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Abstract. In this paper, we consider numerical methods for nonlinear diffusion problems where the diffusion term follows a3

power law, e.g., p-Laplace type problems. In the first part, we present continuous higher order finite element discretizations for4

the model problem and we derive error estimates. In the second part, we discuss Newton iterative methods based on residual-5

based line search and error-oriented globalization, which are employed for the numerical solution of the produced nonlinear6

algebraic system. Thirdly, we formulate the original problem as a saddle point problem in the frame of augmented Lagrangian7

techniques and present two iterative methods for its solution. We conduct a systematic investigation of all solution algorithms.8

These algorithms are compared with respect to computational cost and their efficiency. Numerical results demonstrating the9

theoretical error estimates are also presented in five examples.10
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1. Introduction. Second order elliptic problems with p-type gradient nonlinearities in the diffusion14

coefficient, that is (ε2 + |∇u|2)
p−2
2 , with ε ≥ 0 and p ∈ (1,∞), are of special interest and are relevant in many15

practical applications, e.g., in aerodynamics, porous media, non-Newtonian flows, plasticity and glaciology,16

and fluid-structure interaction [1, 2, 3, 4]. Therefore, the numerical solution of these problems is of great17

importance. In the application of numerical methods for solving these type of problems, we meet several18

difficulties associated mainly with the presence of the gradient in the p-nonlinear structure of the diffusion19

term.20

The most classical p-type model problem that has been studied in the literature is the p-Laplace problem,21

i.e., ε = 0. The first analysis of finite element methods (FE) for p-Laplace was undertaken in [5] and in [6]22

(chapter 5), where (sup-optimal) error estimates have been shown in the W 1,p-norm. These results were23

further improved in [7] and recently, were used in [8, 9] for developing k and hk finite element methods,24

where h denotes the spatial discretization parameter and k the degree of the polynomial space 1. Recently,25

optimal error bounds have been shown for p-Laplace and more general p-power law elliptic problems by using26

quasi-norm interpolation estimates. The main idea in this approach is first to establish interpolation estimates27

in a quasi-norm, which is predetermined by the p-nature of the problem, and then to derive error estimates28

by exploiting the relations between the quasi- and Sobolev norms. Among others we quote [10, 11, 12, 13].29

In [14], interpolation operators in Orlicz-Sobolev spaces were studied and were utilized for approximating30

solutions of more general p-type problems, the so-called p-structure problems.31

Over the last two decades, there has been an increasing interest on devising discontinuous Galerkin (DG)32

methods for the numerical solution of p-type problems, see [15, 16, 17, 18]. In all these DG methods the33

numerical fluxes were developed by following the p-nonlinear nature of the problem. Particularly, in [16],34

local DG methods were studied for p-structure problems. The quasi-norm interpolation estimates presented35

in [14], were applied in the frame of broken paces and optimal error estimates were shown for linear elements.36

The same Local DG methods have been used later in [17] for solving more realistic p-type problems and in37

[19] for solving non-Newtonian flow problems.38

We point out that the degenerate nature of the p-type problems makes the study of their regularity39

properties quite difficult. In general we cannot guarantee high regularity for the solution u even with smooth40

problem data, [20], and hence, the FE methods that have been applied for these problems usually consider first41

order polynomial spaces. In [21], global W 2,2 regularity properties were established under some assumptions42

on the right hand side of the p-type model under consideration. These results were used in the discretization43

error analysis in [21, 22]. Furthermore, it has been shown in [22] that under some further assumptions on44

the problem data, we can obtain W 1+2/p,p regularity for the solutions of the p-Laplacian, and this regularity45

is sufficient to ensure optimal error bounds.46

However, recently there has been much work on applying high-order tensor product spaces for solving47

elliptic problems, even in cases with reduced regularity, and many techniques have been developed, e.g.,48

adaptive meshes, graded meshes, for recovering the optimal rates, see for example [8, 23, 24, 25, 26, 27]. In49

this paper, motivated by the results in [14], we discuss high order interpolation error estimates in the same50

quasi-norms for solving p-type diffusion problems, with p ∈ (1,∞) and 0 < ε ≤ 1. 2
51
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In particular, assuming appropriate regularity properties for u, see Assumptions 2.1 and 2.3, we combine52

the structure (monotonicity) conditions presented in [14], with known high order interpolation estimates53

in Sobolev spaces, [28]. This helps us to derive quasi-norm interpolation error estimates using high order54

spaces. Having these estimates, we proceed and show optimal error bounds for sufficiently smooth solutions.55

We mention that in [14] quasi-norm error estimates have been shown for linear spaces but using a different56

methodology.57

After the finite element discretization of the p-type diffusion problem we must solve a nonlinear algebraic58

system. In the second part of the paper, we present two Newton methods for solving the nonlinear algebraic59

system, (i) a classical residual-based procedure and (ii) an error-oriented approach, [29]. We also mention60

that in [30], inexact Newton methods with adaptive stopping criteria for the nonlinear and the linear solver61

have been presented. Therein, the stopping criteria is based on a posteriori error estimates, which split the62

global error into three parts, the discretization, the linearization and the algebraic part.63

Initially inspired by the results in [31], we show bounds for the condition number of the iterative Newton64

Jacobian matrix. Then we present two methods. The first method is simple to be materialized and uses65

a classical criterion in order to check at each step whether the residual has been decreased. The second66

method is based on a natural monotonicity criterion and rather than observing the residuals, two update67

steps are compared. This second method is more expensive since an additional simplified problem needs to be68

solved. Later, in the numerical examples, we investigate and compare the performance and the corresponding69

convergence rates of the two Newton methods with respect to the variation of the problem parameters ε and70

p. The comparisons are made in a wide range of problems with high and low regularity solutions.71

Lastly, we treat the original problem by developing techniques which provide a separation of the gradient72

of the solution from the nonlinearity. We achieve this by means of augmented Lagrangian (ALG) techniques.73

The original problem is reformulated as a saddle point problem where the produced variational problem is74

discretized by finite elements. We propose two iterative methods for solving the resulting nonlinear algebraic75

system. The first iterative method is the classical ALG1 iterative method, which is usually used in the76

literature, see a detailed analysis in [32]. It can be interpreted as a variant of the Uzawa algorithm, where77

the Lagrange multiplier is separately updated after a sequence of nested iteration procedure and is denoted78

by sALG1. The second proposed iterative method can be characterized as a monolithic approach, mALG1,79

where all the unknown variables (state variable and Lagrange multiplier) are simultaneously computed in80

one step. All proposed methods are compared with respect to computational cost and to the convergence81

rates in several examples. We point out that both ALG1 methods yield the same numerical solutions (in82

terms of accuracy) as the Newton methods. The mALG1 method is of optimal complexity and gives rise to a83

more easy handling of the p-nonlinear nature of the model, but is not as fast as the Newton methods. To the84

best of our knowledge, a comparison of these iterative techniques including also higher order finite elements85

discretizations has not yet been presented in the existing literature.86

The outline of the paper is as follows. In Section 2, the model problem is introduced. Furthermore,87

the FE discretization analysis to this problem is presented. In Section 3, residual-based and error-oriented88

Newton methods are formulated. Also, in the same section the solution of the problem under the augmented89

Lagrangian methodology is presented and the two ALG1 iterative methods are in details described. Finally, in90

Section 4 systematic comparisons of all solution algorithms in terms of convergence rates, Newton iterations,91

and CPU times are measured. We also present numerical results to confirm the theoretical error bounds.92

The paper closes with the conclusions in Section 5.93

2. The model problem. Let Ω be a bounded polygonal domain in Rd, with d = 2 and ΓD = ∂Ω. We94

consider the following scalar p-type problem95

−divA(∇u) = f in Ω, u = uD on ΓD,(2.1)

where f : Ω → R and uD : ΓD → R are given smooth functions. The operator A(∇u) : R2 → R2 has the
following p-power law form

A(∇u) = (ε2 + |∇u|2)
p−2
2 ∇u,(2.2)

where p ∈ (1,∞) and ε > 0 are model parameters and | · |2 = (·, ·). The function a(∇u) = (ε2 + |∇u|2)
p−2
2 is

the diffusivity term of (2.1). As we can observe by (2.2), the nonlinear nature of the problem is due to the
appearance of |∇u| in the diffusivity function and this poses numerical challenges. We introduce the closely
related function F : R2 → R2 to the operator A by

(2.3) F(a) = (ε2 + |a|2)
p−2
4 a.

problem at points where |∇u| = 0. However, we perform numerical tests setting ε2 = 10−8, which can give us an idea about the
behavior of the algorithm for the classical p-Laplace problem.
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2.1. Preliminaries and notation. Let 1 ≤ p ≤ ∞ be fixed and l be a non-negative integer. As
usual, Lp(Ω) denotes Lebesgue spaces for which

