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AN OPTIMAL CONTROL PROBLEM GOVERNED BY A
REGULARIZED PHASE-FIELD FRACTURE PROPAGATION
MODEL

I. NEITZEL*, T. WICK!, AND W. WOLLNER/

Abstract. This paper is concerned with an optimal control problem governed by a regularized
fracture model using a phase-field technique. To avoid the non-differentiability due to the irreversibil-
ity constraint on the fracture growth, the phase-field fracture model is relaxed using a penalization
approach. Existence of a solution to the penalized fracture model is shown and existence of at least
one solution for the regularized optimal control problem is established. Moreover, the linearized frac-
ture model is considered and used to establish first order necessary conditions as well as to discuss
QP-approximations to the nonlinear optimization problem. A numerical example suggests that these
can be used to obtain a fast convergent algorithm.
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1. Introduction. This paper presents an optimal control formulation for regu-
larized fracture propagation problems using phase-field methods. To the best of the
authors knowledge, optimization problems involving fracture propagation have been
considered either purely numerically, see [27]. Alternatively, mathematical analysis
has been considered in settings involving a fracture of fixed length, see [31], or a frac-
ture with variable length but prescribed fracture path, see [36]. Due to the considered
phase-field approach our model allows for arbitrary fracture-paths including changes
in the fracture topology.

Presently, phase-field approaches for the simulation of fracture propagation are
subject of intensive research in both mathematical theory and applications. Based on
variational principles, they provide an elegant way to approximate lower-dimensional
surfaces and discontinuities. Rewriting Griffith’s model [23] for brittle fracture in
terms of a variational formulation was first done in [18]. Later, these concepts have
been complemented with numerical examples [13] and well-posedness results including
fractures with linear [19] and nonlinear elasticity [37]. A summary has been compiled
in [14]. In [41, 42], the authors refined modeling and material law assumptions to
formulate an incremental thermodynamically consistent phase-field model for fracture
propagation.

With regard to numerical analysis and computational methods important ad-
vances have been made first in [13|, which was later supplemented with an analysis
of the solution algorithm [12]; for a complete proof of that algorithm, we also refer
to [15]. For a general Ambrosio-Tortorelli functional [3, 4], numerical analysis was
done in a second paper by the same authors [16]. Recent results and new features of
this solution algorithm have been presented in [38]. Parameter studies and a slight
re-interpretation of the original model were performed in [34]. A solution approach
using shape optimization has been presented in [1] and phase-field models for struc-
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tural optimization are discussed in [9]. Sophisticated examples and benchmarks from
mechanical engineering, using the refined phase-field modeling, have been studied in
multiple papers, see, e.g., [2, 10, 11, 25, 41, 42, 48]. Recent modeling and numerical
studies adding non-homogeneous traction forces acting on the fracture surface were
conducted in [45, 46, 50].

For numerical simulations using variational models of fracture, a general chal-
lenge is associated with the resolution of the (very small) phase-field parameter € in
relation to the spatial discretization parameter such that h < €. Since uniform mesh
refinement yields huge computational cost, local mesh adaptivity (possibly based on
a posteriori error estimation proposed first in [15], and extended to anisotropic mesh
adaptivity in [5]) is indispensable for fine resolution of the fracture. The extension
to goal-oriented error estimation using dual-weighted residuals has been addressed in
[51]. Another method that purely focuses on fine meshes in the crack region has been
developed in [25] for 2D simulations and extended in [35] to 3D. All these studies
show that local mesh refinement is a key ingredient for phase-field fracture, which is
important for practical problems.

However, in the present paper, we focus on the coupling of a regularized fracture
model with an additional outer optimization and analyze the well-posedness of this
outer optimization problem. A task that has, to the best of the authors knowledge, not
been considered previously. In more detail, the main difficulty in deriving necessary
optimality conditions lies in the irreversibility of the fracture, giving a variational
inequality as lower-level problem. To deal with the inherent non-differentiability, we
will introduce an additional penalty approach for the fracture problem. This gives
rise to a quasi-linear system as a side condition, a setting not often discussed in the
literature. In particular, well-posedness of this relaxed irreversible fracture problem
is not obvious since the phase-field is not immediately in L°°, in contrast to many
other contributions dealing with the irreversibility, e.g., [12, 13, 34, 41].

The outline of this paper is as follows: In Section 2, we formulate the nonlinear
forward problem for fracture propagation utilizing a phase-field ansatz, and introduce
a regularization of the irreversibility condition for the growth by a penalty approach
with parameter . The final model under consideration is then given in Section 2.5.
Then we briefly state the outer optimization problem, in Section 3. Solvability of
both the relaxed fracture propagation problem as well as the optimization problem is
discussed in Section 4. In Section 5, we discuss the properties of the linearized relaxed
phase-field model, and show that the linearization gives rise to a Fredholm operator.
This observation is then used to derive first order necessary conditions for the re-
laxed nonlinear optimization problem, in Section 6, under a constraint qualification.
In addition, in Section 7, we show that quadratic approximations to the nonlinear
optimization problem are always well-posed and admit a unique solution that can be
characterized by its first order necessary optimality conditions. Then, in Section 8§,
we present a numerical example indicating that indeed quadratic approximations give
rise to a convergent algorithm.

