)(F : e(uh) + f · uh)ψ dx+∫
(0,L)3

(1− k)ϕ̃hψGe(uh) : e(uh) dx = 0 ∀ ψ ∈Wh. (52)

The incremental formulation (51)-(52) corresponds to the (pseudo-) time stepping scheme based
on a difference quotient approximation with backward differences for the time derivatives. In the
quasi-static model the time derivative δ[∂tϕ]+ is present and is discretized as follows

δ[∂tϕ]+ → δ[∂∆tϕ]+ = δ
[ϕ− ϕn−1]+

∆t
,

with the time step size ∆t, where n − 1 is used to indicate the preceding time step. We then obtain
for the weak form:

δ(ϕ+ − ϕn−1
+ , ψ)L2 + ∆t(B,ψ)L2 = 0, ∀ψ ∈Wh. (53)

Here, (·, ·) denotes the discrete scalar product in L2 and A and B denote the operators of all remaining
terms for the present time step in the weak formulation, where the equation (53) is related to equations
(51) and (52). Finally, the spatially discretized semi-linear form can be written in the following way:
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Finite Element Formulation 1. Find Uh := {uh, ϕh} ∈ Vh ×Wh such that:

A(Uh)(Ψ) = δ([ϕh − ϕh,n−1]+, ψ)L2 + ∆tAS(Uh)(Ψ) = 0,

with

AS(Uh)(Ψ) =
(

((1− k)(inf{ϕh+, 1})2 + k)Ge(uh), e(w)
)
L2
− 〈τ,w〉∂NΩ

− ((inf{ϕh+, 1})2(α− 1)pB,∇ ·w)L2 + (∇pB(inf{ϕh+, 1})2,w)L2+(
(1− k)Ge(uh) : e(uh)(inf{ϕh+, 1}), ψ

)
L2
− Gc

ε
(1− ϕh, ψ)L2 +Gcε(∇ϕh,∇ψ)L2

− 2
(

(inf{ϕh+, 1})
(
(α− 1)pB∇ · uh −∇pB · uh

)
, ψ
)
L2

for all Ψ = {w, ψ} ∈ Vh×Wh, where AS(·)(·) is the sum of equations (51) and (52) and equality (11)
is applied in the relation between τ and T .

5.1 Linearization and Newton’s method

The nonlinear problem is solved with Newton’s method. For the iteration steps m = 0, 1, 2, . . ., it
holds:

A′(Uh,m)(∆Uh,Ψ) = −A(Uh,m)(Ψ), Uh,m+1 = Uh,m + λ∆Uh, (54)

with ∆Uh = {∆uh,∆ϕh}, and a line search parameter λ ∈ (0, 1]. Here, we need the (approximated)
Jacobian of Finite Element Formulation 1 (defined without using the subscript h):

A′(U)(∆U,Ψ) = δ(∆[ϕ− ϕn−1]+, ψ)L2 + ∆tA′S(U)(∆U,Ψ),

with

A′S(U)(∆U,Ψ) =
(

2(1− k) inf{ϕ+, 1}H(1− ϕ)∆ϕGe(u) + ((1− k)(inf{ϕ+, 1})2

+k)Ge(∆u), e(w)
)
L2
− (2(inf{ϕ+, 1})H(1− ϕ)∆ϕ(α− 1)pB,∇ ·w)L2

+(2(inf{ϕ+, 1})H(1− ϕ)∆ϕ∇pB,w)L2 +
(

2(1− k)Ge(u) : e(∆u) inf{ϕ+, 1}

+(1− k)Ge(u) : e(u)H(1− ϕ)∆ϕ,ψ
)
L2

+
Gc
ε

(∆ϕ,ψ)L2 +Gcε(∇∆ϕ,∇ψ)L2−

(α− 1)2(pB(H(1− ϕ)∆ϕ∇ · u + (inf{ϕ+, 1})∇ ·∆u), ψ)L2

+2
(
∇pB · (H(1− ϕ)∆ϕu + (inf{ϕ+, 1})∆u), ψ

)
L2
,

for all Ψ = {w, ψ} ∈ Vh ×Wh. Here, H(·) is Heaviside’s function.

