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Variational Localizations of the Dual Weighted
Residual Estimator

Thomas Richter ∗ Thomas Wick †

The dual weighted residual method (DWR) and its localization for mesh adaptivity
applied to elliptic partial differential equations is investigated. The contribution of this
paper is twofold: first, we introduce a novel localization technique based on the introduction
of a partition of unity. This new technique is very easy to apply, as neither strong residuals
nor jumps over element edges are required. Second, we compare and analyze (theoretically
and numerically) different localization techniques used for mesh adaptivity with respect
to their effectivity. Here, we focus on localizations in variational formulations that do
not require the evaluation of the corresponding differential operator in the classical strong
formulation. In our mathematical analysis, we show for different localization techniques
(established methods and our new approach), that the local error indicators used for mesh
adaptivity converge with proper order in the error functional. Several numerical tests
substantiate our theoretical investigations.

1 Introduction

In this work, we investigate the dual weighted residual method (DWR) and its localization for mesh
adaptivity applied to elliptic partial differential equations. Our goal is twofold: First, and most
important, we introduce a new localization technique, given in weak form that avoids both the evalu-
ation of strong residuals and jump terms over element edges. This method is easy to implement and
therefore suitable for coupled multiphysics systems with many different equations. The second aim is
then to analyze different localization techniques with respect to their effectivity. For some established
localization techniques, this has not yet been accomplished.

The DWR method allows for estimating the error u − uh between the exact solution u ∈ V (for a
function space V ) of the PDE and its Galerkin solution uh ∈ Vh ⊂ V in general (error) functionals
J : V → R. These functionals can be norms but also more general expressions, like point-values,
(local) averages or technical expressions like (in the case of fluid dynamics) lift- or drag-coefficients.
Error estimators based on the DWR method always consist of residual evaluations, that are weighted
by adjoint sensitivity measures. These sensitivities are the solution to adjoint problems that measure
the influence of the error functional J .
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The DWR method goes back to Becker & Rannacher [8, 10] and is based on the pioneering work by
Eriksson, Estep, Hansbo and Johnson [20]. It has been further developed by various researchers [32,
1, 23] and has been applied to a vast number of application problems including fluid-dynamics [7],
structural dynamics, and further to complex multiphysics problems like chemically reactive flows [13]
or fluid-structure interactions [24, 39, 34, 38, 37]. A completely different field, where the use of strong
residuals is to be avoided is kinetic theory, see [26] for an application of goal oriented error estimation
to Boltzmann-type equations.

In this contribution to the DWR method, we focus on more principle questions that arise in its
application. First, the adjoint weights entering the error estimator usually must be approximated, as
they involve the unknown exact solution z ∈ V of an adjoint problem. Section 3 provides an overview
of different approximation techniques commonly used. Second, if used for adaptive mesh refinement,
the error estimator ηh ≈ J(u)− J(uh) must be localized to positive error indicators

|ηh| ≈
∑
i

|ηi|, (1)

which describe the local error contribution |ηi| of a mesh element or a mesh node, and that can be
used to establish adaptive mesh refinement schemes. In the central Section 4, we describe different
localization techniques for the DWR estimator and discuss their effectivity: a localization is called
effective, if the sum of local indicators do not overestimate the error. Error indicators, that highly
overestimate the error will lead to adaptive meshes, which do not fit to the problem. Usually, for
adaptive methods, one aims at showing effectivity, such that the estimator bounds the error from
below and above

c1

∑
i

|ηi| ≤ ‖∇(u− uh)‖ ≤ c2

∑
i

|ηi|. (2)

We cannot expect such a sharp result, as we are not looking at norms only, but at errors in general
functionals J(·). The DWR estimator is an error approximation ηh ≈ J(u)− J(uh), but usually not a
rigorous estimate. Usually, it is straightforward to bound the indicators by the estimator from below

|ηh| ≤
∑
i

|ηi|. (3)

The main contribution of this work is to provide insight to the opposite direction. We are not able to
bound the sum of indicators by the estimator |ηh| or even the functional error |J(u) − J(uh)| itself,
but we can show, that the error |J(u) − J(uh)| and the indicators

∑
i |ηi| satisfy a common upper

bound. This has not been accomplished for some commonly used localization techniques. Finally, we
introduce a novel localization technique, that is strikingly simple in its application and also permits a
very simple proof to show the effectivity of indicators (within the limits just discussed).

In Section 5, several numerical test cases are presented to discuss the performance of the different
localization strategies. Finally, in Section 6, we conclude with some further remarks.

Let us begin in the following second section by gathering the notation and shortly introducing the
dual weighted residual method for error estimation.

2 The Dual Weighted Residual Method for Error Estimation

By Ω ⊂ Rd with d = 2, 3 we denote a domain with polygonal or polyhedral domain. On Ω, we denote
by (·, ·) the L2-inner product and by ‖ · ‖ the corresponding L2-norm. By Hr+1(Ω) we denote the
space of Lebesgue functions with square integrable weak derivatives up to degree r+ 1. In particular,
by V := H1

0 (Ω) we denote the space of H1(Ω) functions with trace zero on the boundary ∂Ω.
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2.1 DWR for the Poisson problem and linear goal functionals

Next, by u ∈ V we denote the solution of the Poisson equation

(∇u,∇φ) = (f, φ) ∀φ ∈ V, (4)

for a given right hand side function f ∈ H−1(Ω). We consider the case of homogenous Dirichlet

boundary conditions on ∂Ω only. Next, we denote by Vh := V
(r)
h ⊂ V a finite dimensional, piece-wise

polynomial of degree r finite element subspace and by uh ∈ Vh the finite element solution

(∇uh,∇φh) = (f, φh) ∀φh ∈ Vh. (5)

Here we only consider finite element spaces of polynomial degree r ≥ 1 on shape-regular triangulations
Ωh, such that there exists an interpolation operator ih : V → Vh on every element K ∈ Ωh

‖∇k(u− ihu)‖K ≤ cinh
r+1−k
K ‖∇r+1u‖K ∀u ∈ Hr+1(K), k = 0, 1, 2, (6)

with hK := diam(K) and where ‖ · ‖K is the L2-norm on K. The interpolation constant cin depends
on the polynomial degree r and the triangulation Ωh. Further, on element boundaries ∂K, we use the
estimate

‖u− ihu‖∂K ≤ cinh
r+ 1

2 ‖∇r+1u‖K , (7)

with h = maxK hK . Adaptive meshes are realized with hanging nodes, see [25] for details on the
construction.