2. The Nonlinear Phase-Field Fracture Problem and its Relaxation.
Following the model proposed in [13, 18, 41, 42|, we consider a time discrete, but
spatially continuous phase-field approach to model the growth of the fracture over
time. For simplicity, in this paper, the fracture growth is controlled by traction forces
acting on the boundary of the domain. This is motivated by prior work [46] where the
forward propagation of the fracture was driven by such forces acting on the fracture
boundary. The irreversibility of the fracture growth induces an obstacle like problem
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in each time-point.

2.1. Notation. We consider a bounded domain 2 C R2. Its boundary 05 is
decomposed into I'p and I' vy satisfying

HEYTp) #0 and HI Y (TN) #0

where H%™! is the d — 1-dimensional Hausdorff-measure. We introduce the space of
admissible displacements H5(;R?) := {v € H'(Q;R?)|v =0o0n I'p}. We assume
that Q UT y is regular in the sense of Groger, cf. [24], compare [26, Remark 1.6] for
a characterization in the case Q C R? considered here. By (-,-), we denote the usual
L? scalar product and by || - || the corresponding norms.

Throughout the paper, ¢ denotes a generic constant, which is independent of the
relevant quantities, but may take a different value in each appearance, even in the
same line. If we would like to emphasize the dependence of such a constant on a
particular value, we do so by introducing an appropriate index, i.e., ¢. denotes a
constant whose value depends on some parameter ¢ if the precise dependence is not
relevant for the argument.

2.2. Brittle Fracture. Following Griffith’s criterion for brittle fracture, we sup-
pose that the fracture propagation occurs when the elastic energy restitution rate
reaches its critical value G.. If ¢ is a force applied on I'y, assuming that the fracture
C is not reaching 912, we define the following total energy

B(g;4,€) = 3 (Ce(w), e()onc — (@ Wy + GHIC), (21)

where u denotes the vector-valued displacement field, C the elasticity tensor, and
e(u) = 2(Vu+ VuT) the symmetric gradient. Furthermore, we restrict ourselves to
the consideration of homogeneous Dirichlet data for the displacement u, for simplicity.

In the functional (2.1), the first term describes the bulk energy, the second term
traction boundary (Neumann) forces, and the final term the surface fracture energy.
The energy functional is then to be minimized with respect to the kinematically ad-
missible displacements v and any fracture set satisfying the fracture growth condition.
Furthermore, the crack path is subject to an irreversibility constraint in time; namely
that the crack will not heal. The corresponding mathematical formulation of this
constraint will follow in the next Section 2.3.

2.3. Time-Discrete Ambrosio-Tortorelli Regularization of the Fracture.
As it is common, we would like to avoid dealing with the set of admissible fractures
C. To regularize the Hausdorfl-measure, we follow [3, 4] and introduce an auxiliary
time-dependent variable (i.e., a phase-field for the fracture) o, defined on Q x (0, 7).
Specifically, the fracture region is characterized by ¢ = 0 and the non-fractured zone
by ¢ = 1. For 0 < ¢ < 1, we deal with a transition zone, which has width € on each
side of the fracture path.

For given 1 > € > 0, the regularized fracture functional reads

To(g) = |1 — gf? + Vel (2.2)
2e 2

This regularization of H?~1(C), in the sense of the I-limit when ¢ — 0, was used
in [13, 14].

Further, to define the displacement on €2 rather than on Q\ {¢ = 0} and to avoid
degeneracy of the elastic energy, we need to introduce an additional regularization
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parameter k£ > 0 with x < e— essentially replacing the fracture by a softer material.
With this parameter, we define the coefficient function

9(#) = gu(p) = (1 = £)* + k.
Hence, we replace the energy functional (2.1) by the regularized total energy [13, 14]

Eu(gzu ) = 5 (9(4)Cew), e(w)) (@, w)ry + Gele(p). (23)

Within this setting, it is then required to find (u(t),¢(t)) minimizing the en-
ergy (2.3) subject to the irreversibility constraint

@(t2) < p(t1) Vi < to.

Finally, it is common to discretize the evolution in time. To this end, we introduce
an equidistant partition

O=to<ti <...<ty =T,

with corresponding approximations (uf, »*), each minimizing the energy (2.3) sub-
ject to the constraint

¢ <l (2.4)

where ¢ is some given initial phase field.

We remark that only the constraint ¢! < ¢'~! is relevant for the minimization
of (2.3) since the other bound 0 < ¢’ is automatically satisfied, as we will see in
Section 4.1.

1

2.4. Fracture Irreversibility and its Regularization. Due to the irreversibil-

ity constraint

ol < i1
on the fracture growth, optimization problems subject to such an evolution become
mathematical programs with complementarity constraints (MPCC), see, e.g., [8, 43,
44].