Remark 11. The realization of (54) is based on a modified Newton method with dynamic Jacobian
modification developed in [72], where the terms related to the nonconvex parts (i.e., in the displacement
equation) are scaled accordingly. Other monolithic solvers worthy to mention are [29] and [71] in which
line-search assisted or error-oriented Newton methods were developed, respectively. Alternatively, a
robust and efficient technique is to replace ϕh in the elasticity equation by a time-lagged extrapolated
ϕh, which has been demonstrated computationally to provide a robust and stable numerical scheme [33]
(2d) and [42] (3d).
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6 Numerical tests

We perform four numerical tests. The first test assumes a constant pressure pB = 10−3 that acts
in the pressure (Sneddon’s 2d benchmark [66]). The second example considers again Sneddon’s 2d
benchmark, but with Neumann conditions on the bottom and top boundaries. In the third example, we
study two interacting propagating fractures subject to a nonconstant pressure. In the fourth test, we
address Sneddon’s 3d benchmark in which a penny-shaped fracture is subject to a constant pressure,
again pB = 10−3. The programming code is based on the finite element software deal.II (see [4, 5])
and the underlying monolithic numerical treatment is described in detail in [71, 72].

6.1 Constant pressure in a crack (Sneddons’s 2d benchmark)

The first example is motivated by [10, 68] and is based on Sneddon’s theoretical calculations [66, 65].
Specifically, we consider a 2d problem where a (constant) pressure pB is used to drive the deformation
and crack propagation. We assume a dimensionless form of the equations.

Figure 2: Example 1: Configuration (left) and crack pattern (right).

The configuration is displayed in Figure 2. We prescribe the initial crack implicitly (see e.g. Borden
et al. [6] and specifically for this setting [68]). Therefore, we deal with the following geometric data:
Ω = (0, 4)2 and a (prescribed) initial crack with length 2l0 = 0.4 on ΩC = (1.8, 2.2)×(2−h, 2−h) ⊂ Ω
where h is the local mesh size. Thus, we deal with a 2d crack with a length much larger than its
width. As boundary conditions we set the displacements zero on ∂Ω. The test is stationary, but we
perform two (pseudo) time steps in order to account for the crack irreversibility condition.

Applying the theory of Γ-convergence based on a related finite element analysis in [9], we choose
h � k � ε, i.e., k = 0.25

√
h and ε = 0.5

√
h. Furthermore, it is well-known that δ must depend on

h, i.e., here, we choose δ = 100× h−2. The Biot coefficient and critical energy release rate are chosen
as α = 0 and Gc = 1.0, respectively. The mechanical parameters are Young’s modulus and Poisson’s
ratio are set to be E = 1.0 and νs = 0.2. The applied fracture pressure is pB = 10−3.

Table 2: Example 1: Fracture volume. The exact formula is given in (56).

h 8.8× 10−2 4.4× 10−2 2.2× 10−2 1.1× 10−2 exact

V 3.02× 10−4 2.77× 10−4 2.57× 10−4 2.49× 10−4 2.41× 10−4

The goal is to measure the crack opening displacement (COD) and the volume of the crack under
spatial mesh refinement. To this end, we observe u along ΩC . Specifically, the width is determined as
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Figure 3: Example 1: COD for different h. Sneddon’s turquoise line with squares corresponds to his
analytical solution. It is well observed that the crack tips must be resolved correctly as they
are not well approximated on coarse meshes.

the jump of the normal displacements COD := w := w(x, y) = [u · n]. This expression can be written
in integral form as follows:

COD := w := w(x, y) =

∫ ∞
−∞

u · ∇ϕdy. (55)

We note that the integration is perpendicular to the crack direction. Here, the crack is aligned with
the x-axis and therefore integration into the normal direction coincides with the y-direction.

The COD formula (55) is obvious since the phase-field variable ϕ can be related to a level-set
function. This level-set can be used to compute the (unit) normal vector, e.g., [60, 43]. Here, the
normal vector is in the y-direction and therefore, the above formula is obtained corresponding to [u ·n]
for ε = 0.