We assume, that the problem data, e.g. right hand side f and domain Ω are such, that the following
two a priori error estimates hold for the finite element solution

‖∇(u− uh)‖ ≤ chr‖∇r+1u‖, ‖u− uh‖ ≤ chr+1‖∇r+1u‖. (8)

For linear elements with r = 1, this is given for f ∈ L2(Ω) on polygonal convex domains or if the
boundary is smooth (piece-wise C2) with only convex corners [21]. By J : V → R we denote a linear
continuous functional and by z ∈ V we denote the adjoint solution to (4)

(∇φ,∇z) = J(φ) ∀φ ∈ V. (9)

Existence and uniqueness of this adjoint solution follows by standard arguments. The regularity of
z ∈ V depends on the regularity of the functional J . For J ∈ H−1(Ω) it holds z ∈ H1(Ω). Given a
more regular functional like the L2-error J(φ) = ‖eh‖−1(eh, φ) with J ∈ L2(Ω)∗, it holds z ∈ H2(Ω) on
suitable domains (convex polygonal or smooth boundary with C2-parametrization). By zh ∈ Vh ⊂ V
we denote the corresponding adjoint finite element solution

(∇φh,∇zh) = J(φh) ∀φh ∈ Vh. (10)

Key relation in the context of the dual weighted residual method, see Becker & Rannacher [8, 10], is
the following error identity which is only based on Galerkin orthogonality by plugging-in ∇ihz:

J(u)− J(uh) = (f, z − ihz)− (∇uh,∇(z − ihz)). (11)

The error in the functional J(u)− J(uh) can be expressed in terms of a residual, that is weighted by
(the local) adjoint sensitivity information z − ihz. Further, a second adjoint error identity is directly
given as by introducing ∇zh; and Galerkin orthogonality of the adjoint equation can be used such that

J(u)− J(uh) = J(u− ihu)− (∇(u− ihu),∇zh). (12)
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Here, the residuals of the adjoint equation are weighted with the primal interpolation error.
The two error representations involve as unknown parts in the weights the primal solution u ∈ V

or adjoint z ∈ V solution. Section 3 deals with approximation techniques for the evaluation of these
interpolation weights. This approximation is required to obtain an usable error estimator. Then, in
Section 4 we come to the localization of the error representations and the definition of different local
error indicators.

For the following we collect some useful inequalities. All these inequalities are given for two-
dimensional domains. First, on a mesh element K ∈ Ωh, we frequently use the trace-inequality

‖u‖∂K ≤ ctrh
− 1

2
K

(
‖u‖K + hK‖∇u‖K

)
, (13)

and in addition, we recall the inverse estimate

0 ≤ s ≤ k : ‖∇kuh‖K ≤ chs−kK ‖∇suh‖K ∀vh ∈ Vh, (14)

which - on shape regular meshes - easily follows by equivalence of norms in discrete spaces, see [15].

2.2 DWR for nonlinear problems and nonlinear functionals

The theory presented above is limited to linear partial differential equations and linear functionals.
Here, we shortly recapitulate the full nonlinear DWR theory as presented by Becker & Rannacher [10].
Let J : V → R be a differentiable error functional and let a(·)(·) be a differentiable semilinear form,
which is linear in the second argument. Let u ∈ V be the solution to the nonlinear problem

a(u)(φ) = (f, φ) ∀φ ∈ V, (15)

and let z ∈ V be the solution to the linearized adjoint problem

a′(u)(φ, z) = J ′(u)(φ) ∀φ ∈ V, (16)

where by a′(u)(·, ·) we denote the Gâteaux derivative of a(·)(·) in u ∈ V , and by J ′(u)(·) the Gâteaux
derivative of J(·) in u ∈ V . Then, it holds the following mixed error representation

J(u)− J(uh) =
1

2

{
(f, z − ihz)− a(uh)(z − ihz)

}
+

1

2

{
J ′(uh)(u− ihu)− a′(uh)(u− ihu, zh)

}
+R(3)(u− uh, z − zh), (17)

where both primal and adjoint residual appear, each tested with interpolation weights coming from
the other problem. The error identity (17) includes a remainder term R(3), that is of third order in the
errors u−uh and z− zh and stems from the application of the trapezoidal quadrature rule, see Becker
& Rannacher [10]. We notice that the primal estimator (11) is still valid for nonlinear problems, it is
however disturbed by a second order error term R(2)(u− uh, z − zh).

If a(·)(·) describes a bilinear form, e.g. if we consider linear equations and if the goal functional
J(·) is linear, the mixed error identity (17) is exact with R(3) = 0 and the adjoint problem is defined
by (9).

As primal (11) and dual (12) error identities are exact in the linear case, the mixed error formula (17)
is an equivalent formulation. While all these error representations are exact for measuring the error,
they lead to different error indicators which may produce adaptive meshes of different quality. See
Sections 4 and 5 for discussions on this point.
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In contrast to other classical a posteriori error estimators for the energy norm, the DWR method is
not an estimator in the strict case. Considering linear problems, the DWR method is an error identity.
However, as discussed in the following section, it is not possible to evaluate the error relation (even
in the linear case), as the weights depend on the exact values of primal and dual solution. Hence,
computational approaches deliver an approximation of the error identity ηh:

ηh(uh, zh) ≈ J(u)− J(uh).

The quality of this approximation procedure can be measured by the effectivity index effh, defined as

effh :=
η(uh, zh)

J(u)− J(uh)
. (18)

For effh → 1, the estimate is asymptotically exact. As functional errors carry a sign, no absolute values
may be used in defining the effectivity index. The following discussion shows, that cancellation effects
by different signs are the major cause for difficulties connected to the localization of the DWR method.
Local indices to be used for adaptivity will have to be positive measures of the error contribution.

3 Approximation of the Weights

For evaluation of the error identities (11), (12) and (17), we need approximations of the interpolation
errors z − ihz and/or u − ihu. Obtaining such an approximation is the critical part in the DWR
framework that stands in the way of strict reliability. Examples have been constructed [31], where
the DWR estimator underestimated the error due to coarse approximation of the weights z− ihz and
u − ihu. A remedy is only given by spending sufficient effort on the estimation of these weights on
fine meshes [10, 17] or an additional control of the approximation error in z − ihz and u − ihu [31].
For simplicity of presentation, we consider the case of linear goal functionals throughout this section.

3.1 Classical approximation of the DWR estimator

First, we consider a classical approach, that is based on applying Cauchy-Schwarz inequality locally
on every element for getting strict upper bounds, see e.g. [8, 9, 6]. With integration by parts on every
mesh element K ∈ Ωh it holds:

J(u)− J(uh) =
∑
K∈Ωh

(
f + ∆uh, z − ihz

)
K

+

∫
∂K

∂nuh · (z − ihz) ds. (19)

Following the usual procedure for residual based error estimators [36], we combine each two boundary
integrals over element edges to a normal jump and proceed with Cauchy Schwarz to get

|J(u)− J(uh)| ≤
∑
K∈Ωh

(
‖f + ∆uh‖K +

1

2
h
− 1

2

K ‖[∂nuh]‖∂K
)

︸ ︷︷ ︸
=:ρK(uh)

(
‖z − ihz‖K + h

1
2

k ‖z − ihz‖∂K
)︸ ︷︷ ︸

=:ωK(z)

, (20)

where by [∂nuh] we denote the jump of the uh derivative in normal direction. On the outer boundary
∂Ω, we set [∂nuh] = 0. The residual part ρK only contains the discrete solution uh and the problem
data. A similar estimator can be derived based on the adjoint form (12), where the residuals of the
adjoint equation ρ∗K(uh, zh) are weighted with primal interpolation errors ωK(u).
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Remark 1 (Evaluation of the strong residuals). The evaluation of the classical error localization can
bring along enormous computational costs, as for higher order finite elements the assembly of second
order differential operators on general mesh elements is computationally expensive.

Considering nonlinear problems, we further have to evaluate the adjoint residuals ρ∗K(uh, zh). For
some complex problems, e.g. like fluid-structure interactions [24, 39, 34], the strong adjoint residual
formulation has not even been derived yet. Such complex nonlinear problems are our key motivation
in deriving localization techniques that do not require the evaluation of classical residuals.