Due to the complementarity condition, standard constraint qualifications for non-
linear programs, like [47] or [53] can not be satisfied. Hence a zoo of different station-
arity concepts has been introduced. For strong-stationarity, see, e.g., [44]. Unfortu-
nately, in general, such a system is only necessary if a sufficiently large set of controls
is admissible in the optimization problem, see, e.g., [49]. In all other cases, weaker
concepts need to be considered to obtain stationarity systems that can sometimes be
obtained as limits of relaxed formulations, see for instance [28, 29, 30]. For the error
due to a finite element discretization of the obstacle problem, we refer to [40]. In
contrast to the control of an obstacle problem additional difficulties arise due to the
coupling of the phase-field variable with the elasticity problem.

Following a classical approach, see, e.g., [8], we regularize (2.4) to remove the
inequality constraints involved in the fracture-propagation problem. Instead of the
usual L? penalization approach, to ensure differentiability up to second order, we
follow [39] and define the penalty for the irreversibility as

i1, iy Ly g
R ¢ = 11" = ¢ s,
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2.5. The Final Regularized Problem. In order to formulate the final forward
problem, we introduce the spaces

V= HLH(Q;R?) x HY(Q), Q:= L*(Ty).

Our final regularized time-discrete fracture problem for given initial data (u°, ©°) €
and given controls ¢ = (¢")M, € QM consists of finding u = (u)MX, = (u,p)

(v, )M, € VM solving the minimization problem

<

min E2 (¢, " 0t ¢") i= B (¢ 0, ") + yR(9T 1 9Y) (C)
u

fori=1,..., M and some given vy > 0.

3. The Optimization Problem. In this section, we formulate an optimal con-
trol problem in which the constraint is given by the regularized phase-field fracture
problem from Section 2.5. We consider the following model problem in fracture prop-
agation: for given (u®, p%) € V with 0 < ¢° < 1, we wish to find (¢, u) = (¢, (u,¢)) €
(Q x V)M solving

1 M a M
min J(gu) = 5 flu —wgl® + 5 Y a7y
’ i=1 i=1

s.t. u solves (C") given the data ¢, for each i =1,..., M,

(P7)

where uy € (L2(Q2))™ is a given desired displacement. To obtain an infinite dimen-
sional nonlinear program, we will furthermore replace (C?) by its first-order necessary
optimality conditions. Formally, any minimizer u = (u,¢) € VM of (C7) satisfies the
Euler-Lagrange equations

(9(e")Celu),e(0) = (@ v)ry =0,

Gee(Ve', Vi) — %(1 - Y) (ELY)
+(1 = K)(¢"Ce(u’) : e(u’), )
(@ =) Py =0

for any (v,¢) € V and i = 1,..., M. However, since we relaxed the upper bound
' < ¢! it is no longer clear, if all terms above are well-defined since it is not
clear a priori whether ¢* € L>(2). We will, positively, answer this question in the
following Section 4, utilizing results from [33] for damage models together with a
Stampacchia-type cutoff argument.
With this we can further relax our problem, and obtain the regularized nonlinear
problem, given (u®, %) € V, 0 < ¢° < 1, to find (¢, u) € (Q x V)M solving
min J(g,u)
q,u

o (NLP")
s.t. (¢*,u") satisfy (EL?) for each i =1,..., M.

While it is not clear that (P7) and (NLP?) have the same solutions, the regularity
results obtained for (NLP?) will still be applicable to (P7).

4. Existence of Solutions to (NLP?7). We proceed in two steps, starting by an-
alyzing the lower level problem, before discussing the existence of solutions to (NLP?).
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4.1. The Phase-Field Model (EL”). Due to the fact, that we relaxed the
constraint ' < ¢'~! by a penalty approach, we can no longer assume ¢’ € L as it
is usually done in proving existence of minimizers to (2.3). The reason is that naively
assuming minimal regularity asserted by the functional in (C7) the products of the
variables, i.e., 9*Ce(u) : e(u), are not in L'. Hence following ideas of Stampacchia [32],

we will, temporarily, relax (C7) even further. Let b > 0 be an arbitrary given number
and define

—b<z<bh
m=mp: R—=>R; m(x):= v _x'_
P_y_sp49)(z) otherwise,
where P_;_3 39 is some smoothed projection onto [-b—2,b+2] of which the precise
definition is irrelevant as long as m € C? with 0 < m’ <1 and m(R) C [-b—2,b+2].
With this, we define the regularized coefficient function

g(p) = (1— n)m((goi)Q) +k €[k, b+ 2]

We modify the cost functional in (C7) to include the cutoff function. Consequently,
we consider the following family of problems

min EX0(q', ' ul, ") = 5(%(@0)@6@ ), e(u ))

—(¢" u")ry + GeLe(9") + YR(©" 59",

at each time-point ¢ = 1,..., M. The idea of Stampacchia’s method, in essence, is
to prove that (C%b) has all desired properties and, moreover, that for suitable b € R
the solutions of (C7*) and (C7) coincide and thus our original problem inherits,
among other properties, the boundedness of ' in L. Let us therefore start by
discussing (C7'?), first.
LEMMA 4.1. For anyt=1,..., M it holds.
1. Given ¢ € L*(T'x) and ¢'=' € L3(Q), (C?) has at least one solution Q.
2. Further, any (local) minimizer a' of (C7*) solves for all (v,7) € V

(gb(sﬁi)@e(ui),e(v)) —(¢',v)ry =0

()

Cee (V' Vi) + (1= m)(m ()" Celu) - ), ) (EL)
e gt ) 42l — )P 8) =0

3. Finally, any solution u* = (u',¢") € V to (ELY®) satisfies
(a) Assuming ¢*=! >0 a.e. it follows ' >0 a.e..
(b) There exists p > 2 and a constant cp . depending on b and k (but not
on u®), such that
e < evullg’ll
(¢c) Assuming =1 >0 a.e., then
Q2 2
el _ 12
262 T 22

(d) Under the conditions above, we have

IVe'lI* +

0<¢ <1
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Proof.