∫
Ω
|u(x)|p dx < ∞, endowed with the norm ‖u‖Lp(Ω) =( ∫

Ω
|u(x)|p dx

) 1
p , and W l,p(Ω) is the Sobolev space, which consists of the functions φ : Ω→ R such that their

weak derivatives Dαφ with |α| ≤ l belong to Lp(Ω). If φ ∈W l,p(Ω), then its norm is defined by

‖φ‖W l,p(Ω) =
( ∑

0≤|α|≤l

‖Dαφ‖pLp(Ω)

) 1
p and ‖φ‖W l,∞(Ω) = max

0≤|α|≤l
‖Dαφ‖L∞(Ω),

for 1 ≤ p < ∞ and p = ∞, respectively. We refer the reader to [33] for more details about Sobolev spaces.
Furthermore, we define the spaces

W l,p
D := {u ∈W l,p(Ω) : u|∂Ω = uD}, and W l,p

0 := {u ∈W l,p(Ω) : u|∂Ω = 0}.(2.4)

In what follows, positive constants c and C appearing in the inequalities are generic constants which do96

not depend on the mesh-size h. We indicate on what may the constants depend for a better understanding97

of the proofs. Frequently, we will write a ∼ b meaning that ca ≤ b ≤ Ca, with c and C independent of the98

mesh size.99

2.2. The weak problem . The weak formulation for (2.1) reads as follows: Find u ∈W 1,p
D such that

B(u, φ) =lf (φ), ∀φ ∈W 1,p
0 (Ω), where B(u, φ) =

∫
Ω

A(∇u) · ∇φdx, and lf (φ) =

∫
Ω

fφ dx.(2.5a)

Depending on the form of A and on the range of p, the well-posedness has been examined by means of100

monotone operators in several works, see e.g., [6, 7].101

Problem (2.5) is equivalent to the minimization problem:

Find u ∈W 1,p
D such that J(u) ≤ J(φ), ∀φ ∈W 1,p

D ,(2.6)

where J : W 1,p
D → R is defined by

J(φ) =
1

p

∫
Ω

(ε2 + |∇φ|2)
p
2 dx−

∫
Ω

fφ dx.(2.7)

Furthermore, one can show that the Gateaux derivative of B is given by

B′(u)(v, w) =

∫
Ω

(ε2 + |∇u|2)
p−2
2 ∇v · ∇w dx(2.8)

+(p− 2)

∫
Ω

(ε2 + |∇u|2)
p−4
2 (∇u · ∇v)(∇u · ∇w) dx, for u, v, w ∈W 1,p

D .

Assumption 2.1. Let l ≥ 2 be an integer and let p ∈ (1,∞) and d = 2. We assume that the solution u102

of (2.5) belongs to V := W l,p
D (Ω), where either (l− 1)p > d and p > 1 or (l− 1)p < d and p > 2d

d+1 . Further,103

we assume that ∇F(∇u) ∈ L2(Ω). For simplicity, we assume the following for the boundary data:104

Assumption 2.2. Let uD ∈ Pk(ΓD), where Pk is the space of polynomials degree less than or equal to k.105

Further, we assume that
∣∣ ∫

ΓD
uD ds

∣∣ = 0.106

2.3. Known inequalities. The following inequalities are going to be used in several places in the text.
Hölder’s and Young’s inequalities read: For any ε, 0 < ε < ∞, and 1 < p, q < ∞ such that 1

p + 1
q = 1, for

u ∈ Lp(Ω) and v ∈ Lq(Ω), there holds∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤‖u‖Lp(Ω)‖v‖Lq(Ω),

∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ εp‖u‖pLp(Ω) +
ε−

q
p

q
‖v‖qLq(Ω).(2.9a)

Poincaré-Friedrichs inequality, see [28]: for any u ∈W 1,2(Ω), it holds

‖u‖L2(Ω) ≤ C(Ω, ∂Ω)
(
‖∇u‖L2(Ω) +

∣∣ ∫
∂Ω

u ds
∣∣).(2.9b)

Next, we introduce some functions which will be useful to the following. For p > 1 and ε > 0, we define the
functions

ϕ̂(t) :=(ε+ t)p−2(2.10)

ϕ(t) :=

∫ t

0

(ε2 + s2)
p−2
2 s ds, and it follows ϕ′(t) = (ε2 + t2)

p−2
2 t.(2.11)
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By an easy computation we can show that ϕ′(t) ∼ tϕ′′(t) and ϕ′′(t) ∼ ϕ̂(t).107

Lemma 2.1. Let A be given by (2.2) and let F be defined by (2.3). Then the relations(
A(P)−A(Q)

)
· (P−Q) ∼ |F(P)− F(Q)|2,(2.12a)

∼ ϕ̂(|P|+ |Q|)|P−Q|2,(2.12b) ∣∣A(P)−A(Q)
∣∣ ∼ ϕ̂(|P|+ |Q|)|P−Q|,(2.12c)

holds for all P,Q ∈ R2.108

Proof. The proofs are given in [34].109

2.4. Finite element notation. Let Th = {Ei}NEi=1 be a quasi-uniform subdivision of Ω into quadrilateral110

elements (without hanging nodes) with the following properties: (i) Ω = ∪NEi=1Ei, (ii) if Ei, Ej ∈ Th then111

their closures are either disjoint, or have common vertex, or have common edge. As usual, we set hEi to be112

the diameter of Ei ∈ Th and the mesh size h is considered to be the maximum diameter of Ei ∈ Th, i.e.,113

h := maxEi∈Th hEi .114

Let E ∈ Th and k ∈ N, we denote Qk(E) the space of tensor product polynomials on E of degree less

than or equal to k in each variable. On Th, we define the approximation spaces V
(k)
D,h ⊂ V , V

(k)
0,h and V

(k)
h as

V
(k)
D,h :={φh ∈ C(Ω) : φh|E ∈ Qk(E), ∀E ∈ Th, and φh|∂Ω = uD},(2.13a)

V
(k)
0,h :={φh ∈ C(Ω) : φh|E ∈ Qk(E), ∀E ∈ Th, and φh|∂Ω = 0},(2.13b)

V
(k)
h :={φh ∈ C(Ω) : φh|E ∈ Qk(E), ∀E ∈ Th}.(2.13c)

Lemma 2.2. Let Ikh be the corresponding global interpolation operator and let u ∈W l,p(Ω) with k + 1 ≥
l ≥ 2 and p > 1. Then, there exists a constant Cintp > 0 independent of h such that, the interpolation
estimate

|u− Ikhu|W s,p(Ω) ≤ Cintphl−s|u|W l,p(Ω),(2.14)

holds for 0 ≤ s ≤ l.115

Proof. The proof can be found in [28].116

Remark 2.1. We present the error analysis for the spaces in (2.13) defined on quadrilateral elements,117

because these spaces are available in the software package deal.II [35, 36], which we use for performing the118

numerical tests. The same analysis can be applied for other spaces defined on other mesh elements, e.g.119

triangular elements.120

We proceed to the discretization analysis under the following assumption121

Assumption 2.3. Let 1 < p < 2, q = p
p−1 and let τ = ε+ |∇u|+ |∇Ikhu|. We assume 1

τ ∈ L
q(Ω).122

Remark 2.2. Note that, if τ ≥ 1, i.e., ε = 1, we have ‖ 1
τ ‖Lq(Ω) ≤ ‖τ‖Lq(Ω). Now, we can mention123

two cases. If u ∈ W l,p with l = 2 and 2 > p > 2d
d+1 , (for the d = 2 case that we study here, this means124

2 > p > 4
3), then using the Sobolev inequality ‖u‖Lq(Ω) ≤ ‖u‖W 1,p(Ω), it is easy to see that the Assumption 2.3125

is fulfilled. Furthermore, if u ∈W l,p with l > 2 and (l− 1)p− d > 0, then again using the Sobolev inequality126

‖u‖Lq(Ω) ≤ ‖u‖W 1,p(Ω), we can see that the Assumption 2.3 is fulfilled.127

In the analysis below, we will use some special cases of Sobolev embeddings theorem, see [33]. Let Ê
be the reference element, for example the unit square, and let û ∈ W 1+m,p(Ê) with the integer m ≥ 1 and
2 > p > 1 such that: either mp > d and p > 1 or mp < d and p > 2d

d+1 , (i.e., for the d = 2, we have mp > 2

and p > 1 or mp < 2 and p > 4
3 ). Then for q > p, it holds that

‖û‖W 1,q(Ê) ≤ C‖û‖W 1+m,p(Ê),(2.15)

where the constant C depends on d, p, q,m and Ê. By the Sobolev embedding (2.15) we can derive that

‖û‖W 1,q(Ê) ≤ C
(
‖û‖p

Lp(Ê)
+ |û|p

W 1,p(Ê)
+ |û|p

W 2,p(Ê)

) 1
p .(2.16)

Let E ∈ Th and let TE be the unique affine transformation that maps the reference element Ê to E ∈ Th,