Remark 2 (Strong residuals for C1-continous approximations). Edge terms in strong residuals only
appear for H1-conforming finite elements. By using C1-continuous approximations, it holds [∂nuh] = 0
on the element edges in (19), such that no edge terms appear in (20). Traditionally, C1-continuous
elements found little usage due to their high computational effort. This however changes in the context
of isogeometric analysis, see [19] or [27] with application to goal oriented error estimation.

The error weights ωK(z) involve the unknown adjoint solution z ∈ V , which has to be approximated.
Here, two possible approaches exist: one can directly approximate the interpolation error z − ihz
using available discrete quantities only. This approach is described in the following section. As an
alternative, one could first apply an interpolation error estimate

ωK(z) ≤ cinh
r+1‖∇r+1z‖P (K), (21)

where P (K) is the patch of all those elements K ′ ∈ Ωh that share a common boundary with K ∈ Ωh,
followed by an approximation of the (r + 1)-th derivative

hr+1‖∇r+1z‖P (K) ≈ hr+1
√
|K|‖∇r+1

h zh‖L∞(P (K)), (22)

which is based on discrete recovery concepts. This approach is typical for the gradient recovery error
estimator and it is directly applicable to the DWR method. We refer to the literature [40, 41]

The drawback of the classical DWR-approach is due to the application of the Cauchy-Schwarz
inequality that rules out possible cancellation effects by local orthogonality and interpolation error
estimates, which both bring along unknown constants. Usually, error estimators based on this approach
result in an over-estimation of the true error. We provide examples in Section 5.

3.2 Variational approximation of the DWR estimator

The second possibility for the evaluation of the weights is by a direct approximation of the interpolation
error without prior estimates. If an approximation for z − ihz is available, it can be both used for
the error estimate given in the classical form (20), but also directly for the error identities (11), (12)
and (17), given in weak formulation. Here, every discrete approximation to ψh ≈ z− ihz must be finer
than the trial space Vh, as the residual is orthogonal on Vh. A first obvious possibility is to simply
solve for an approximation z∗h in a higher accurate space, e.g.,

zh/2 ∈ Vh/2 : (∇φh/2,∇zh/2) = J(φh/2) ∀φh/2 ∈ Vh/2, (23)

where z − ihz ≈ zh/2 − ihzh/2. Alternatively, it would be possible to solve for z
(2)
h ∈ V (2r)

h in a finite
element space of higher polynomial degree. Both approaches work very well in application and usually
yield optimal error estimators with the effectivity index effh (18) going to one:

effh(uh, zh) =
(f, z

(2)
h − ihz

(2)
h )− (∇uh,∇(z

(2)
h − ihz

(2)
h ))

J(u)− J(uh)
→ 1 (h→ 0). (24)
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We refer the reader to Section 5 for an example. In the practical application, however, this approach
is not feasible, since it means, that only for getting a reliable and effective error estimator we have to
spend very high numerical effort [10]. A modification of this approach is to define local subproblems,
that live on a small subset of elements each, and that can be solved efficiently and in parallel using
higher order finite elements.

A third possibility that goes without the solution of additional higher order problems uses a recon-
struction of the already computed discrete approximations uh ∈ Vh and zh ∈ Vh. For this reconstruc-
tion, the discrete solutions are simply reinterpreted using a higher order basis. First, we assume, that
the finite element space Vh is constructed in a patched manner, such that each element is part of four
elements arising from one common father-element P ∈ Ω2h. Such a patched finite element set allows
for a reinterpretation of the finite element basis by combining four r-th order elements to one element

of order 2r (in 2d). As the finite element spaces V
(r)
h and V

(2r)
2h have the same number of unknowns in

the same Lagrange points, a higher order reconstruction is directly given by an exchange of the basis:

zh =
∑
i

ziφ
i
h ≈

∑
i

ziφ
(2r),i
2h =: z

(2)
h , (25)

where z ∈ RN stands for the coefficient vector and by φ
(2r),i
2h we denote the basis functions of the

finite element space of double degree on a mesh with double mesh size, see Fig. 1. Details on the
application of this reinterpretation process on unstructured meshes are given by Carpio et al. [16].
This reconstruction strategy is highly reliable and effective for a large class of problems, see [13, 33, 35].
Similar to gradient recovery error estimators, it is based on super-approximation results obtained by
error expansion techniques, see e.g. Blum and coworkers [12, 11]; however it can not be rigorously
shown on adaptive meshes. The success in numerical examples however works in favor of this cost-
efficient approach.

4 Localizations of the error identity and effectivity of localizations

In this section, we discuss with the localization of the error estimator. In most representations, the
error estimator allows for a direct splitting into a sum J(u) − J(uh) ≈ ηh =

∑
i ηi. The absolute

values of the local quantities |ηi| are the indicators used for refinement. Our discussion follows two
goals: the localization procedure should be simple in terms of implementation and numerical effort.
Second, the localization should be effective, such that the sum of local error indicators does not heavily
overestimate the error. Similar to the effectivity index (18), we define the indicator index to measure
the quality of the localization process:

indh :=

∑
i |ηi|

|J(u)− J(uh)|
. (26)

It is not possible to reach strict effectivity with indh → 1 in the context of goal-oriented errors. The
functional error J(u)− J(uh) has a sign, and hence the error can vanish, although the solution shows
a very large approximation error, for example by symmetry reasons. The local estimator values ηi
might have changing sign, such that

∑
i |ηi| may be a strong over-estimation. However, we aim at

strategies, where indh is uniformely bounded in h. By a priori estimates, a worst case bound for the
functional error is given by the product of primal and dual energy errors

|J(u)− J(uh)| ≤ c‖∇(u− uh)‖ ‖∇(z − zh)‖, (27)

with a constant c > 0 that depends only on the continuity of the variational formulation, and with
c = 1 in the case of the Poisson equation. This bound is not sharp, as it neglects possible orthogonality
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of primal and dual errors. A functional error J(u)− J(uh) can be zero, even if the energy errors are
substantial. In the following, we call error indicators effective, if this worst case estimate also holds
for the indicators ∑

i

|ηi| ≤ c‖∇(u− uh)‖ ‖∇(z − zh)‖, (28)

with a constant c > 0 that may depend on the bilinear form of the equation, the finite element
space and the shape regularity of the mesh, but that should be robust with respect to the mesh size
parameter h. For practical approximations of the error identity, the weights are given by interpolation
errors. Hence, the concept of effectivity defined in (28) must be slightly altered to also allow for
bounds in the interpolation error ‖∇(u − ihu)‖ and ‖∇(z − ihz)‖. Finally, whenever formulations
based on strong residuals are considered, a pure H1-estimate is not sufficient. Instead, we define
a mesh-dependent norm, that is - assuming enough regularity u ∈ H2(Ω) - equivalent in terms of
convergence ‖∇(u− uh)‖ ∼ ‖u− uh‖h in h:

‖φ‖h :=

‖∇φ‖2Ω +
∑
K∈Ωh

{
h2
K‖∇2φ‖2K + h−2

K ‖φ‖
2
K

} 1
2

. (29)

Using this norm, we can now define our concept of effective error indicators:∑
i

|ηi| ≤ cmax{‖u− uh‖h, ‖u− ihu‖h}max{‖z − zh‖h, ‖z − ihz‖h}. (30)

Every localization can only be as accurate, as the approximation of the weights permits as discussed
in the previous section. For the following discussion, we assume that the approximation of the weights
is sufficiently accurate. On coarse meshes, this is a simplification, as shown by the discussion of
Nochetto et al. [31].