1.

3.

For any given ¢ € H'(Q) it is & < gp(p) < b+ 2 and hence, by uniform
convexity, there exists a unique minimizer u = u(y) of the elastic energy

1 .
= 5(@(PICew), e(w) = (¢ wry.
It is thus sufficient to consider the reduced energy, compare, e.g., [33]
min £2(p) = B2(¢', " s u(p). ¢).

Utilizing the results of [26, Theorem 1.1], we obtain, for any ¢ € H(£2), the
existence of p > 2 such that u(p) € WHP(Q; R?) N H}(Q; R?) and it holds

lu(@)llp < conlld'll-

Noticing that g, satisfies the assumption [33, (2.10)] and the nonnegative
penalty term R('~!, ) does not influence the statement, we can apply [33,
Lemma 2.1] to see that the reduced energy satisfies

—o<c<E(p) 2o (e

1,2 = 00).

Hence there exists ' € H*(Q)) and an H'-weakly convergent sequence ¢y —
@' with

EX(pr) — Inf Y (p) > —o0.
)

By the compact embedding H(Q) C L*(Q2), we can w.l.o.g. assume that
or — ¢ strongly in L*(2), and hence convergence of yYR(p'™1;pr) —
YR(¢* 715 ") follows. By [33, Corollary 2.1] it follows that

= E2(9) — YR on)
is weakly lower semi-continuous and hence

inf £2(p) < E2(¢") < lim EX(py) = inf EX ().
7] k—o00 [}

This completes the proof by setting u* = (u(¢?), ¢*).

. We notice that for any (v,1) € V the mapping

S:R—=TR;, s EX(¢', ¢ u’ +s(v,1))

is well defined, differentiable and has a local minimizer at s = 0. This shows
the assertion by consideration of the necessary optimality condition for a
minimizer of S, i.e., S’(0) = 0.
(a) To show non-negativity of ¢’ for the solutions of (EL™’), we need to
test the second equation in (EL7"*) with ¢ = min(0, ). We define the
set

Q= {reQ|y(x) <0}
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and obtain from (ELY"?)

i Gey i c i
0= GeellVe' G- + —lle'lle- — —(1,¢)a-

€
+ (1= r)(m ((¢"))(¢")*Ce(u'), e(u’))a-
(" =) 0o
The first two terms are obviously non negative, and positive, if |Q~| > 0.
The third term satisfies — (1, p%)g- > 0 by definition of Q~. The fourth

term is nonnegative by our assumption on m’ and C. For the fifth (i.e.,
the final term), we notice, that by assumption on *~!

<pi <0< goi_l on €~
and hence
(" =" P, 0")a- =0.

This shows [27| = 0 and hence the assertion ¢* > 0 a.e.
As in the proof of 1. of this Lemma, the equation

(g6()Ce(u’), e(v)) = (¢, v)ry

implies the assertion utilizing [26, Proposition 1.2] noting that the es-
timates only depend on the lower and upper bounds on g, and not the
distribution of the intermediate values.

We start by bounding the H! norm of ¢?. To this end, we test (EL?*?)
with 1 = ¢’ and obtain

7 GC 7 7 71— 7
Gee||Ve'||*+ —le 12+ (" — DT3¢

F (L= R () Celu) e(u))
= Z60
< Selap + Sl

Since all terms on the left are non negative, noting that ¢* > 0, we
deduce

\v4 7112 ¥ < Q .
” ” 22 T 2¢2

To see the statement, we test (EL?"?) with ¢ = (¢'—1)" = max(0, o’ —1)
and obtain

0=Gue|V(e' = )FII* + %Il(wi = DT+ = o) P (¢ = 1))

+ (1= r)(m'((¢")*)@"Ce(u’) : e(u), (¢" = 1)F).

Noticing that all summands are non negative, the assertion follows anal-
ogously to part (a).
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0
Now, choosing b > 1 in the last Lemma allows to transfer these results to (C7).
COROLLARY 4.2.
1. Given ¢' € L*(Ty) and "~ ! € L?(Q2) with '=! > 0 there exists at least one
solution u® of (ELY).
2. Further, any solution u' = (u’, p%) to (EL") satisfies
(a) 0 <" <1 ae.
(b) There exists p > 2 and a constant ¢, depending on k, such that

'l < exlld'll-
(¢) It holds

le'? _ 12
22 T 2e2°

IV +

Proof.