TE : Ê → E, with TE(x̂) = Bx̂+ b,(2.17)

where |det(B)| = |E|. By applying a change of variables and using scaling arguments, we can show that

|û|W j,p(Ê) = hj−
d
p |u|W j,p(E), for 0 ≤ j ≤ l.(2.18)
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Finally, using (2.18) into (2.16), a simple computation yields that

|u|2W 1,q(E) ≤ Ch
2( dq−

d
p−1)

(
‖u‖pLp(E) + hp|u|pW 1,p(E) + h2p|u|pW 2,p(E)

) 2
p .(2.19)

Corollary 2.3. Let u ∈ W 1,q(Ω) ∩ W l,p(Ω) with q > p, l ≥ 2, and let Ikh be the corresponding
interpolation. Then by (2.14) and (2.19), it follows that

|u− Ikhu|2W 1,q(E) ≤ Ch
2( dq−

d
p−1) h2 l‖u‖2W 2,p(E).(2.20)

128

Lemma 2.4. Let A be given by (2.2) and let F be defined by (2.3). For δ > 0, there exist a constant
c(δ), such that for u, v, w ∈ V the following relation holds∫

Ω

(
A(∇u)−A(∇v)

)
· (∇w −∇v) dx ≤ δ

∫
Ω

|F(∇u)− F(∇v)|2 dx+ c(δ)

∫
Ω

|F(∇w)− F(∇v)|2 dx.(2.21)

129

Proof. The proof can be found in [14].130

2.5. Finite element approximation and error bounds . In this paragraph, we present the finite
element discretization of (2.5). We develop our analysis inspired by the results in [14]. The finite element

approximation of (2.5) reads as follows: find uh ∈ V (k)
D,h such that for all φh ∈ V (k)

0,h holds

B(uh, φh) = lf (φh).(2.22)

Proposition 2.5.131

(i) Let {ai}Ni=1 be a sequence of nonnegative numbers. If p < q <∞ then

( N∑
i=1

api
) 1
p ≤ N

1
p−

1
q
( N∑
i=1

aqi
) 1
q .(2.23)

(ii) Let 1 < p ≤ q <∞ and let E ∈ Th. If u ∈ Lq(E) then there exist a C depending on the quasi-uniformity
properties of Th such that

‖u‖Lp(E) ≤ Chd( 1
p−

1
q )‖u‖Lq(E).(2.24)

(iii) Let {ai}Ni=1 be a sequence of nonnegative numbers. If 1 < p < q <∞ then

( N∑
i=1

aqi
) 1
q ≤

( N∑
i=1

api
) 1
p .(2.25)

Proof.132

(i) Let p∗ = q
p > 1 and q∗ = p∗

p∗−1 = q
q−p its conjugate exponent. Recalling (2.9a) for vectors, we have

( N∑
i=1

api 1
)
≤
( N∑
i=1

aqi
) p
q
( N∑
i=1

1
) q−p

q .(2.26)

Taking the 1
p th root in (2.26), we obtain (2.23).133

(ii) Inequality (2.24) can be shown in the same way as inequality (2.23).134

(iii) We observe that the function f(x) = (ax1 + ax2 + ... + axN )
1
x is decreasing for x ≥ 1. Then inequality135

(2.25) follows.136

Below we prove the basic interpolation estimates in the related quasi-norms.137

Theorem 2.6. Let u satisfies Assumptions 2.1 and 2.2 and let Ikhu be the corresponding interpolant as
defined above. Then, there exist c ≥ 0 depending on ε, |∇u|, |∇Ikhu|, the constant in (2.14) and the constant
in (2.19), but independent of the grid size h, such that the following estimate holds true∫

Ω

|F(∇u)− F(∇Ikhu)|2 dx ≤ c h2(l−1)‖u‖2W l,p(Ω).(2.27)

138
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Proof. For simplicity in the formulas below, we introduce the notation

τ := ϕ̂(|∇u|+ |∇Ikhu)|)
1
p−2 = ε+ |∇u|+ |∇Ikhu|. By the relations (2.12), we conclude that∫

Ω

|F(∇u)− F(∇Ikhu)|2 dx ≤
∫

Ω

ϕ̂(|∇u|+ |∇Ikhu|) |∇u−∇Ikhu)|2 dx.(2.28)

Let us first prove the required relation for p > 2. Applying (2.9a) in (2.28) and setting q = p
2 , we obtain139

∫
Ω

|F(∇u)− F(∇Ikhu)|2 dx ≤ c
(∫

Ω

|∇u−∇Ikhu|
2p
2 dx

) 2
p
(∫

Ω

(ϕ̂(|∇u|+ |∇Ikhu|)
p
p−2 dx

) p−2
p

≤ c|∇u−∇Ikhu|2W 1,p(Ω)‖τ‖
p−2
Lp(Ω) ≤ ch

2(l−1)‖τ‖p−2
Lp(Ω),(2.29)

where the interpolation estimate (2.14) has been used.140

For the case p < 2 we proceed as follows. Let E ∈ Th(Ω) and let q∗ = q
2 and p∗ = p

2−p . By relations

(2.12), we can conclude that∫
E

|F(∇u)− F(∇Ikhu)|2 dx ≤
∫
E

ϕ̂(|∇u|+ |∇Ikhu|) |∇u−∇Ikhu)|2 dx.(2.30)

We apply (2.9a) in (2.30) and consequently (2.19), and obtain

(2.31)
∑
E

∫
E

|F(∇u)− F(∇Ikhu)|2 dx ≤ c
∑
E

(∫
E

|∇u−∇Ikhu|
2q
2 dx

) 2
q
(∫

E

τ−p dx
) 2−p

p

≤ c
∑
E

|u− Ikhu|2W 1,q(E)

∥∥1

τ

∥∥2−p
Lp(E)

≤ c
(∑

E

|u− Ikhu|
q
W 1,q(E)

) 2
q
(∑

E

∥∥1

τ

∥∥p
Lp(E)

) 2−p
p

≤ c
(∑

E

|u− Ikhu|2W 1,q(E)

) 2
2
(∑

E

∥∥1

τ

∥∥p
Lp(E)

) 2
p
(∑

E

∥∥1

τ

∥∥p
Lp(E)

)−1

≤ c h2( dq−
d
p−1) h2 l‖u‖2W 2,p(Ω) h

2d( 1
p−

1
q )
(∑

E

∥∥1

τ

∥∥p
Lq(E)

) 2
p
(∥∥1

τ

∥∥p
Lp(Ω)

)−1

≤ ch2l−2‖u‖2W 2,p(Ω)

(∑
E

∥∥1

τ

∥∥p
Lq(E)

) 2
p
(∥∥1

τ

∥∥p
Lp(Ω)

)−1

,

where the interpolation estimate (2.14) and inequalities in Proposition 2.5 have been used. Finally, putting
together the results (2.29) and (2.31), we have that∫

Ω

|F(∇u)− F(∇Ikhu)|2 dx ≤ c h2l−2‖u‖2W l,p(Ω).(2.32)

This proves the theorem.141

Let us now use the previous results for showing an estimate for the approximation error uh − u.142

Theorem 2.7. Let u ∈ V be the solution of (2.5) under the Assumption 2.1, and let uh ∈ V (k)
D,h be the

solution of (2.22). Then, there exist C ≥ 0 depending on the constant in (2.27) but independent of the grid
size h, such that ∫

Ω

|F(∇u)− F(∇uh)|2 dx ≤ Ch2(l−1)‖u‖2W l,p(Ω).(2.33)

143

Proof. Let φh ∈ V (k)
0,h and let Ikhu ∈ V

(k)
D,h be the interpolant of u. By forms (2.5) and (2.22), we can

deduce that ∫
Ω

(
A(∇u)−A(∇uh)

)
· ∇φh dx = 0,(2.34)

where it follows that∫
Ω

(
A(∇uh)−A(∇Ikhu)

)
· ∇φh dx =

∫
Ω

(
A(∇u)−A(∇Ikhu)

)
· ∇φh dx.(2.35)

Now, choosing φh = uh − Ikhu and δ > 0 small enough, relations (2.12) and inequality (2.21) imply that144
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∫
Ω

|F(∇uh)− F(∇Ikhu)|2 dx ≤ c(δ)
∫

Ω

|F(∇u)− F(∇Ikhu)|2 dx,(2.36)

where by triangle inequality it follows that145

∫
Ω

|F(∇uh)− F(∇u)|2 dx ≤ c(δ)
∫

Ω

∣∣F(∇u)− F(∇Ikhu)|2 dx.(2.37)

The desired estimate (2.33) follows immediately by applying the interpolation estimate (2.27) on the right146

hand side of (2.37).147

3. Nonlinear iterative processes. In this section, we design several iterative methods for solving148

problem (2.22). All proposed schemes are based on Newton-type approaches. We begin with an inspection149

of the behavior of the eigenvalues of the Jacobian matrix of A, see (2.2), in order to get a prefigure about the150

behavior of the corresponding Newton iterative matrix around the critical points. Then, in Section 3.3, two151