4.1 Localization based on the classical (strong) formulation

The typical localization procedure [8, 10] for residual based error estimators is based on the classical
formulation of the error estimator (20) by defining local element-wise indicator values ηK := ρKωK .
Reliability of these indicators depends on the approximation properties of the interpolation weights
z − ihz. The question of effectivity is a bigger concern, as the Cauchy-Schwarz inequality has been
used. We know, that a functional error J(u)− J(uh) can change its sign and pass through zero. This
behavior cannot be represented by the classical localization. However, given the more subtle definition
of effectivity (30), it holds:

Lemma 1 (Effectivity of the localization based on the classical residual). Let u, z ∈ V ∩H2(Ω) be the

solution and adjoint solution, respectively. Furthermore, let uh, zh ∈ Vh = V
(r)
h be the corresponding

finite element solutions of degree r. The classical error indicators ηK = ρKωK given by (20) are
effective, i.e., ∑

K∈ΩK

ρKωK ≤ c‖u− uh‖h‖z − ihz‖h, (31)

with a constant c > 0.

Proof. (i) We split the residual part ρK = ρiK + ρeK into inner part ρiK = ‖f + ∆uh‖K and edge part

ρeK = h
− 1

2
K ‖[∂nuh]‖∂K . First, it holds by standard a priori analysis using −∆u = f :

ρiK = ‖f + ∆uh‖K = ‖∆(u− uh)‖K ≤ ‖∇2(u− uh)‖K . (32)
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On every edge, it holds for u ∈ V ∩H2(Ω), that [∂nu] = 0 and hence with (13)

ρeK = h
− 1

2
K ‖[∂nuh]‖∂K = h

− 1
2

K ‖[∂n(u− uh)]‖∂K

≤ ctrh
−1
K

(
‖∇(u− uh)‖K + hK‖∇2(u− uh)‖K

)
. (33)

Combining (32) and (33) gives the first part of the estimate.
(ii) Next, for the weights, we get by using (13)

ωK = ‖z − ihz‖K + h
1
2
k ‖z − ihz‖∂K ≤ chK

(
‖∇(z − ihz)‖K + h−1

K ‖z − ihz‖K
)
. (34)

(iii) The result follows by combining the estimates for ρK and ωK using Hölder’s inequality. �
We can bound the sum of error indicators by the product of approximation error in the primal

solution and interpolation error of the adjoint solution. Using the dual form of the error identity (12)
we would get the opposite result. Starting with the mixed identity (17) results in the sum of both
estimates, or - in terms of the concept of effectivity (30) - in the maximum value of approximation
and interpolation error.

For an evaluation of this indicator (at a higher polynomial degree) one must assemble the strong
residual of the equation, namely f −Luh, where L is the second order differential operator in classical
formulation. This evaluation can be very costly, when parametric finite elements of higher order are
used, see Remark 1. Finally, having the full nonlinear case in mind, see Section 2.2, the error indicator
consists of a primal and adjoint part, where η∗K = ρ∗Kω

∗
K , with

ρ∗K = ‖J ′(uh)− L′∗(uh)zh‖K , (35)

where L′∗(uh) is the linearized adjoint operator at uh. For complex coupled problems it is sometimes
not possible to assemble the adjoint operator in strong formulation, see e.g. [34].

4.2 Localization based on filtering the variational formulation

Braack and Ern [14] proposed a localization technique for the DWR estimator that is fully based on
the variational formulation and firmly linked to the approximation of the weights using a higher order

representation z∗h ∈ V ∗h of the adjoint solution zh ∈ V
(r)
h , where V

(r)
h is the finite element space of

degree r, see Section 3.2. Given a patched mesh and finite element space setup, we can define the

space V
(r)

2h ⊂ V
(r)
h of double mesh spacing and introducing i2h(z − ihz) = 0. As the two interpolation

operators commute i2hih = ihi2h (considering a standard nodal interpolation), it holds

z − ihz − i2h(z − ihz) = (id−i2h)(id−ih)z = (id−ih)(id−i2h)z = (id−ih)π2hz, (36)

where the patch-wise filtering operator is π2h := id−i2h; introduced by Braack and Ern. It remains
to apply the approximation of the weights as described in Section 3.2:

J(u)− J(uh) ≈
(
f, (i∗ − id)π2hzh

)
−
(
∇uh,∇

(
(i∗ − id)π2hzh

))
. (37)

The operator i∗ : V
(r)
h → V ∗h := V

(2r)
2h is the patch-wise interpolation into the space of double polyno-

mial degree V
(2r)

2h on the patch mesh , and for φih ∈ V
(r)
h it holds ihi

∗φih = φih. Let P = {K1, . . . ,Kp}
be a patch of elements K ∈ Ωh and φi,∗h := i∗φih ∈ V

(2r)
2h . Then it holds,

(i∗ − id)φih = φi,∗h − ihφ
i,∗
h , (38)
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such that for k = 0 and k = 1 the interpolation estimate gives

hkK‖∇k(i∗ − id)φih‖P = hkK‖∇k(φ
i,∗
h − ihφ

i,∗
h )‖P ≤ chK‖∇φi,∗h ‖P ≤ chK . (39)

Applied to zh, the filtering operator π2hzh is a strictly local algebraic process acting on the coefficient
vector z ∈ RN :

zh − i2hzh =
∑
i

zi(φ
i
h − i2hφih) =:

∑
i

(π2hz)iφ
i
h, (40)

as the interpolations of the finite element bases functions i2hφ
i
h can be linearly combined by φjh.

Finally, Braack and Ern defined the local error indicators as

J(u)− J(uh) ≈
∑
i

{(
f, (i∗ − id)φih

)
−
(
∇uh,∇

(
(i∗ − id)φih

))}
(π2hz)i.︸ ︷︷ ︸

=:ηπi

(41)

We refer to Fig. 1 for a sketch of the different interpolation operators i2h, i∗ and the filtering
operator π2h employed for this approach. We notice that these local indicators ηπi are node-wise and
not element-wise contributions. The error indicators inherit the patch structure and it holds, that
ηi = 0 for every second degree of freedom (in a tensor-product way), e.g. for all degrees of freedom
that belong to Lagrange points xi of the finite element space Vh as well as the finite element space
V2h. If these indicators are to be used for mesh-refinement, a first step has to be a summation of all
indicators associated to one patch. Then, refinement is carried out on the patch-mesh.

Lemma 2 (Effectivity of the algebraic filter-approach). Let u ∈ V ∩ H2(Ω) and z ∈ V be solution
to primal and adjoint problem, uh ∈ Vh and zh ∈ Vh be the corresponding finite element solutions of
degree r. The filtering indicator defined by (41) is effective

N∑
i=1

|ηπi | ≤ c‖u− uh‖h
(
‖∇(z − zh)‖+ ‖∇(z − i2hz)‖

)
, (42)

with a constant c > 0 and where i2h : H2(Ω) → V
(r)

2h is the interpolation operator into the finite
element space of the same degree r on the patched mesh with mesh-size 2h.

Proof. We consider the two dimensional case only. The three dimensional case follows by similar
arguments.