1. The existence of at least one solution follows by Lemma 4.1 taking b > 1 since
then g,(¢?) = g(¢*) and m’((¢")?) = 1 for any solution to (EL”**) and hence
any such solution solves (EL7) as well.

2. (a) The proof of Lemma 4.1 3.(a) and 3.(d) can be repeated to yield the

desired bounds 0 < api <1.

(b) The proof of Lemma 4.1 3.(b) can be applied, noticing that the constant
depends on the upper and lower bound of the coefficient, i.e., k < g(p) <
1, only.

(¢) The proof of Lemma 4.1 3.(c) carries over to the present setting as well.

4.2. The Problem (NLP?Y). We can now finalize the existence of solutions
to (NLPY).

THEOREM 4.3. There exists at least one global minimizer (¢,u) € (Q x V)M
to (NLP7).

Proof. The proof is almost straight forward. Since J(g,u) > 0 there exists a
minimizing sequence (qx,uy) satisfying (EL?), i.e., J(qx,ux) — inf,u J(g,u). The
corresponding control g, is bounded in @ and hence there exists a weakly convergent
subsequence, w.l.o.g denoted by g, with limit ¢.,. By Corollary 4.2, namely 2.(b)
and 2.(c) therein, the sequence (uy, ) is bounded in (W1P(€;R?) x HY(Q))M and
consequently w.l.o.g. up — us in WHP(Q; RHM and o, — 9o in HH(Q)M. To see
that the limit satisfies the elasticity equation in (EL7Y), note that due to the compact
embedding H'(Q) C L?(Q) for any p < oo

9(5)Celuy,) — g(ph,)Ce(ul,)

in L2(Q; R?**?) holds, since g(¢!) converges strongly. To see that the limiting phase-
field o, satisfies the equation, we notice, that by Corollary 4.2 the phase-field satisfies
¢t < 1 and hence we can also consider (EL™?), because it coincides with (EL?) in
the relevant points but satisfies the conditions in [33]. Thus by [33, Corollary 2.1], we
obtain

Gee(Vipho V) (1 = )(ehCeluh) - ), ) — S50~} )

> GeelViphe, V) 4 (1= R)(pheCeluie) - e(ule). ) — “£(1 = i, )
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weakly in H'(Q)*. For the remaining term v[(¢} — ¢4 ')*]® the compact embedding
H(Q) C L5(Q) gives convergence in L? and consequently the pair Us = (Uoo, Poo)
solves (ELY).

Hence (goo,Uwo) is feasible for (NLP7). Weak lower semicontinuity of J shows
that

J(Goo, Uso) < inf J(g, u)
qg,ua

and thus the (¢so, Uoo) is a global minimizer, setting (¢, n) = (¢oo, Uoo). O
COROLLARY 4.4. Any minimizer (q,u) of (NLP7) satisfies the additional reqular-
ity u € (WHP(Q;R?) x L>=(Q))M for some p > 2. More precisely for anyi=1,... M
it holds 0 < ¢* <1 and ||v*|1p < cxlld’]l-
Proof. This is an immediate consequence of Corollary 4.2. O

5. The Linearized Problem. In order to discuss first order necessary opti-
mality conditions, as well as the potential approximation of (NLP7) by a sequence
of linear-quadratic problems, let (qx,uxr) = (qx,ur, px) € (Q x V)M be a given
point. Considering the regularity of solutions to (ELY), we assume ¢, € QM, and
(ks 1) € (V 0 (WEP(Q3 RE) x L(Q))M.

The linearized problem to (ELY) consists, for given ¢ € QM and ¢° := 0, of
finding u = (u, ) € VM such that for any i = 1,..., M and (v,¢) € V

(9(ei)Ce(u), e(v))
+2(1 - #)(phCel(uf) ', e(v)) = (¢, v)ry
G.e(V, Vi) + %(sﬁ} ¥) (EL},)
+ (1= &)(¢'Ce(uy) : e(uy), )
+39([(eh — ek P 0)

+2(1 = w)(pCel(up) = e(u'), ) = 3v([(¢) — o )PP 0).

Existence of Solutions to (EL]
earized equation (EL[ ).

LEMMA 5.1. For any given (ug, px) € (VN (WEP(Q;R?) x L= (Q))M with p > 2
and qi, € QM the linear operators A;: V — V* corresponding to (EL]. ) defined by

lin

). We now discuss the properties of the lin-

(As(u', @), (0, ) vve 1= ai(u', %5 0,)
= (9(6)Ce(u), e(v)) +2(1 — ) (PiCe(uf)¢",e(v))
+ GV, V) + () + (1 R)(Celu)  e(u), )
+37([(pk — #1712 0) + 21— ) (PhCelu) : e(u),¥)
are Fredholm of index zero.