Second, following [21], p. 710, the volume of the fracture is V = πwl0. The analytical expression

for the width (to which we compare) [21] is w = 4 (1−ν2s )l0p
E . Then, the analytical expression for the

volume becomes

V = 2π
(1− ν2

s )l20p

E
. (56)

In contrast to [10], we use the numerical approximation of the phase-field function instead of a synthetic
choice of the crack indicator function.

The crack pattern and the corresponding mesh are displayed in Figure 2. Our findings for different
spatial mesh parameters h are summarized in Figure 3. Specifically, we observe overall convergence to
Sneddon’s analytical solution [66] as well as much better approximation of the crack tips under local
mesh refinement. The obtained crack volumes are displayed in Table 2 in which the exact value is
computed by Formula (56).

6.2 Sneddon’s 2d-benchmark with mixed boundary conditions

In this second test, the domain and parameters are the same as in the previous example. The only
(major) change concerns the boundary conditions. The top Γtop and bottom Γbottom boundaries form
now a Neumann boundary ∂N (0, L)2 = Γtop ∪ Γbottom. Here, we prescribe Neumann conditions τ of
homogeneous and nonhomogeneous type. Then, we compare these results to the previous setting. In
total we design the following tests:

• Case 1: ∂N (0, L)2 = ∅ and u = 0 on ∂D(0, L)2;

Accepted in GEM - International Journal on Geomathematics, October, 2018 21



Figure 4: Example 2: phase-field function for Case 1 and Case 2 at left and the Cases 3 and 4 at right.

• Case 2: τ = (0, 0)T on ∂N (0, L)2 and u = 0 on ∂D(0, L)2;

• Case 3: τ = (0, 0.001)T on Γtop, τ = (0,−0.001)T on Γbottom
and u = 0 on ∂D(0, L)2;

• Case 4: τ = (0, 0.1)T on Γtop, τ = (0,−0.1)T on Γbottom
and u = 0 on ∂D(0, L)2.

These computations are performed on a 7 times uniformly refined mesh with h = 0.044. The phase-
field function is displayed in Figure 4.

Figure 5: Example 2: the y-displacements for all four cases.
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The maximal crack width openings wmax at x = 2 computed with the help of (55) in the middle of
the fracture are:

• Case 1: wmax(x = 2; 0 ≤ y ≤ 4) = 5.25244× 10−4;

• Case 2: wmax(x = 2; 0 ≤ y ≤ 4) = 5.52572× 10−4;

• Case 3: wmax(x = 2; 0 ≤ y ≤ 4) = 1.31092× 10−3;

• Case 4: wmax(x = 2; 0 ≤ y ≤ 4) = 7.67588× 10−2.

These findings are plausible: in Case 2 zero traction forces are applied on the top and the bottom
boundaries and the fracture pressure keeps the fracture open. In addition, the maximal crack opening
displacement is very similar (as expected) to Case 1. We further remark that the pressure boundary
term

∫
∂N (0,L)2 pBwn dS in (10) is important when working with Neumann conditions. For instance,

when
∫
∂N (0,L)2 pBwn dS is not used in Case 2, we obtain a negative width, which is of course nonphysical

for this setting. The influence is significant for all cases when ‖τ‖ < ‖pn‖ (Case 2) and ‖τ‖ ≈ ‖pn‖
(Case 3). In the Cases 3 and 4, the domain is pulled, since now the traction forces are strictly
positive/negative, respectively. Consequently the fracture opens more than in the first two cases.
Specifically, when the traction force is increased by a magnitude of order 2, the fracture width is also
higher about a magnitude of order 2. The y-displacement fields (here directly to the crack opening
displacements since the fracture is aligned with the x-axis) are displayed in Figure 5.