All indicators ηi belonging to Lagrange points xi ∈ Ω2h vanish. We must distinguish between
indicators ηe belonging to degrees of freedom on edges of a patch xe ∈ ∂P and indicators ηm belonging
to inner points xm ∈ P , see Fig. 2. (In the three dimensional case we would have to add all indicators
ηf belonging to faces of elements.)

Figure 1: Patch of four elements. Discrete solution uh ∈ V
(r)
h , reconstruction i∗uh ∈ V

(2r)
2h , coarse-mesh

interpolation i2huh ∈ V
(r)

2h and fluctuation operator π2huh (going from left to right).
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(i) Inner points. Let xm ∈ P be the midpoint of a patch P . Then, the basis functions φih, i
∗φih and

i2hφ
i
h all have their support in P . Let z̄ = π2hzh(xm).

ηπi = z̄

{(
f, (i∗ − id)φih

)
P
−
(
∇uh,∇

(
(i∗ − id)φih

))
P

}

= z̄

(f + ∆uh, (i
∗ − id)φih

)
P
−
∑
K∈P

〈
∂nuh, (i

∗ − id)φih

〉
∂K

 ,

(43)

where K ∈ P are all in the patch. On ∂K ∈ ∂P , the boundary integral vanishes. By ei ∈ P we denote
the interiour edges between the elements. They appear twice, such that using the normal jumps it
holds

ηπi = z̄

(f + ∆uh, (i
∗ − id)φih

)
P
−
∑
ei∈P

〈
[∂nuh]− [∂nu], (i∗ − id)φih

〉
ei

 . (44)

As in the proof to Lemma 1, we added [∂nu] = 0 on all inner edges ei ∈ P :

|ηπi | ≤ |z̄|
{
‖∆(u− uh)‖P ‖(i∗ − id)φih‖P

+ ch−1
K

(
‖∇(u− uh)‖P + hK‖∇2(u− uh)‖K

)
·
(
‖(i∗ − id)φih‖K + hK‖∇(i∗ − id)φih‖K

)}
. (45)

We proceed with (39) to get

|ηπi | ≤ c|z̄|
{
hK‖∇2(u− uh)‖P + ‖∇(u− uh)‖P

}
. (46)

It remains to estimate the discrete fluctuation z̄. By inverse estimates, it holds

|z̄| ≤ ‖π2hzh‖L∞(P ) ≤ ch−1
K ‖π2hzh‖P ≤ c‖∇π2hzh‖K . (47)

This last inverse estimate works out, as for ∇π2hzh = 0 it must follow that π2hzh is constant on P
and as zh ∈ V2h finally π2hzh = 0. By introducing ±z, and using the stability of the interpolation
operator i2h, the estimator sum gets

∑
i

|ηπi | ≤ c

‖∇(u− uh)‖2 +
∑
K∈Ωh

h2
K‖∇2(u− uh)‖2K

 1
2

·
(
‖∇(z − zh)‖+ ‖∇(z − i2hz)‖

)
.

xm

xe

Figure 2: The filter based error indicator on two patches P ∈ Ωh. It holds ηi = 0 for all outer points
xi ∈ Ω2h. Splitting of the estimator into inner nodes xm and edge nodes xe.
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(ii) Boundary points. Let xe ∈ ∂P be a node on the edge of two patches P1 and P2. Then, it holds

ηπi = z̄

{(
f, (i∗ − id)φih

)
P1∪P2

−
(
∇uh,∇

(
(i∗ − id)φih

))
P1∪P2

}
, (48)

where again, z̄ = π2hzh(xe). Here, the test-function φih and its interpolants have their support in the
joint patch P1 ∪ P2 and all terms can be estimated as in step (i). �

Remark 3. This estimate slightly differs from the effectivity concept (30). The patch-structure enters
by the interpolation ‖∇(z − i2hz)‖ onto the coarse mesh. This term however is of the same order in
h as ‖z − ihz‖h, just carrying a larger constant.

The benefit of this localization strategy is the simplicity of implementation, if a patch structured
mesh is available. For evaluation of the estimator, two residuals must be calculated,

ri := (f, φih)− (∇uh,∇φih), r∗i := (f, φi,∗h )− (∇uh,∇φi,∗h ), i = 1, . . . , N, (49)

the first using the standard basis, the latter with a higher order basis. Then, given the filtered
coefficient vector π2hz, the estimator is given by the algebraic computation

ηπi = (r∗i − ri)(π2hz)i, i = 1, . . . , N. (50)

All these ingredients are usually available in standard finite element libraries. One drawback of this
localization is its interpretation, as the indicator values ηπi are neither given in an element-wise way,
nor strictly in a node-wise manner, as ηπi = 0 on all coarse Lagrange points. The indicators must
instead be regarded in a patch-wise sense which comes at the cost of loosing granularity. This might
be an issue regarding 3D simulations as it will lead to meshes, which are up to a factor of 8 more
complex as the optimal ones.

4.3 Localization using partition of unity (PU)

Finally, we introduce a new localization approach based on the variational formulation that combines
the simplicity of the filter based approach (as it is given in terms of variational residuals) with a very
simple structure, which does not require patched meshes. Localization is simply based on introducing
a partition of unity (PU)

∑
ψi ≡ 1 into the error identity (11):

J(u)− J(uh) =
N∑
i=1

{
(f, (z − ihz)ψi)− (∇uh,∇((z − ihz)ψi)

}
︸ ︷︷ ︸

=:ηPU
i

. (51)

The resulting error indicators ηPU
i are node-wise contributions of the error. Mesh adaptivity can

directly be carried out in a node-wise fashion: if a node is picked for refinement, all elements touching
this node will be refined. Alternatively, one could also first assemble element wise indicators by
summing up all indicators belonging to nodes of the element and then carry out adaptivity in the
usual element-wise way.

Lemma 3 (Effectivity of the PU localization). Let u ∈ V be the solution to the Poisson equation,

z ∈ V be the adjoint solution. uh, zh ∈ Vh = V
(r)
h their discrete counter-part. Further, let

∑
ψi ≡ 1 be

a PU with ‖∇ψi‖∞ = O(h−1). The error indicators given by (51) are effective, i.e.,

N∑
i=1

|ηPUi | ≤ c‖∇(u− uh)‖ ·

‖∇(z − ihz)‖2 +
∑
K∈Ωh

h−2
K ‖z − ihz‖

2
K

 1
2

, (52)
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with a constant c > 0.

Proof. Let supp(ψi) ⊂ Pi = ∪Kj for some elements Kj ∈ Ωh. It holds with (f, φ) = (∇u,∇φ) for all
φ ∈ H1

0 (Ω):

ηPU
i = (f, (z − ihz)ψi)− (∇uh,∇((z − ihz)ψi))

= (∇(u− uh),∇((z − ihz)ψi))Pi
≤ ‖∇(u− uh)‖Pi(‖∇(z − ihz)‖Pi‖ψi‖L∞(Pi) + ‖z − ihz‖Pi‖∇ψi‖L∞(Pi)).