Proof. Since p > 2, we can find r € (2,00) such that %—l— % +% = 1. By
embedding theorems, there exists 0 < s < 1, such that H*(Q) C L"(2) compactly.
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Then continuity of a; on V' x V follows

a;(u', o' v,9) < cllutf12lvlliz + el llorlvli,2
+cll*lr2ll¥lln2 + clle [l + clle’]
+ eyl Pl + cllut]l1 2ll% o,

<c(lwliallvliie + e liallvliie + e lzlvle + ||ui||1,2||¢||1,2)
< cli(u’, ) v ll(v, )llv,

o,rll%lo,r

with generic constants ¢ depending on (u,¢%) € WhP(Q;R?) x L>(2). To derive a
lower bound, we notice that the only possibly non-positive terms are the two starting
with 2(1 — k) and we deduce, using Korn’s inequality

12—l llorllullse

> cllu'l} 2 + ¢'I3 2 — clle'I22-

ai(u', o'yt 0) 2 cllu’ll 5 + |l¢']

Consequently a;(-,-) + ¢(-,-)s,2 is coercive on V' x V and thus invertible, and in par-
ticular Fredholm of index zero, by the Lax-Milgram lemma. Since H'(Q) C H*(Q) is
compact, we deduce that the mapping A;: V — V* given by (u?, ¢%) — A;(u’, ¢*) =
a;(u', p';+) is Fredholm of index zero as well, see, e.g., [52, Theorem 12.8|. O

LEMMA 5.2. Under the assumptions of Lemma 5.1, any element (u',p') €
ker(A;) C V satisfies the additional regularity (u’, %) € V. N (WHP(;R?) x L>=(Q)),
with p > 2 as in Corollary 4.4

Proof. Consider (u?, ¢*) € ker(4;), i.e.,

ai(uia @Z7vvw) =0 V(’U,ﬂ}) ev.

First of all, we notice, that the linearized phase-field ¢’ satisfies

Gee(Ve', Vi) + %Wﬂﬂ)
= —(1— r)(¢'Ce(uy) : e(up), ) — 3v([(eh — ef D TPe",9)
—2(1 — k) (¢} Ce(up,) : e(u’), ¥).

With the definition of r as in the proof of Lemma 5.1, it is ¢* € L"(Q) and  + 1 = 3.
Let 7’ be given such that 1 =2+ L =14 (14 %), then 1 < r’ < 2. As a consequence,
the right hand side of the equation above is an element in L (). To see this, we
calculate

[

e llor < ell(ek = k) FIIE ool llo.rs
le(u)]-

Utilizing elliptic regularity it follows that ¢* € H(2) N L>° ().

Now, we can continue to derive the improved regularity of u’. To this end, we
notice, that u* solves

¢ Ce(uy) = e(up)llo < cllollorlleus,
-1

)
(e — e ) 1Pe o < clll(eh — @5
lrCe(uy,) : e(u ) o < cll@kllo,colle(uy)llop

(9(e)Celu), e(v) = =2(1 = m)(PhCeluf)¢", e(v)).
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The right hand side satisfies

©'[|0,00

lorCe(ui) @' llop < cll@kllo.co i1yl

and thus (¢} Ce(u})p,e(-)) defines an element in W17 (Q; R?) = (Wl*pl (Q;IRQ)) :
utilizing again [26, Theorem 1.1], we conclude that u € W1P(Q;R?). O

REMARK 5.3. Utilizing the above regqularity provided by Lemma 5.2, we can
now define the scalar product (-,-)c = (C-,-) and corresponding norm || - ||c. The
above regularity shows, that the norms |o'e(u})|c and |¢ie(u’)|c are finite for all
(ul, %) € ker A;. Consequently, we can now provide an improved lower bound utilizing
the parallelogram identity for the above scalar product

0= ai(ui, §0l7 ’U/i, S07,)
= (1= W)((Ah)*Celu), e(u)) + (Ceu), e(u)) + 201 ~ W) (el ' ()
+Gee(V64, V) + 2 (61, ) + (1= (el - ), )
+37([(ek — ¢ PP, 9") +2(1 = 8) (9rCe(uy,) : e(u’), ¢)
> wle(u)I2 + (1= )lloke(u) [ +2(1 = )(he(u), o'elu))e
el + (1 = llee(ui)I2 + 20— )(he(u), o'elu))e
> W& + ellg Rz + (1~ m)llehelut) + eI + 201~ k) (phelu), pe(ui) e

REMARK 5.4. From the previous Remark 5.3, we immediately assert, that for
sufficiently small ||ut |1 p, [|P%]l0,00, the mized term can be absorbed into the squared
norms and, consequently, for such (ug, @), we have ker A; = {0}. Indeed, this would
already be clear from the proof of Lemma 5.1, but the condition provided by Remark 5.3
is tighter.

COROLLARY 5.5. For any given (uy,px) € (V N (WLP(Q;R?) x L>=(Q)))M and
qx € QM the linear operators A: VM — (V)M defined by

Ay
B2 A2

By Ay
with A;: V. — V* as in Lemma 5.1 and B; = 37((¢k — ¢i )*]?, are Fredholm of

index zero.