Newton-type iterative methods, e.g., residual-based descent and error-oriented techniques, are formulated. In152

Section 3.4, augmented Lagrangian-type techniques are employed in order to reformulate the problem (2.1)153

as a saddle point problem. We discretize this last problem using a classical finite element procedure and154

solve the resulting nonlinear system by applying two iterative procedures. Our final goal is to investigate the155

performance of all the aforementioned methods through the numerical examples.156

3.1. Preliminary considerations. In view of the form of operator A in (2.2), we introduce the function
A ∈ C1(R2,R2) defined by

A(η) = (ε2 + η2
1 + η2

2)
p−2
2 (η1, η2).(3.1)

By an easy computation, we can show that

JA =

[
(η2

1 + η2
2 + ε2)(p−4)/2((p− 1)η2

1 + η2
2 + ε2) (p− 2)η1η2(η2

1 + η2
2 + ε2)(p−4)/2

(p− 2)η1η2(η2
1 + η2

2 + ε2)(p−4)/2 (η2
1 + η2

2 + ε2)(p−4)/2((p− 1)η2
2 + η2

1 + ε2))

]
(3.2)

with the eigenvalues

λ1 =(ε2 + η2
1 + η2

2)(p−2)/2,(3.3a)

λ2 =(ε2 + η2
1 + η2

2)(p−4)/2
(
(p− 1)(η2

1 + η2
2) + ε2

)
.(3.3b)

The behavior of the eigenvalues of the Jacobian JA := ∂A(η)
∂η with respect to the parameters ε and p, outline157

the behavior of the eigenvalues of the corresponding Jacobian matrix, which appears in the Newton iterative158

process. Namely, for the cases where the eigenvalues of JA are close to zero, we can expect that Jacobian159

matrix of the Newton method to be singular or ill-conditioned. Note that the eigenvalues λi, i = 1, 2 in (3.3)160

have a similar form as the function ϕ̂ defined in (2.10). For example, if we set t = |η| then λi(t) ∼ ϕ̂(t), i = 1, 2.161

Let r = (η1, η2) be the radial function with r2 ≤ 1. In Fig. 1, we plot λ1 and λ2 with respect to r2 = η2
1 +η2

2162

for several values of ε and p. We observe that for p < 2 and ε < 1 the values of both eigenvalues are getting163

very high as r2 → 0 and the values are reduced as r2 → 1, see Figs 1(a),(b),(d),(e). Conversely for the case164

where ε = 1 the eigenvalues are close to one, see Figs. 1(c),(f). Concerning the graphs for p > 2, we can165

see that for ε < 1 the eigenvalues are close to zero as r2 → 0, and are increasing rapidly as r2 → 1, see166

Figs. 1(g),(h). On the other hand, for ε = 1 the eigenvalues are greater than one for all r2 values, see167

Fig. 1(i).168

Remark 3.1. For simplicity the analysis above has been presented in R2. It can be easily extended to169

RNh , where Nh is the dimension of V
(k)
D,h.170

3.2. The nonlinear algebraic system. Let Nh be the dimension of the space V
(k)
D,h and {φh,i}Nhi=1 are

the basis functions of V
(k)
D,h. The solution uh ∈ V (k)

D,h of problem (2.22) is expressed as uh =
∑Nh
i Uiφh,i(x)

where Ui are the degrees of freedom. When this expression is substituted into (2.22), we obtain the following
nonlinear algebraic problem: Find the vector U = [U1, ..., Ui, ..., UNh ] which satisfies the system of Nh
nonlinear equations

B(U) = f ,(3.4)

where the entries Bi(U) of B and and fi of f are specified by (2.5a), i.e.,

Bi(U) = B(uh, φh,i), and fi = lf (φh,i).(3.5)
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Fig. 1. Eigenvalues λ1, λ2 of JA: (a) plots for ε = 0.001 and p = 1.1, (b) plots for ε = 0.01 and p = 1.1, (c) plots for
ε = 1 and p = 1.1, (d) plots for ε = 0.001 and p = 1.5, (e) plots for ε = 0.01 and p = 1.5, (f) plots for ε = 1 and p = 1.5, (g)
plots for ε = 0.001 and p = 11, (h) plots for ε = 0.01 and p = 11, (i) plots for ε = 1 and p = 11.

The nonlinear system (3.4) is generally large-sized and hence it is important to develop efficient iterative171

methods for its numerical solution, [37]. Also, it is important to investigate the influence of the parameters172

p and ε with respect to the convergence speed of the nonlinear iterative procedure.173

Throughout this section, U∗ will denote the exact solution of (3.4) and Un the solution derived at step n of174

the iterative procedure. Furthermore ‖.‖ will denote the l2-norm as well the induced matrix norm. Recall175

that the condition number of a matrix A relative to the norm ‖.‖ is given by κ(A) = ‖A‖ ‖A−1‖. We denote176

the set of eigenvalues of A by σ(A) and ρ(A) = max
λ∈σ(A)

|λ| is the the spectral radius of A.
177

3.3. Newton-like methods.178

3.3.1. Definition and algorithms.. In this subsection, we present two Newton techniques for solving

(3.4). Let vh =

Nh∑
i=1

Viφh,i to be an element in V
(k)
D,h with V = [V1, ..., Vi, ..., VNh ]. Using (2.8) we define

B′(V)j,i := B′(vh)(φh,i, φh,j), i, j = 1, ..., Nh,(3.6)

to be the iterative matrix of Newton’s method. Then the main steps of a Newton method (in a matrix-vector179

form) can described as follows:180
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Algorithm 3.1 (Newton’s method as defect-correction scheme). Choose an initial Newton guess U0:181

1. For n = 0, 1, 2, ..., nmax compute the solution Zn from

B′(Un)Zn = −
(
B(Un)− f

)
,(3.7a)

Determine λn ∈ (0, 1], (e.g., see Algorithm 3.2)

Update: Un+1 = Un + λnZn.(3.7b)

2. If the stopping criterion (see below either (3.8) or (3.9)) is satisfied then exit and set U∗ := Un+1.182

Otherwise repeat 1.183

Usually the stopping criterion is related to a control of the magnitude of the residual of the new iteration
Un+1, i.e,

(3.8) resn+1 := ‖B(Un+1)− f‖ ≤ TOL,

where TOL ∼ 10−12. Based on that we determine the parameter λn for the updating step (3.7b). However, in
the literature, see e.g. [29, 37], more sophisticated Newton methods have been proposed, where the stopping
criterion, the damping parameter and the updating step are determined by estimating the magnitude of the
norms

(3.9) ‖Zn‖ ≤ TOL, or ‖Zn+1
simp‖ ≤ TOL,

where Zn+1
simp is a Newton update from solving a simplified problem, see below (3.12).184

Thus, we formulate two different Newton procedures, (i) a residual-based line-search procedure, which185

is related to the first case (3.8); see Algorithm 3.2. And (ii) an error-oriented Newton procedure, which is186

related to second case (3.9); see Algorithm 3.3.187

Algorithm 3.2 (Residual-based line-search). In this procedure, λn is specified by a direct decreasing of188

the residual in each n-step:189

1. Set λn,l=0 := λinitial = 1190

2. For l = 0, ..., lM , compute Zn by (3.7a) and update Un+1,l = Un + λn,lZ
n

191

3. Evaluate resn,l+1,192

4. If resn,l+1 ≤ resn,l then solution found Un+1 := Un+1,l,193

otherwise go to step 2, setting λn,l+1 =
λn,l

2 ,194

5. If l + 1 > lM stop. Convergence failure.195

Algorithm 3.3 (Error-oriented Newton’s method). This procedure is based on a natural monotonicity196

test, i.e., ‖Zn+1
simp‖ < ‖Zn‖.197

1. Choose an initial guess U0. Set the minimal damping factor, e.g., λmin ∼ 10−8 and λ0 < 1. For198

n = 0, 1, 2, 3, . . .:199

2. Solve

B′(Un)Zn = −
(
B(Un)− f

)
, (see Newton step (3.7a) ).

If ‖Zn‖ ≤ TOL then the solution found and set

U∗ := Un + Zn.

3. If ‖Zn‖ > TOL, then take Znsimp, which has been already computed in the previous Newton step n−1
via (3.12). Determine a new prediction value λn for the damping factor as follows:

λn := min(1, µn), where µn :=
‖Zn−1‖ · ‖Znsimp‖
‖Znsimp − Zn‖ · ‖Zn‖

.

If

(3.10) λn < λmin

then stop. Convergence failure and abort computation.200

4. If λn > λmin continue and compute trial iterate

(3.11) Un+1 := Un + λnZn

and evaluate the new residual −(B(Un+1) − f). Solve the simplified linear system using the old
Jacobian and the new residual

(3.12) B′(Un)Zn+1
simp = −

(
B(Un+1)− f

)
.
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5. Compute the monitoring functions:

θn :=
‖Zn+1

simp‖
‖Zn‖

, µ′n :=
0.5‖Zn‖λ2

n

‖Zn+1
simp − (1− λn)Zn‖

.