(53)

The result follows by using ‖∇ψ‖L∞(Pi) = O(h−1). �
In contrast to the classical localization and the filtering approach, the PU localization technique

requires minimal regularity u, z ∈ H1
0 (Ω) only. A similar technique based on a PU has been used

by Kuzmin & Korotov [28] to localize a strong residual formulation of the DWR estimator applied
to 1D transport problems. The introduction of a partition of unity into the strong formulation of
the residual is also the fundamental basis for the family of flux-free error estimators [29, 18]. Here,
the PU is used to define local sub-problems that are used to construct robust error estimators. The
construction with help of a PU directly yields a localized form of the estimator. This technique is
not only accurate for energy norm estimates but also robustly applied in the context of linear output
functionals [29]. Further, it is possible to design a convergent finite element method based on flux-free
error estimators [30]. In contrast to flux-free error estimators, we simply insert a partition of unity to
localizing the standard DWR estimator.

Realization As PU, we consider the space of piece-wise bilinear elements V
(1)
h (without restrictions

on Dirichlet boundaries) with usual nodal basis {ψih, i = 1, . . . , N (1)}. The approximated local error
indicator is then given by

η̃PU
i :=

N(r)∑
j=1

{
(f, (φ

(2),j
2h − φjh)ψih)Ω −

(
∇uh,∇((φ

(2),j
2h − φjh)ψih)

)
Ω

}
zj , (54)

and it can be efficiently computed in an element-wise manner, as only few test-functions φjh, φ
(2),j
2h and

ψih overlap on every element K ∈ Ωh.
On adaptive meshes with hanging nodes, the evaluation of the PU indicator is straightforward: First,

the partition of unity is assembled on basis functions ψih. In a second step, the contributions belonging
to hanging nodes are condensed in the usual way by distribution to the neighboring indicators, see [3]
for details on handling hanging nodes. The benefit of this localization technique is its simplicity
and its accuracy according to Lemma 3 demonstrated in the numerical examples in Section 5. For
the application, we only need evaluations of the right hand side and the residual with modified test-
functions. As PU we can simply use the standard nodal Lagrange basis of the continuous finite element
space of lowest polynomial degree. This localization technique can be readily applied to general meshes
in two and three dimensions. In contrast to the filtering approach, we do not require special mesh
structures, such as patches. In particular for three dimensional simulations, the use of patched meshes
can substantially increases the problem size. However, the problem of obtaining good approximations
to the weights z− ihz and u− ihu remains and here, using reconstruction of patches still is one of the
most efficient strategies. The second advantage is the easy application of the localization to complex
nonlinear systems, where the evaluation of strong residuals can be cumbersome. Once again we point
out, that the adjoint operator in strong formulation is not even known for some complex multiphysics
problems, see e.g. [22, 34].
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Remark 4 (General elliptic problems). The results stated in Lemmata 1, 2 and 3 can all be transferred
to the case of general elliptic problems like transport reaction diffusion problems. We have only used
standard a priori results in the H1-seminorm and the L2-norm. Considering the general operator
Lu := −∆u+β ·∇u+αu, the adjoint operator reads L∗z := −∆z−β ·∇z+αz with opposite transport
direction.

5 Numerical Tests

In this final section, we substantiate our theoretical findings by three numerical tests with increasing
complexity. In the first test, we use standard Poisson’s problem with a regular goal functional on a
regular domain. The second test case deals with a low regularity problem on a L-shaped domain with
singular right hand side and functional. Finally, we consider a three-dimensional nonlinear elasticity
system to demonstrate the great flexibility and simple realization of the PU approach. In every test-
case, we analyze different forms of the error estimator (primal, dual, mixed) and different localization
techniques and compare them with respect to estimator and indicator effectivities on both uniform
and adaptive meshes. The computations use quadrilateral and hexadedra meshes and are performed
with Gascoigne 3D [5] and deal.II [4].

#el J(u− u(1)
h ) ηh J(u− u(2)

h ) ηh J(u− u(3)
h ) ηh

16 8.11 · 10−4 8.08 · 10−4 2.23 · 10−6 2.23 · 10−6 5.16 · 10−8 5.14 · 10−8

64 2.04 · 10−4 2.04 · 10−4 1.77 · 10−7 1.77 · 10−7 3.20 · 10−9 3.19 · 10−9

256 5.11 · 10−5 5.11 · 10−5 1.34 · 10−8 1.34 · 10−8 0.20 · 10−9 0.20 · 10−9

1024 1.28 · 10−5 1.28 · 10−5 0.98 · 10−9 0.98 · 10−9 < TOL < TOL
order 2.00 3.78 4.00

Table 1: Configuration 1: error and error estimator on uniform meshes. From left to right: linear,
quadratic and cubic finite elements. The last line shows the estimated order of convergence.

5.1 Configuration 1: A regular Poisson example

In this first example, we consider Poisson’s equation −∆u = 1 on a unit square Ω := (0, 1)2 with a
homogenous Dirichlet conditions on ∂Ω. As target functional we evaluate the average of the solution

J(u) =

∫
Ω
u dx. (55)

This functional corresponds to the adjoint problem −∆z = 1, again with z = 0 on ∂Ω. Hence it holds
u = z and the regularity of u, z ∈ H3−ε(Ω) for ε > 0 is limited by the edges of the unit square [21].
For such a regular problem we expect the a priori estimate

|J(u)− J(uh)| ≤ c‖∇(u− uh)‖ ‖∇(z − zh)‖ ≤ chmin{2r,4−2ε}, (56)

where r ≥ 1 is the polynomial degree of the finite element space Vh. By accurate computations on
very fine meshes using extrapolation we identify the reference value J̃ = 0.03514425375± 10−10.

We compute primal and adjoint solution z
(r)
h , u

(r)
h ∈ V

(r)
h by using finite elements of degree r = 1, r =

2 and r = 3. The interpolation weights are either approximated by using global finite element solutions

u
(2r)
h and z

(2r)
h ∈ V (2r)

h of double polynomial degree, or obtained by local patch-wise reconstruction

u
(2r)
2h , z

(2r)
2h ∈ V

(2r)
2h , see Section 3.
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Figure 3: Configuration 1: Visualization of the local error indicators on similar meshes: (left) classical
formulation, (middle) filtering approach, (right) PU. All computations with biquadratic
finite elements.

adaptive Q3
uniform Q3
uniform Q2

N−3

N−2

unknowns

re
la
ti
ve

er
ro
r

100000100001000100

0.0001

1e-05

1e-06

1e-07

1e-08

1e-09

1e-10

# dof’s J(u)− J(u
(3)
h ) ηPU

h effPU
h

169 8.51 · 10−07 8.47 · 10−07 0.99
317 1.12 · 10−07 1.37 · 10−07 1.23
937 5.56 · 10−09 7.54 · 10−09 1.36
1 813 1.14 · 10−09 1.41 · 10−09 1.24
3 877 5.28 · 10−11 8.05 · 10−11 1.52
7 057 1.61 · 10−11 2.07 · 10−11 1.29

Figure 4: Configuration 1. Left: error slopes on uniform (Q2 and Q3 elements) vs. adaptive meshes
(Q3 elements). Right: error, estimator and effectivity index for adaptive Q3-elements.

In Table 1 we show the functional error J(u) − J(u
(r)
h ) and the estimated error ηh on a sequence

of uniform meshes for different polynomial degrees. It can be seen, that the error estimator shows
perfect effectivity effh ≈ 1 even on very coarse meshes. As the problem and the functional are linear,
all three versions of the error identity; namely, primal, dual and mixed result in the same findings.
This is also found numerically, hence, only one value η is given in the table. We find no difference,
whether the weights are approximated using higher order simulations or by the reconstruction process.
Hence, just one value is given.