6.3 Two-crack interaction subject to non-constant pressure

In this third example, we extend the previous setting to study the interaction of two different fractures
that are subject to a linearly increasing pressure pB. In the first part, a homogeneous material is
considered and in the second part a heterogenous material field. The pressure function is given by
pB(t) = 0.1 + t · 0.1, where t denotes the total time, and Young’s modulus is set to be E = 1 in the
first part and it varies between 1.1 and 11.0 in the second part. Poisson ratio is 0.2. The penalization
parameter is chosen as δ = 10h−2. The remaining parameters are chosen as in the previous example.
Our results in the Figures 6 and 7 show two propagating, interacting fractures. Specifically, they curve
away due to stress-shadowing effects (see e.g., [17]). The extension to nonconstant pressure evolution
using Darcy’s law and application of the fixed-stress splitting is studied in [74] and [55].

Figure 6: Example 3: crack evolution in red in a homogeneous material at times T = 0, 15, 30.
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Figure 7: Example 3: crack evolution in red in a heterogeneous material at times T = 30, 40, 50. The
light blue regions denote smooth material E ≈ 1 and dark blue stands for E ≈ 11.0.

6.4 Sneddons’s 3d benchmark with a constant pressure in a penny-shaped crack

The last example is again based on Sneddon’s theoretical calculations [66][Section 3.3, p.138-139].
Specifically, we consider a 3d problem where a (constant) pressure pB = 10−3 is used to open a
penny-shaped fracture.

The configuration is displayed in Figure 8 and Ω = (0, 10)3. We prescribe the initial crack implicitly
by setting the intial value of the phase-field variable to zero in the y = 5-plane with origin (5, 5, 5).
The radius of the fracture is ρ = 1. As boundary conditions we set the displacements zero on ∂Ω. We
perform five (pseudo) time steps.

We choose k = 10−12 and ε = 2h and hmin = 1.08, 0.54, 0.27, 0.135. The Biot coefficient and critical
energy release rate are chosen as α = 0 and Gc = 1.0, respectively. The mechanical parameters are
Young’s modulus and Poisson’s ratio are set to be E = 1.0 and νs = 0.2. The applied fracture pressure
is pB = 10−3.

The locally refined mesh on the finest level and the penny-shaped fracture are shown in Figure 8.
Specifically, we observe that the fracture remains thin in the third direction as shown theoretically
in Corollary 2. The crack opening displacement (here the displacements in y direction) and the
corresponding plots for the four different h values are shown in Figure 9. We notice that ε depends on
h. For this reason, we cannot expect ‘convergence’ in the classical sense. Such results however have
been shown in our other papers in which ε was fixed and only h was varied [42, 68].

Figure 8: Example 4: A penny-shaped fracture and locally refined mesh (left) and zoom-in at right.
Specifically, the fracture remains thin in the third direction as shown theoretically in Corol-
lary 2.
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Figure 9: Example 4: Crack opening displacements. Graphical illustration of the y displacements
(left) and evaluation of the crack opening displacements for the four different h values. The
reference curve of Sneddon has been computed with the formula given in [66] on page 139.

7 Conclusion

In this paper, we discussed the mechanics step of hydraulic phase-field fractures with a given pressure
field for propagating cracks in a poroelastic medium. The phase-field algorithm is based on an incre-
mental formulation and existence of a minimizer is established. We rigorously show that if the initial
crack size was of order ε (with a reasonable control of the gradient of its initial phase-field description),
then the phase-field function at the next (future) time step has the same property. Consequently, in
our model, the initially slender fractures remain indeed thin in the second (in 2d) or third (3d) space di-
mensions during the incremental evolution. Numerical benchmarks are demonstrating the correctness
of the theory. Specifically, a numerical test with mixed boundary conditions (Dirichlet and Neumann)
was designed in which our modeling of the pressure interface conditions was further confirmed. The
modeling of this paper forms the basis for extensions to crack growth in heterogeneous porous media,
fluid-filled, and proppant-filled crack evolutions.
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[25] Francfort, G.: Un résumé de la théorie variationnelle de la rupture (2011). Séminaire Laurent
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[54] Mikelić, A., Wheeler, M.F.: Convergence of iterative coupling for coupled flow and geomechanics.
Comput Geosci 17(3), 455–462 (2012)
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