6. If θn ≥ 1 (no convergence of the updates), then set

λn := λ′n := min(µ′n,
1

2
λn)

and go to (3.10) and continue from there.201

7. Else, if θn < 1, we have convergence and continue with the next steps.202

Set λ′n := min(1, µ′n).203

(a) If λ′n = λn = 1 then: if ‖Zn+1
simp‖ ≤ TOL stop and the solution is found:

U∗ := Un+1 + Zn+1
simp,

otherwise go to the beginning to Step 2 and increment n→ n+ 1.204

(b) If λ′n 6= λn < 1 go to the beginning to Step 2 and increment n→ n+ 1.205

Remark 3.2 (Motivation of Step 3 and Step 5). In the above algorithm, the important steps are No. 3206

and 5. Both are based on adaptive trust region strategies as derived in [29], Section 3.3.3. Specifically, Step 3207

is a prediction strategy that is based on a estimate of the simplified update and the full Newton update, while208

using Lipschitz continuity of the Jacobian. Step 5, is a correction strategy that is based on a damped Newton209

iteration.210

We underline that for finding the numerical solution U∗ the generated global error includes two parts,
one coming form the FE discretization and the second coming by the Newton iterative procedure. Recalling
(2.33) and the stopping criterion in the Newton algorithms, we can practically express the global error as

‖F(∇u)− F(∇uh,n)‖ . O(hl−1) + resn,(3.13)

where resn is the residual at the last n-th Newton iteration step. Thus, the Newton iterations must be211

continued until the discretization error component dominates.212

Remark 3.3. In view of Jacobian JA defined in (3.2), the entries of iterative matrix in (3.6) are equal
to B′(V)j,i =

∫
Ω
JA(∇vh)∇φh,i∇φh,j dx and consequently Newton’s step in (3.7a) can be expressed as: Find

zh ∈ V (k)
D,h such that∫

Ω

JA(∇unh)∇zh · ∇φh dx = −
(∫

Ω

A(∇unh) · ∇φh dx−
∫

Ω

fφh dx
)
, φh ∈ V (k)

0,h ,(3.14)

where unh ∈ V
(k)
D,h is the updated numerical solution of the previous step.213

3.3.2. Remarks on the properties for the condition number of B′. In practice we can check214

the well-conditioned status of system (3.4) (and also (3.7a)) through the condition number. The condition215

number κ(B′) is a measure of sensitivity of the solution to relative small perturbations of the system, e.g.,216

finite precision arithmetic, as well as a measure of the distance from a singular matrix. Roughly speaking an217

almost singular matrix is expected to have a large condition number and thus we expect to meet problems218

during the solution of the system. In our studies this could be the case where p > 2 and ε → 0, see Figs.219

1(g),(h). Next, we quote a Lemma related to inverse estimates for φh ∈ V (k)
D,h.220

Lemma 3.1. Let φh =
∑Nh
i=1 viφh,i and v = (v1, ..., vNh). There exist positive constants C0, Cm and CM

depending only on the quasi-uniform properties of the meshes and on k, such that

‖∇φh‖L2(Ω) ≤C0h
−1‖φh‖L2(Ω),(3.15a)

Cmh‖v‖ ≤‖φh‖L2(Ω) ≤ CMh‖v‖,(3.15b)

where ‖v‖2 = v2
1 + ...+ v2

Nh
.221

Proof. Both relations can be shown by applying scaling arguments, see details in [28].
Based on (2.8), we can clearly see that the matrix B′ defined in (3.6) is symmetric and is positive definite.
Indeed by (3.6) and (2.8), we have

B′(uh)(wh, wh) =

∫
Ω

(ε2 + |∇uh|2)
p−2
2 |∇wh|2 dx

+(p− 2)

∫
Ω

(ε2 + |∇uh|2)
p−4
2 (∇uh,∇wh)2 dx.

(3.16)
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Now, let us try to derive bounds for B′(uh)(wh,wh)
‖w‖2 . As a result, using that (a2 + β2) ≤ (a+ β)2 ≤ 2(a2 + β2)

for a, β > 0, we have that

B′(uh)(wh, wh) ≤
∫

Ω

(ε2 + |∇uh|2)
p−2
2 |∇wh|2 dx

+|p− 2|
∫

Ω

(ε2 + |∇uh|2)
p−4
2 (ε2 + |∇uh|2)|∇wh|2 dx

≤C(p)

∫
Ω

(ε2 + |∇uh|2)
p−2
2 |∇wh|2 dx.

(3.17)

If p > 2 we get immediately that

B′(uh)(wh, wh) ≥
∫

Ω

(ε2 + |∇uh|2)
p−2
2 |∇wh|2 dx.(3.18)

For the case 1 < p < 2, a simple modification of the last term in (3.16) yields

B′(uh)(wh, wh) ≥
∫

Ω

(ε2 + |∇uh|2)
p−2
2 |∇wh|2 dx

+(p− 2)

∫
Ω

(ε2 + |∇uh|2)
p−4
2 |∇uh|2 |∇wh|2 dx

≥(p− 1)

∫
Ω

(ε2 + |∇uh|2)
p−2
2 |∇wh|2 dx

>0.

(3.19)

In the following, inspired by [31], we try to derive estimates for the condition number κ(B′).222

Proposition 3.2. The condition number κ(B′) can be estimated by

κ(B′) =
λMax

λmin
≤

{
C(ε+ |∇uh|∞)p−2 ε2−p h−2 for p > 2,

C(ε+ |∇uh|∞)2−p εp−2 h−2 for 1 < p < 2,
(3.20)

where λMax and λmin are the largest and the smallest eigenvalue of B′ respectively.223

Proof. For p > 2, it follows from (3.17) and (3.15) that

(3.21)
B′(uh)(wh, wh)

‖w‖2
≤ C(ε+ ‖∇uh‖∞)p−2

|∇wh|2L2(Ω)

h−2‖wh‖2L2(Ω)

≤ C(ε+ ‖∇uh‖∞)p−2
h−2‖wh‖2L2(Ω)

h−2‖wh‖2L2(Ω)

≤ C(ε+ |∇uh|∞)p−2.

For p > 2 using (3.18) and (2.9b), we obtain

(3.22)
B′(uh)(wh, wh)

‖w‖2
≥ Cεp−2

|∇wh|2L2(Ω)

h−2‖wh‖2L2(Ω)

≥ Cεp−2
‖wh‖2L2(Ω)

h−2‖wh‖2L2(Ω)

≥ Cεp−2h2.

On the other hand for 1 < p < 2 we have

(3.23)
B′(uh)(wh, wh)

‖w‖2
≤ Cεp−2

|∇wh|2L2(Ω)

h−2‖wh‖2L2(Ω)

≤ Cεp−2
h−2‖wh‖2L2(Ω)

h−2‖wh‖2L2(Ω)

≤ Cεp−2.

Also, for 1 < p < 2 using (3.19) and (2.9b), we obtain

(3.24)
B′(uh)(wh, wh)

‖w‖2
≥ C(ε+ ‖∇uh‖∞)p−2

|∇wh|2L2(Ω)

h−2‖wh‖2L2(Ω)

≥ C(ε+ ‖∇uh‖∞)p−2
‖wh‖2L2(Ω)

h−2‖wh‖2L2(Ω)

≥ C(ε+ |∇uh|∞)p−2h2.

Gathering together all the previous inequalities we can show (3.20).224

Remark 3.4. We note that a necessary condition for obtaining the solution Zn during the Newton225

process, is that the iterative matrix B′ is invertible, see Algorithm 3.1. In the proofs of the convergence of226

Newton’s methods that have been presented in the literature, the existence of B′−1 (at least in a neighborhood227

of U∗) is usually supposed. Additional assumptions are the existence of βm > 0 and βM > 0 such that228

βm ≤ ‖B′(V)−1‖ ≤ βM . Usually, the bound βM is used to define the radius of the area around U∗ for229

choosing the initial U0, in order to be possible to show analytically the convergence of the method, see [29],230

[37]. From (3.20) and (3.3), one sees that for our case it is difficult to find uniform bounds with respect to231

ε and p. In the numerical examples, we observed that, indeed the choice of U0 influences the performance232

of the Newton solver. Choosing as initial guess to be the projection of the previous mesh solution, we have a233

fast convergence of the iterative procedure, see for instance Table 2 of Example 1.234
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Algorithm sALG1:
for λ0 ∈ (Lq(Ω))2 given
For each ALG iterative step i > 0, ∈ N
find ui := ui,nM , qi := qi,nM where nM is
the final index n for which the
inner Newton loop is converged.
For each Newton step n = 0, 1, 2, . . .
solve for fixed i:{
−r̂∆ui,n + r̂∇ · qi,n = ∇ · λi + f,

(ε2 + |qi,n|2)
p−2
2 qi,n + r̂qi,n − r̂∇ui,n = λi,

EndFor Newton loop
update: λi+1 = λi + ρ̂(∇ui,nM − qi,nM )
EndFor ALG loop

Algorithm mALG1:
for λ0 ∈ (Lq(Ω))2 given
For each iterative Newton step n > 0 ∈ N
find un, qn and λn as follows
−r̂∆un −∇ · λn + r̂∇ · qn = f,

((ε2 + |qn|2)
p−2
2 qn + r̂qn − r̂∇un − λn = 0,

λn − ρ̂(∇un − qn) = λn−1,

EndFor

Table 1
The steps of the two ALG1 algorithms.