Localization and adaptivity Table 1 further shows, that going beyond second order finite elements
does not result in an increased approximation order on uniform meshes. This is due to the limited
regularity u, z ∈ H3−ε(Ω). Hence, we next consider localization of the error estimator and adaption
of the meshes. For mesh adaption, we follow a simple equalization strategy that aims at balancing
the element wise error indicators, such that a mesh element K ∈ Ωh is being refined, if the error
indicator |ηK | is above average. While the classical localization technique described in Section 4.1
directly gives element-wise indicators ηK , we agglomerate the adjacent node-wise values to element
wise values in the case of the PU approach in Section 4.3 and to patch-wise values for the filtering
approach of Section 4.2.

In Fig. 3 we plot the error indicators ηK , ηπi and ηPU
i as function over the domain Ω. By construction,

the classical indicator values ηK are all positive, while the two variational settings ηπi and ηPU
i show
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both negative and positive values. Furthermore, the projection based indicators ηπi show patch-wise
fluctuations, while the PU approach yields smooth node-wise contributions.

Next, in Fig. 4, the error slopes obtained on uniform and adaptive meshes using quadratic and cubic
finite elements are displayed. For refinement we used the PU localization. Further, we indicate error,
estimator and effectivity index effh on a sequence of locally adapted meshes. Here optimal order of
convergence in terms of unknowns with respect to the relation N ∼ h−2 is recovered. In addition,
we observe good effectivities. For this simple and regular problems, all three localization techniques
result in the same finite element meshes. Hence, we always considered the PU method only. Lastly,
localizations based on the primal, dual or mixed formulation all result in the same adaptive meshes.

5.2 Configuration 2: Poisson problem with low regularity

As second test-case, we consider Poisson’s equation on an L-shaped domain ΩL = (−1, 1)2 \ (−1, 0)2,
where the right hand side is given by a Dirac in x0 = (−0.5, 0.5)

−∆u = δx0 in ΩL, u = 0 on ∂ΩL. (57)

As functional of interest, we consider the point evaluation in x1 = (0.5,−0.5) such that J(φ) = φ(x1).
The adjoint problem corresponds to solving Poisson’s equation −∆z = δx1 with a Dirac right hand
side in x1. Both the primal problem and the adjoint problem lack the required minimal regularity
for the standard finite element theory, such that a regularization by averaging is required, e.g. by
averaging over a small subdomain:

Jε(φ) =
1

2πε2

∫
|x−x1|<ε

φ(x) dx, (58)

where ε > 0 is a small parameter not depending on h. As reference functional quantity we identify
the value

J̃ = 2.134929 · 10−3 ± 10−7. (59)

Due to limited regularity of primal and adjoint solution, we cannot expect high order convergence.
Adaptivity based on good localization is important for an accurate approximation. We start by
comparing the different localization techniques discussed in Section 4. Table 2 shows values obtained
on a sequence of uniform meshes using piece-wise bilinear finite elements. Here, we provide the number
of mesh elements, the error as well as effectivity index effh and indicator index indh, see (18) and (26),
for the three different localization techniques based on the strong residual, the filtering approach and
the PU method.

DoFs J(u)− J(uQ1
h ) effKh indKh effπh indπh effPU

h indPU
h

48 1.45 · 10−4 1.80 1.80 1.06 2.92 1.06 1.74
192 4.66 · 10−5 2.04 2.04 1.24 3.27 1.24 2.19
768 1.46 · 10−5 1.98 1.98 1.08 2.80 1.08 2.03

3 072 5.31 · 10−6 1.83 1.83 1.02 2.28 1.02 1.77
12 288 2.02 · 10−6 1.66 1.66 1.02 1.85 1.02 1.50

Table 2: Configuration 2: calculations on uniform meshes, comparing the effectivity index and the
indicator index for the three different localization techniques using the classical formulation
ηKh , the filtering approach ηπh and the PU technique ηPU

h .
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N J̃ − J(uh) effPU
h indPU

h

12 7.98 · 10−5 0.87 0.95
48 1.25 · 10−5 0.81 0.82
84 4.98 · 10−6 0.86 0.87

240 1.85 · 10−6 0.86 0.86
276 6.67 · 10−7 0.96 0.97

N J̃ − J(uh) effPU
h indPU

h

12 4.15 · 10−5 0.87 0.96
48 6.39 · 10−6 0.83 0.83
84 2.43 · 10−6 0.85 0.87

120 8.91 · 10−7 0.92 0.97
324 2.80 · 10−7 1.17 1.16

Table 3: Configuration 2: effectivity of the estimator and the indicators (partition of unity) on adaptive
meshes with N elements. Left: discretization with piece-wise cubic, right with piece-wise
quartic finite elements.
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Figure 5: Configuration 2: relative error over number of unknowns for computations using linear,
quadratic and cubic finite elements. Uniform vs. adaptive mesh refinement.

The two approximation techniques based on the variational formulation, ηπh and ηPU
h result in a

better effectivity index. Here, the formulation based on the strong residual and application of Cauchy-
Schwarz shows a small overestimation of the error. For the local error indicators, we can only discover
a small difference between the three techniques under investigation. The PU method yields a slightly
better constant, due to the prevention of local oscillation, that is typical for the algebraic filtering
approach.

Table 3 shows the functional error, the estimator effectivity and the indicator effectivity on a se-
quence of locally refined meshes using high order finite elements. Localization and refinement is based
on the PU method. It shows, that the estimator and the localization are highly accurate for finite
elements of high polynomial degree. In Fig. 5, we show the convergence of the functional values on
sequence of uniform and adaptive meshes using linear, quadratic and cubic finite elements. First, we
identify the necessity of local mesh adaptation, as an increasing polynomial degree does not result
in better approximation order on uniform meshes. Using adaptivity and localization based on the
PU method, we recover the optimal order of convergence (based on the relation N = h−2) for all
polynomial degrees. We however also see, that using isotropic adaptive meshes is not sufficiently able
to resolve the singularities. The optimal order is only recovered on very fine meshes.
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Figure 6: Configuration 2: Comparisons of patched meshes on refinement level 6 using primal (left),
dual estimator (middle) and the mixed estimator (right). We compare from top to bottom
the Q1 and Q4 discretizations. In particular, the localization of the error estimator using
higher order polynomials is observed.

Then, we use this test-case to study the differences in the localization behavior of primal, dual, and
mixed estimators. For linear problems, all three versions of the error estimator (11), (12) and (17)
are equivalent. Their localizations however will depend on a different weighting of approximation and
interpolation errors as discussed in Section 4.

By the pollution effect, which is supposed to get stronger for higher order finite elements, see [2],
we may experience different localizations. In Fig. 6 we show locally refined meshes obtained from
localizations based on the three different error representation formulas; primal, adjoint and mixed - all
meshes differ. The refinement of primal and adjoint formulation is mirrored at the line x = y through
the midpoint. The meshes corresponding to the mixed formulation can be regarded as a union of the
two one-sided error representations, leading to symmetric meshes. The effect of different meshes gets
stronger with higher polynomial degree, as is expected by the analysis of the pollution effect. Even
though this example is atypical, we stress the importance of a correct balancing of primal and adjoint
residuals for adaptive mesh refinement.
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Figure 7: Configuration 2: Meshes on refinement level 6 without patch structure for Q1 (left) and Q4

(right) discretizations using the primal (non-symmetric) error estimator.
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Figure 8: Configuration 2: Relative error over number of unknowns for the primal error estimator. The
rate of convergence for the same order of finite element discretization is the same for patched
and non-patched meshes. However, the error constant is slightly better using non-patched
meshes.