Proof. By Lemma 5.1 the diagonal is Fredholm, and the off-diagonal B; are
compact as a mapping V' — V*. Thus the assertion follows by [52, Theorem 12.8]. O

6. First Order Necessary Conditions for (NLP7). We can now state the
necessary optimality conditions for (NLP7).

THEOREM 6.1. Let (g,0) € (Q x V)M be a minimizer of (NLP?Y), such that
ker A = {0}, with A as defined in Corollary 5.5 in the point (qr,ur) = (g,0). Then
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there exists z = (2,() € VM such that
(. 9) satisfy (EL")

M
(A'z,0) = > (0" —ulp, ") Vo e VM
=1
a> (G,0q")ry ==Y (.60, Voq € QM.

i=1 i=1

Proof. By Corollary 5.5 A is Fredholm, since ker A = {0} A is an isomorphism,
and so is its dual A*. Consequently, the linearized constraint (EL] ) is surjective as

a mapping (Q x V)M — (V)M and the existence of z follows by standard results on
the existence of Lagrange multipliers, see, e.g., [53, Theorem 4.1.(a)]. O

7. Quadratic Approximations to (NLP7). We aim to approximate (NLP7)
by a linear-quadratic problem in a given point (gx,ur) = (qx,uk, ). Considering
the regularity of solutions to (ELY), we assume ¢ € Q™, and (uy,pr) € (VN
(W12(0; R?) x L= ()M,

In order to keep the notation short, we introduce the (compact) operator B: Q™ —
(V)M for the control action as follows

M

<Bq, (’U ¢)> V)M M = Z(qi,’vi)pj\,. (71)

i=1

By standard reformulations, we obtain the quadratic problem, up to a fixed ad-
ditive constant in the cost functional,

gnr; Jiin(g; ) : ZHU — (ug —up)|I” + Z”q +qillf

), i.e., Au = Bg,

(QP7)
s.t. (g, u) satisfy (EL’Y

lin
where A is given in Corollary 5.5 and B in (7.1).

7.1. Existence of Solutions to (QP”). THEOREM 7.1. For any given (ug, pr) €
(VWP (Q;R?) x L ()M and g, € QM the problem (QPY) has a unique solution
(g,u) € QM x VM,

Proof. Tt is immediate that, a pair (¢, u) satisfies (EL},

lin
Au=Bg in (VM

with A as defined in Corollary 5.5 and B as in (7.1). Now, by Corollary 5.5, A is
Fredholm and consequently, see, e.g., [52, Theorem 12.2], has closed range. Moreover,
since the codimension of the image of A is finite the intersection A(VM) N B(QM) is
non empty. Clearly Jy, is bounded below, and we can pick a minimizing sequence
(q(r)> u(k)) satisfying Au = Bq. Due to the coercivity of Jy;, the sequence is bounded
and, possibly selecting a subsequence, there is a weak limit g) — g(o0) in QM. By
compactness, Bqr) — Bq(oo)y in (V)M

Since A is Fredholm, dim ker A < co and consequently, we can decompose VM =
ker A @ VM / ker A. Correspondingly, we split the sequence u) = ul(‘g + u?k). Then

) if and only if

A induces an isomorphism as a mapping A: VM /ker A — A(V™) and consequently

u(k = A"'Bqyy = A Bgoo [()Oo).
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Moreover, since Jjy, is bounded along its minimizing sequence, ||u1(‘,§1)“|| is bounded, and
since ker A is finite dimensional, possibly selecting a subsequence, there exists a limit
ul(‘z’)f — ul(‘gg) € ker A. By continuity of A it is

Al(oo) = Bi(oc),
and by weak lower semicontinuity

Jlin(q(oo)7u(oo)) < inf Jlin(Qvu)'
(g,u)

Uniqueness follows, since Jyj, is strictly convex on QM x VM. 00

7.2. Necessary (& Sufficient) Optimality Conditions. To conclude the dis-
cussion of the quadratic approximations, we note that we can give necessary, and due
to convexity also sufficient, first order optimality conditions.

THEOREM 7.2. For any given (uy,pr) € (V. N (WEP(Q;R?) x L>®(Q))M and
qx € QM let (7, 0) € QM x VM be a solution to (QPY). Then there exists a Lagrange
multiplier, z = (z,() € VM, such that the system

Au = Bg in (V)M
AZ =7 — (ug —uy) in (V)M (KKT7)
a(@—q)+zZ=0 on Ty

is satisfied where A is given in Corollary 5.5, A* denotes its adjoint, B is given
by (7.1), and the, compact, embedding (L*)™ c (V*)M is used without special notation
for the right hand side of the adjoint equation. Due to the convezity of (QP7Y), any
triplet (7,0, z) € QM x VM x VM solving (KKT") gives rise to a solution of (QP7Y).

Proof. We notice that the equality constraint in (QP?) is linear, and consequently
a constraint qualification is given and the result is a consequence of Farkas’-Lemma,
see, e.g., [17, Theorem 10| for its generalization to infinite dimensions. O

8. Numerical Illustration. In this final section, we discuss a prototype test in
order to substantiate our theoretical advancements. The setup is to employ a control
g on the top boundary of a two-dimensional square domain, acting in normal direction
only, in order to steer the solution towards a manufactured solution up defined in the
entire domain. The computations are performed with DOpElib [21, 22] utilizing the
deal.IT finite element library [6, 7]. The discretized optimization problem is solved
by a globalized Newton’s method for the reduced optimization problem, i.e., the
optimization problem is transformed into an unconstrained problem via elimination of
the equality constraint due to the choice of a specific solution of the discretized fracture
problem. In our numerical example this solution was found utilizing a globalized
Newton’s method for the discretized Euler-Lagrange equation (ELY). If instead of
just finding any stationary point of this equation a, local, minimizer of the phase-field
energy (C7) is desired, alternating direction methods [12, 13, 15, 38] are typically used
for the solution of (ELY). Recently, there have also been efforts to employ monolithic
algorithms such as via a convexification trick [25] and a line-search assisted Newton
method [20]. In fact the latter paper provides comparisons with alternating directions
and shows that a monolithic approach is not only more robust but also more efficient.