3.4. Augmented Lagrangian techniques. In the following two paragraphs, we transform the original
problem (2.1) into a saddle-point problem using augmented Lagrangian techniques. Let q be the conjugate
exponent of p, that is 1

p + 1
q = 1, and let us define the space W ⊂W 1,p

D × (Lp(Ω))2 by

W = {(v,q)|(v,q) ∈W 1,p
D × (Lp(Ω))2 : ∇v − q = 0}.(3.25)

Following [38], we introduce the augmented Lagrangian Lr̂ defined, for r̂ > 0, by

(3.26) Lr̂(v,q, λ) =
1

p

∫
Ω

(ε2 + |q|2)
p
2 dx −

∫
Ω

fv dx +
r̂

2

∫
Ω

|∇v − q|2 dx +

∫
Ω

λ · (∇v − q) dx,

and the following associated to (3.26) saddle-point problem:

Find{u,q, λ} ∈W 1,p
D × (Lp(Ω))2 × (Lq(Ω))2 such that(3.27a)

Lr̂(u,q, µ) ≤ Lr̂(u,q, λ) ≤ Lr̂(v,w, λ),(3.27b)

∀{v,w, µ} ∈W 1,p
D × (Lp(Ω))2 × (Lq(Ω))2.(3.27c)

In that way, we reduce the solution of (2.1) to finding the saddle-point solutions of Lr̂. We apply a variational235

analysis to (3.27) and then for computing the saddle point solutions, we employ two variants of the first236

augmented Lagrangian iterative algorithm, (ALG1), described in [32]. The two algorithms are listed in Table237

1, where 0 < ρ̂ < 2 r̂. In the first case the Lagrangian λ is updated separately by applying a post-processing238

procedure at the end of every iterative circle, which has been previously performed for computing u,q. We239

call the first version as splitting ALG1, (sALG1), and we present the algorithm on the left column in Table240

1. In the second iterative ALG1 procedure, all the unknowns are simultaneously computed at every step,241

and we call this procedure as monolithic ALG1, (mALG1). The algorithm of the mALG1 iterative method242

is given on the right column in Table 1. The analysis for showing the existence and uniqueness of the saddle243

point problems seems to be quite hard, and as well the study of the convergence properties of the resulting244

ALG methods. Such results are discussed in [32] for several problems set in W 2,2.245

At first glance the ALG1 technique seems not to be so attractive due to the introduction of the two
variables q and λ. But as we can see from Table 1, the ALG1 method helps us to simplify the nonlinear
structure of the original problem. In particular we are able to uncouple the strong nonlinearity of the model
and the derivatives of u. The convergence properties of algorithm sALG1 have been studied in [32] for r̂ > 0.
Recalling the finite dimensional spaces defined in (2.13), the discrete variational form of the sALG1 method
has as follows: for λ0

h given, find (uih,q
i
h) such that

r̂(∇ui,nh ,∇vh) + (r̂∇ · qi,nh , vh) =(∇ · λih + f, vh), ∀vh ∈ V (k)
0,h ,(3.28a)

((ε2 + |qi,nh |
2)

p−2
2 qi,nh , φh)− r̂(∇ui,nh − qi,nh , φh) =(λih, φh), ∀φh ∈ (V

(k)
h )2,(3.28b)

Update: λi+1
h =λih + ρ̂(∇ui,nMh − qi,nMh ).(3.28c)

Following a standard FE methodology, as in Section 3.2, we obtain the following nonlinear algebraic system

BsALG1

(
U
Q

)
= fsALG1,(3.29)
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where U and Q are the vectors with the degrees of freedom of ui,nh and qi,nh respectively. A similar discrete
variational form can be derived for the mALG1 method and then we get the following nonlinear algebraic
system

BmALG1

U
Q
Λ

 = fmALG1,(3.30)

where U, Q and Λ are the vectors with the degrees of freedom of unh and qnh and λnh respectively.246

Remark 3.5. The resulting nonlinear algebraic systems (3.29) and (3.30) can be solved by utilizing
any of the two Newton variants, see Algorithm 3.2 and Algorithm 3.3. In the numerical examples, we use
Algorithm 3.2 where the stopping criterion is defined in an analogous way as in (3.8). In particular, the
stopping criterion for the augmented Lagrangian iterative loop in sALG1 is defined as

max{‖Ui+1 −Ui‖, ‖Qi+1 −Qi‖, ‖Λi+1 −Λi‖} ≤ 10−6.

247

Remark 3.6. We notice that all linear equation systems in this paper are solved with the direct solver248

UMPACK [39]. We are currently working on developing iterative solvers based on geometric multigrid.249

Remark 3.7. In the numerical examples, the parameters r̂ and ρ̂ have been specified after carrying out250

few computations using different values. As outlined in [32], the optimal choice for r̂ is an open question.251

Through the performance of the numerical tests, we have observed that the method sALG1 is more sensitive252

to the choice of r̂ than the mALG1. The mALG1 method appears to have greater robustness on the choice253

of r̂ and ρ̂ with respect to p. In the numerical examples, we have used ρ̂ = r̂ = 1 for sALG1 and r̂ = 100,254

ρ̂ = 0.1 for mALG1. Choosing this high value for r̂, in fact we increase the strength of the penalization in255

the mALG1 method.256

4. Numerical examples. In this section, we perform several numerical tests by selecting different257

values for the exponent p and investigate the order of accuracy of the proposed FE method. We mainly258

focus on cases where 1 < p < 2 but do also consider a few tests with p > 2. The examples have been259

performed using first (k = 1) and second order (k = 2) polynomial spaces. We compare the error convergence260

rates versus the grid size for several values of ε ranging between 10−4 and 1. Each example has been261

solve applying several mesh refinement steps with hi, hi+1, ..., satisfying Assumption 2.3. The numerical262

convergence rates r have been computed by the ratio r = ln(ei/ei+1)
ln(hi/hi+1) , i = 1, 2, ..., where the corresponding263

error is ei := ‖F(∇u) − F(∇uh,n)‖L2 , see (2.33), and uh,n is the final solution computed by the iterative264

procedure. We mention that, in the test cases with smooth solutions, i.e., k + 1 ≤ l, the approximation265

order in (2.33) is expected to be equal to k. The column in the tables below which are related to N indicate266

the maximum number of the nonlinear iterative steps. All tests have been performed with the C++ library267

deal.II [35, 36] using an Intel(R) Core(TM) i5-3320M CPU 2.60GHz computer.268

4.1. Newton like methods.269

Example 1, (|∇u| 6= 0, ∀x ∈ Ω). The first numerical example is a simple test case for validating the error270

estimates given in Theorem 2.7 and demonstrating the performance of the Newton method for several values271

of ε. We take Ω ⊂ R2 to be the square domain (0, π2 )2. The boundary data uD and the function f in (2.1),272

are chosen so that the exact solution in (2.1) to be u(x, y) = sin(x). The exact solution is shown in Fig. 2273

and it holds {x ∈ Ω : ∇u = 0} = ∅.274

Fig. 2. Example 1: Display of the numerical solution for the case p = 1.01 and ε = 1.0e− 4.