Next, we demonstrate that the PU error estimator does not rely on a patched mesh structure. To
see this, we run and compare four different settings; namely Q1 and Q4 discretizations using patched
and non-patched meshes. For estimating the error, the primal formulation (11) is considered. Omiting
the patch structure allows us to realize a sharper refinement towards singularities. On the other hand,
without the patch structure, we cannot use the simple reconstruction technique for the weights that
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DOF’s J(u) error ηh effh indh
3 072 136 070 4 230 730 0.17 3.00
8 448 134 626 2 786 215 0.08 2.63

22 224 133 487 1 647 556 0.33 2.54
57 504 132 808 968 523 0.54 2.48

152 592 132 358 518 325 0.63 2.56
378 384 132 152 312 235 0.76 2.30
871 800 132 023 183 152 0.83 2.31

Table 4: Configuration 3: convergence history on a sequence on locally refined meshes with number
of unknowns, functional value J(u), error J(u)− J(uh), effectivity effh = ηh/|J(u)− J(uh)|
and indicator index indh =

∑
|ηi|/|J(u)− J(uh)| for the PU localization.

has been described in Section 3.

In Fig. 7 we show meshes for Q1 and Q4 elements on refinement level 6. These meshes must be
compared to the left column in Figure 6, where the same computations have been carried out - but
here using patched meshes. In Fig. 8 we compare the error slopes for Q1 and Q4 elements on adaptive
meshes with and without patches. We first identify the same order of convergence for both cases.
The computations without patches give a slightly better error constant, as the strong singularities in
this test-case can be better resolved. Comparing the meshes in Fig 7 with the left column in Fig. 6
shows, that by omiting the mesh structure, the regularity of the meshes in lessened. In particular the
Q1 computations introduce many islands of refined cells, which lead to a large number of hanging
ndoes. However, by consulting the error plots in Figure 8, we cannot detect a negative influence on
the resulting error with respect to the number of unknowns (including all hanging nodes).

5.3 Configuration 3: Application to a nonlinear system

The benefit of a variational localization of the error identity is in particular given for complex nonlinear
systems of partial differential equations, where assembling the strong formulation of the system is
too costly. To exploit the localization technique we consider a nonlinear elasticity problem. For
the construction shown in Fig. 9, we compute the deformation u : Ω → R3 of an elastic beam
Ω = (0, L) × (0, D) × (0, H) with length L = 2, depth D = 1 and height H = 0.5 under a given
volume force f = −100e3. The beam is attached u = 0 on parts of the frontal boundary ΓD =
(0× L/2)× {0} × (0, H). All other boundary parts are free. As quantity of interest, we measure the

ΓD f = −100e3

L = 2
D = 1

H = 0.5

Figure 9: Configuration 3: Deformation of partially fixed elastic beam Ωb under gravity. Left: sketch
of the configuration. Right: locally adapted mesh.

20 Accepted for publication in Journal for Computational and Applied Mathematics, 2014



adaptive
uniform

N−0.44

N−0.67

unknowns
re
la
ti
ve

er
ro
r

1e+071e+0610000010000

0.01

0.001

Figure 10: Configuration 3: comparison of the relative error on uniform and adaptive meshes.

total stress within the structure

J(u) =

∫
Ω
|FsΣs|2 dx, (60)

where Fs = I + ∇u is the deformation gradient and Σs the 2nd Piola Kirchhoff stress tensor. The
balance equation reads:

−div
(
FsΣs

)
= f , (61)

and the material is of St. Venant Kirchhoff type:

Σs := 2µsEs + λs tr(Es)I, Es :=
1

2

(
FT
s Fs − I

)
, (62)

where µs = 5 · 104 and λs = 105. This corresponds to a very soft and compressible (Poisson’s ratio
νs = 1/3) material. A reference value J̃ = 131 840 ± 0.1% is obtained with the help of extrapolation
on a very fine, initially graded mesh with about 4 000 000 unknowns. The weak formulation of this
problem with Dirichlet data on ΓD ⊂ ∂Ω is to find u ∈ X := H1

0 (Ω; ΓD)3

a(u,φφφ) := (FsΣs,∇φφφ)Ω = (f ,φφφ)Ω ∀φφφ ∈ X . (63)

Here, we must consider the full nonlinear version of the DWR estimator (17) as introduced in Sec-
tion 2.2. For its application, we must solve the adjoint problem and evaluate residuals of both primal
and adjoint formulation. For the derivative a′(u)(w,φφφ) it holds for u,w,φφφ ∈ X

a′(u)(w,φφφ) =

(
dFs(u)

du
(w)Σs + Fs

dΣs(u)

du
(w),∇φφφ

)
Ω

, (64)

where ∂uFs(w) = ∇w and

dΣs(u)

du
(w) = 2µs

dEs(u)

du
(w) + λ tr

(
dEs(u)

du
(w)

)
,

dEs(u)

du
(w) =

1

2

(
∇wTFs + FT

s∇w
)
.

(65)
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While it is straightforward to set up a system matrix according to this derivative (or its transposed
a′(u)(φφφ, z)); derivation of the strong formulation is cumbersome, mostly due to strongly coupled terms
like (

λs
2

Fs tr
(
∇φφφTFs + FT

s∇φφφ
)
,∇z

)
. (66)

How to separate and exempt the test-function φφφ from all derivatives is not obvious. A fully variational
evaluation of the error estimator and its localization has the advantage that strong formulations are
not required. The functional derivative is given by

J ′(u)(φφφ) = 2

∫
Ω

FsΣs :

(
∇wΣs + Fs

dΣs(u)

du

)
dx. (67)

In Table 4 we collect the functional value and error |J̃−J(uh)|, the error estimator as well as effectivity
index and indicator index on a sequence of adaptive meshes. We get only a slight underestimation of
the error even for this complex problem. The effectivity is close to one effh ≈ 1 for h→ 0. Localization
with the PU method yields very good local approximations to the error. The indicator index indh
is about two on all meshes. Once again we stress that this localization technique is not only very
accurate, it also helps to realize an efficient application to complex nonlinear problems, where the
evaluation of classical residuals in strong operator formulation has to be avoided.

In addition, the error slopes on uniform and on adapted meshes are shown in Fig. 10 . By using
adaptivity, singularities appearing at edges are resolved and a higher order of convergence is obtained
with respect to the number of unknowns. Finally, by choosing adaptive meshes, a relative error of
0.1% can be reached with less than 1 000 000 unknowns compared to more than 10 000 000 required
unknowns on uniform meshes.

6 Conclusion

We have investigated several localization strategies for goal-oriented error estimators. In particular, we
provided further insight to variational based localization techniques as the filtering approach by Braack
& Ern [13] that is in particular useful for practical applications, where the evaluation of strong residuals
is not possible due to the high effort or simply because a classical formulation of the adjoint problem
is not available. Furthermore, we have introduced a new and very simple localization technique based
on introducing a partition of unity (PU), that is locally effective for minimal regularity problems and
that can be applied to general nonlinear problems in a straightforward manner. Specifically for high
order finite elements this technique is highly accurate and the implementation is straightforward.
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