Our findings indicate that the QP-approximations discussed above can be used
to obtain a (locally) fast convergent Newton (SQP) Algorithm.
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The domain is given by Q := (—1,1)? in which a horizontal fracture is prescribed.
The initial value for ° is taken such that ¢ = 0 on (=0.1—h,0.1+h) x (—h,h) C Q
(see Figure 8.1), where h denotes the diameter of the elements. The boundary is
divided into three parts 02 := I'y UT' p UT'ee corresponding to the control boundary
T'n, the Dirichlet boundary I'p, and the rest, where natural boundary conditions for
the displacement are attained. These boundary parts are given by

I'yv={(z,1)] —1 <2z <1} and Tgee ={(z,y)|2z e {£1};-1<y<1}.

On I'p, we prescribe the Dirichlet values u = 0.
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0.7500

05000
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1.1e-08

0.5
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S 1T
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. 0200 0.5
0000
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<
[

-0.5 0.0 0.5

Fic. 8.1. Initial fracture (in red) and final adjoint phase-field after four Newton iterations at
M =5.

The cost functional is given by

M
1 i ; o
J(gu) =5 > llu' =gl + 5 llg + gal?
i=1
s.t. (¢, u) satisfying (EL?),

where u%, = 0.001(y + 1) foralli = 1,..., M, o = 107'% and a control acting on I'y
but being the same in all time-steps, i.e, ¢ = ¢ for all i = 1,..., M, and gq = 50.
Moreover, u® = (0; ¢%) with ¢° as depicted in Figure 8.1.

Furthermore, the phase-field regularization parameter is chosen as ¢ = 2h =
0.088 where h = 0.0442 is the element diameter of the mesh for the finite element
discretization used for the computations. The bulk regularization parameter is kK =
10719,

The penalization parameter is v = 108, the fracture energy release rate is G, =
1.0, Young’s modulus is £ = 10 and Poisson’s ratio is ¥ = 0.2. The initial mesh is
six times globally refined and 5 loading steps, i.e., M = 5, are performed. The spatial
discretization is done using standard @), finite elements for all unknowns.

Our findings are summarized in the following. The initial value of the cost func-
tional is Jinstia1 = 1.247 x 1072 that is obtained by employing the initial control ¢ = 10
on I'y. In this particular setting, the initial residual of the Newton iteration is small;
namely 7.46 x 1079, This starting residual is taken as 1 in the relative residual, which
is plotted in Table 8.1.
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TABLE 8.1
Results of the nonlinear optimization iterations.

Newton iter. N-linear iter. Newton residual (rel.) J[x107°]  @maz on I'y

0 - 1.00 x 10° 1.2470 10
1 14 3.57 x 1072 1.0487 87
2 11 1.23 x 1072 1.0469 84
3 2 3.94 x 107* 1.0469 84
4 2 1.27 x 107* 1.0469 84

Furthermore, Table 8.1 shows the iteration history of the Newton steps performed
during the solution of the optimization problem. At each step, the Newton residual,
the cost functional J and gme, = maxr, |q| are provided. We observe that the
algorithm is convergent, the convergence slows down to a linear rate in the later
iterations as it has to be expected since the QP-subproblems are solved only up to
an accuracy proportional to the norm of the optimization residual, and consequently
only very few, i.e., two, iterations of the linear solver are performed in these Newton
steps.

Illustrations of the solutions are provided in the Figures 8.1-8.3 displaying the
primal and adjoint solutions.

l 270-05 l 27e-05
1.3e-05 1.3-05

00 00

-1.30-05 -1.30-05

l 0.5 l 0.5
-2.7e-05 -2.7e-05

Fic. 8.2. Initial x-displacement field and final x-displacement field after four Newton iterations
at M = 5.
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-0.5

-1:970

Fic. 8.3. Initial y-displacement field and final y-displacement field after four Newton iterations
at M =5.
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Although the final fracture has not visibly changed compared to the initial value
the adjoint phase field in Figure 8.1 shows the strong influence of the presence of
the fracture onto the optimization. The displacements shown in Figure 8.2 and 8.3
show the desired behavior. It should be noted, that the color-scale in 8.2 and 8.3 is
adjusted to the size of the displacement in the last Newton step, as it is visible from
these pictures the initial displacement is severely smaller and almost invisible in this
scale.

Indeed the y-displacement is almost almost uniform on I'y. In contrast to the
behavior of a purely linear elastic body the fracture and its influence are clearly visible
in the final x and y displacements.
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