We compute numerically the convergence rates of the error on a sequence of successively refined meshes275

and also we investigate the performance of the residual-based Newton method for different choices of ε. Here276
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we consider two different choices for the starting solution u0
h for Newton methods, (i) we set u0

h = 0, (ii)277

u0
h = Proj(un2h), where Proj(un2h) is the projection of the solution un2h, which has been computed on the278

previous space V
(k)
D,2h, to the current space V

(k)
D,h. Here the index n denotes the last (i.e., converged) solution279

on the coarser space V
(k)
D,2h. The projection is carried out as nodal interpolation from the coarse mesh on the280

finer mesh.281

In Table 2, we display the results for polynomial degree k = 1, for p = 1.01 and for ε = 10−3 (right282

columns) and ε = 10−4 (left columns). For both ε cases, we observe that the rates r related to the first283

coarse meshes are little less than the expected rates, but progressively as the mesh is refined, the rates tend284

to the optimal value r = 1, which is in agreement with Theorem 2.7. For the case u0
h = 0, we observe that285

the Newton method is not mesh independent in the sense that the number of the steps is not stable as the286

mesh is further refined. On the other hand for the case u0
h = Proj(un2h), we observe mesh independence and287

the further number of steps is significantly reduced, see also comments in Remark 3.4. For theoretical results288

on mesh independence for general nonlinear problems we refer the reader to [40]. As expected, this behavior289

of the Newton method affects the corresponding CPU times, which are provided on the last row of the Table290

2. If not further indicated in all remaining tests, we always use as initial guess u0
h = Proj(un2h).291

- k = 1 and p = 1.01
- ε = 10−4 ε = 10−3

DoFs ‖F − Fh‖ r N,u0
h = 0

N,
u0
h = P (un2h)

‖F − Fh‖ r N,u0
h = 0

N,
u0
h = P (un2h)

289 3.64207e-02 - 16 16 3.66426e-02 - 13 13
1089 1.96867e-02 0.88 18 7 2.15775e-02 0.76 16 8
4225 1.05728e-02 0.9 22 8 1.28714e-02 0.75 23 9
16641 5.69064e-03 0.9 26 7 6.77354e-03 0.93 28 9
66049 3.17429e-03 0.85 32 8 3.31612e-03 1.03 32 8
263169 1.78568e-03 0.83 43 10 1.65509e-03 1.0 34 7
1050625 9.36320e-04 0.94 47 8 8.54432e-04 0.96 36 6

CPU - - 1.33e+04s 2.13e+03s - - 9.87e+03s 1.80e+03s
Table 2

Example 1: The results for the different values of ε.

We repeat the previous computations choosing ε = 10−2 and ε = 1. The results are shown in Table 3.292

We can clearly see that the rates r are in fully agreement with Theorem 2.7. The Newton method is mesh293

independent and in particular for the case ε = 1 only few steps (less than 3) are needed. In comparison to294

the corresponding data in Table 2 the CPU times are reduced in Table 3 as a result of the fewer iterative295

steps. By the results of the two previous numerical tests, we conclude that the rates r are very close to the296

expected value for all ε but the Newton steps are increased as the values of ε become smaller.297

- k = 1 and p = 1.01
- ε = 10−2 ε = 1

DoFs ‖F − Fh‖ r N ‖F − Fh‖ r N
289 4.64339e-02 - 12 2.77038e-02 - 12
1089 2.27756e-02 1.02 8 1.38533e-02 0.99 5
4225 1.16848e-02 0.96 9 6.92684e-03 1.0 5
16641 6.05204e-03 0.95 10 3.46344e-03 1.0 3
66049 3.04030e-03 0.99 8 1.73172e-03 1.0 3
263169 1.51975e-03 1.0 5 8.65862e-04 1.0 3
1050625 7.59810e-04 1.0 4 4.32931e-04 1.0 2

CPU - - 8.46e+02s - - 5.07e+02s
Table 3

Example 1: The results for the different values of ε.

Next, we investigate the convergence rate of the error and the performance of the residual-based Newton298

method for p = 1.1 and for three different choices of ε. The results are shown in Table 4. Here, we can see299

that for each of the three values of ε, the error ‖F(∇u)− F(∇unh)‖L2 converges to zero with rate r close to300

one, which is in agreement with Theorem 2.7. The Newton performance appears to be mesh independent.301

The required total steps are increased as the value of ε is decreased.302

As a last computation in this example, we solve the problem using k = 2 polynomials. The parameter p303

takes the limiting values p = 1.01 and p = 1.1. Again, as in the above tests, we investigate the behavior of304
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- k = 1 and p = 1.1
- ε = 10−4 ε = 10−3 ε = 10−1

DoFs ‖F − Fh‖ r N ‖F − Fh‖ r N ‖F − Fh‖ r N
289 3.61674e-02 - 11 3.62331e-02 - 10 3.90390e-02 - 9
1089 1.92142e-02 0.91 5 1.93753e-02 0.9 5 1.95622e-02 1.0 4
4225 1.00983e-02 0.93 5 1.04294e-02 0.9 6 9.78098e-03 1.0 4
16641 5.26816e-03 0.94 5 5.64053e-03 0.88 5 4.89046e-03 1.0 3
66049 2.73798e-03 0.95 5 2.89079e-03 0.96 6 2.44523e-03 1.0 3
263169 1.42804e-03 0.94 6 1.46773e-03 0.98 5 1.22261e-03 1.0 3
1050625 7.44909e-04 0.94 8 7.51022e-04 0.97 5 6.11307e-04 1.0 2

CPU - - 1.05e+03s - - 7.27e+02s - - 3.47e+02s
Table 4

Example 1: The results for the different values of ε.

the convergence of the error as well the behavior of the iterative solver for several values of ε. The results are305

displayed in Table 5 and in Table 6. Here, we observe for ε = 10−4 that the error converges with the expected306

rate r for both p-cases. We repeat the computations setting ε = 0.1. Also, in this case the convergence rates307

of the error tend to obtain the optimal value r = 2 as the mesh is refined. For both p-cases, the rates are308

optimal for all mesh refinement levels and the iterative solver needs less than two steps for obtaining the309

solution. Again, this test illustrates the affection of the parameter ε to the performance of the iterative solver.310

- k = 2 and p = 1.01
- ε = 10−4 p = 1.01 ε = 10−1 p = 1.01

DoFs ‖F − Fh‖ r N ‖F − Fh‖ r N
256 2.221e-04 - 20 2.316e-04 - 11
1024 5.509e-05 2.01 4 5.787e-05 2.00 2
4096 1.382e-05 1.99 4 1.446e-05 2.00 2
16384 3.457e-06 2.00 5 3.616e-06 2.00 1
65536 8.645e-07 2.00 5 9.041e-07 2.00 1
262144 2.161e-07 2.00 5 2.260e-07 2.00 1

CPU - - 6.999e+02s - - 1.658e+02s
Table 5

Example 1: The results for k = 2 for different choices of ε.

k = 2 and p = 1.1
ε = 10−4 p = 1.1 ε = 10−1 p = 1.1

‖F − Fh‖ r N ‖F − Fh‖ r N
2.394e-04 - 14 2.476e-04 - 14
5.939e-05 2.01 4 6.190e-05 2.00 2
1.490e-05 1.99 4 1.547e-05 2.00 2
3.726e-06 2.00 4 3.868e-06 2.00 1
9.318e-07 2.00 4 9.672e-07 2.00 1
2.329e-07 2.00 4 2.418e-07 2.00 1

CPU - - 5.719e+02s - - 1.671e+02s
Table 6

Example 1: The results for k = 2 for different choices of ε.

Example 2, (existence of x0 ∈ Ω : |∇u(x0)| = 0).311

In the second example, we want to investigate the convergence rates of the error and the corresponding312

behavior of the residual-based Newton method in case of the presence of critical points, i.e., {x0 ∈ Ω :313

|∇u(x0)| = 0}. In this situation the iterative matrix B′ in (3.7a) tends to become singular or ill-conditioned314

as ε→ 0. To this end, the domain is Ω = (0, 1)2 and the data uD and f are selected so that the exact solution315

to be given by u(x, y) = sin(2π(x + y)), which is plotted in Fig. 3. Note that the solution contains critical316

points along the lines y = 1
4 − x and y = 3

4 − x. We solved the problem using k = 1 polynomial space and317

initial guess u0
h = Proj(un2h). We compute the convergence rates on a sequence of seven successively finer318

meshes for several values of p and ε ranging from 10−4 to 1. In Table 7, we show the convergence rates r319
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Fig. 3. Example 2: Display of the solution for the case p = 1.01 and ε = 1.0.

and the Newton iterations for each selected p and each ε. The reported rate r is the minimum rate computed320

on the last three finer meshes. The reported number of Newton iterations N , is the maximum number of321

the Newton iterations that have been used on the three finer meshes. We can clearly see, that for p < 2322

the performance of the Newton solver is very sensitive to the choice of ε. In particular the value of ε must323

be close to one in order to perform successfully the Newton iterative procedure. An exception is the case324

of p = 1.8 where the problem has been solved for all values of ε using a relatively small number of iterative325

steps N . On the other hand for the tests with p > 2, the problem has been successfully solved for all the326

selected values of ε. We can see that the rates have the expected values and the Newton method appears to327

have a mesh independent behavior. For the case p = 11, we observe an increase in the Newton steps without328

having a deterioration of the convergence rates.

ε
p = 1.01 p = 1.1 p = 1.3 p = 1.5 p = 1.8 p = 2.25 p = 3 p = 4.3 p = 11
r N r N r N r N r N r N r N r N r N

10−4 1.3 8 1.08 9 1 6 1 7 1 10 1 20
10−3 1.8 11 1.27 8 1.1 9 1 6 1 7 1 10 1 20
10−2 2.4 12 1.37 8 1.1 6 1 5 1 7 1 9 1 19
10−1 1 7 1 9 1 6 1 5 1 5 1 7 1 6 1 18

1 1 4 1 4 1 5 1 5 1 5 1 5 1 4 1 5 1 9
Table 7

Example 2: The rates r and the Newton iteration steps with respect to ε for several values of p.

329

Fig. 4. Example 3: Display of the numerical solution for the case p = 1.5 and ε = 1.0 and γ = 0.8 and k = 1.

Example 3: (low-regularity solution, u ∈ W l,p(Ω), l = 2 and l = 3). This example consists of a problem330

with low regularity solution, i.e., u(x, y) = (x2+y2)
γ
2 , for several values for the parameter γ, see also [17]. The331

computational domain is the rectangle Ω = (−0.5, 0.5)2. The source function f and uD are manufactured by332

the exact solution. We point out that the regularity of the solution is specified by the value of the parameter333

γ and in this example, we investigate the ability of the whole method (FE discretization and Newton solver)334

to approximate low regularity solutions of (2.1) with the expected accuracy. Thus, this example seems to335

be quite interesting, since we can predefine the regularity of the proposed exact solution to be close to the336

required regularity of the solution, which has been assumed in the error analysis, see Assumptions 2.1, 2.3337
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u ∈W l,p(Ω) with u = |x|γ , ε = 1
space Qk γ = 0.72, l = 2, p = 1.5 γ = 0.92, l = 2, p = 1.8 γ = 1.4, l = 2, p = 3

expected rates r
k = 1 and k = 2 1 1 1

γ = 1.72, l = 3, p = 1.5 γ = 1.92, l = 3, p = 1.8 γ = 2.4, l = 3, p = 3
expected rates r

k = 1 1 1 1
k = 2 2 2 2

Table 8
Example 3: the expected convergence rates r for the several values of the parameters γ and p.

and Remark 2.2. In Table 8, for several values of the parameters γ and p, we display the space W l,p where338

the solution u belongs to. Also, the expected convergence rates r are mentioned. For validation, we have339

computed the convergence rates in all cases setting ε = 1, see Table 8. Note that in this case we have that340

1
τ ∈ L

q(Ω), q = p
p−1 , see Assumption 2.3 and Remark 2.2. We solve the problem using k = 1 and k = 2341

polynomial spaces and utilizing both Newton iterative solvers, residual based-line, see Algorithm 3.2 and342

error-oriented, see Algorithm 3.3.343

u ∈W l,p(Ω) with u = |x|γ , ε = 1

γ = 0.72, l = 2, p = 1.5 γ = 0.92, l = 2, p = 1.8 γ = 1.4, l = 2, p = 3

k = 1 k = 2 k = 1 k = 2 k = 1 k = 2
h
2s

r NRB NEO r NRB NEO r NRB NEO r NRB NEO r NRB NEO r NRB NEO

s =0 - 7 4 - 7 5 - 5 3 - 5 4 - 6 4 - 7 6

s =1 0.69 4 2 0.81 4 2 0.84 3 2 0.99 3 2 0.98 4 2 1.43 3 2

s =2 0.73 4 2 0.82 4 2 0.87 3 2 0.99 3 2 0.99 4 2 1.42 3 1

s =3 0.77 4 2 0.82 4 2 0.89 3 2 0.99 3 2 0.99 3 2 1.42 3 1

s =4 0.78 4 2 0.88 4 2 0.90 3 2 0.99 3 2 0.99 3 2 1.41 3 1

CPU - 27s 25s - 130s 120s - 21s 25s - 100s 120s - 22s 19s - 110s 87s

γ = 1.72, l = 3, p = 1.5 γ = 1.92, l = 3, p = 1.8 γ = 2.4, l = 3, p = 3

k = 1 k = 2 k = 1 k = 2 k = 1 k = 2
h
2s

r NRB NEO r NRB NEO r NRB NEO r NRB NEO r NRB NEO r NRB NEO

s =0 - 5 4 - 5 4 - 4 3 - 5 3 - 5 4 - 7 5

s =1 1 3 2 1.74 3 1 1 3 2 1.85 2 1 1 4 2 2 2 1

s =2 1 3 2 1.76 2 1 1 3 2 1.87 2 1 1 3 2 2 2 1

s =3 1 3 2 1.77 2 1 1 3 1 1.90 2 1 1 3 2 2 2 1

s =4 1 3 1 1.78 2 1 1 2 1 1.91 2 1 1 3 2 2 2 1

CPU - 17s 19s - 76s 46s - 17s 20s - 51s 45s - 23s 21s - 49s 54s
Table 9

Example 3: the numerical convergence rates r and the nonlinear iterative steps N for the several values of γ and p.

In Table 9, we present the convergence rates r, as well the maximum number of the nonlinear iterative344

steps. In particular, the column of NRB corresponds to the steps of the residual-based method, and the345

column of NEO corresponds to the error-oriented method. In Table 9, we report only one column with346

convergence rates r, because both Newton iterative methods yield the same result. We observe that the347

rates related to γ = 0.72, l = 2, p = 1.5 are slightly below the expected value r = 1, see Table 8, but348

are progressively increased as we use finer meshes. For the p = 1.8 test case, the rates r corresponding to349

k = 1 and k = 2 solutions are very close to the expected values. For the last p = 3 test case, the rates r350

corresponding to k = 1 are in good agreement with Table 8, but the rates r corresponding to k = 2 are little351

higher. Here, we would like to note that in several numerical experiments that we have performed using352

p > 2, the numerical rates have been found to be greater than those predicted by the theory, e.g., see Tables353

9, 10 and 12 below. Similar rate behavior has been observed in the corresponding tests presented in [17]. 3
354

Concerning the iterative methods, we observe that both have mesh independent and p independent355

behavior. However, the performance of the error-oriented method needs less steps. However, this does not356

entail into a remarkable reduction of the corresponding CPU times, see the corresponding row in Table 8.357

The reason is that the error-oriented method is more expensive than the residual-based method, because we358

solve the linearized system two times per step; see Algorithm 3.3. Continuing with the results for l = 3 that359

3For a further investigation, we have performed more computations using different values for γ and p. Again, in some cases,
we found little higher rates than the rates expected by the theory.
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are displayed in last rows in Table 9, we can see that for every p-case the rates r related to k = 1 solutions360

are optimal. For p = 1.5, the rates related to k = 2 spaces are little below than the expected value. For the361

test case p = 1.8 the rates are close to the expected value and finally for the case p = 3 the rates become362

optimal. In conclusion, the results presented in Table 9 show that the approximation error either converges363

to the predicted rate, or in some cases related to γ = 0.72 tends to convergence. Both Newton iterative364

schemes can be utilized for solving the final nonlinear algebraic system.365

4.2. Augmented Lagrangian methods. In this paragraph we present two numerical examples that366

have been solved using the two ALG1 variants, see Table 1 in Section 3.4. Concretely, we have solved the367

same problems as in Example 2 and in Example 3 in order to compare the residual-based Newton method368

with the two ALG1 approaches.369

Example 4: (existence of x0 ∈ Ω : |∇u(x0)| = 0). We set Ω = (0, 1)2 and the boundary data uD and f370

are prescribed by the exact solution u(x, y) = sin(2π(x+y)), see also Example 2 above. We consider six levels371

of mesh refinement and four values for p ∈ {1.01, 1.5, 3, 4.3}. The numerical tests has been performed using372

k = 1 polynomial space and ε = 1. We mention that we also performed computations using the remaining373

values of ε in Table 7. The derived results were similar to that which are described in Table 7 and thus we374

report only the case ε = 1. In Table 10, we show the numerical convergence rates and the corresponding375

iterative steps that we have found for the sALG1 method. In Table 11, we show the corresponding data of376

mALG1 method. In both tables the column associated with N indicates the number of nonlinear (Newtons)377

iterations necessary to achieve the convergence criteria. In general, we observe that both methods sALG1378

and mALG1 converge quite fast, as few as 2 iterations on fine meshes. In some cases, the proposed mALG1379

method requires less steps to reach the stopping criterion, see for example the p = 1.5 case. The number N380

of iterations remains stable and very low for the last mesh levels, thus we can say that both ALG1 methods381

exhibit a mesh independent behavior. Also we observe that the convergence rates of sALG1 appear to be382

little higher than the theory predicts. On the other hand the convergence rates r corresponding to mALG1383

method are very close to the rates predicted by the theory.

- sALG1, ε = 1 and u0
h = P (un2h) and k = 1

grid size p = 1.01 p = 1.5 p = 3 p = 4.3
h
2s r N r N r N r N

s=0 - 4 - 4 - 4 - 3
s=1 1.1 3 1.1 4 1.2 4 1.4 3
s=2 1.0 3 1.3 3 1.1 3 1.4 2
s=3 1.3 2 1.2 3 1.1 3 1.3 2
s=4 1.2 2 1.1 2 1.0 3 1.2 1

Table 10
Example 4: sALG1 method. The convergence rates and the

iterative steps for several values of p.

- mALG1, ε = 1 and u0
h = P (un2h) and k = 1

grid size p = 1.01 p = 1.5 p = 3 p = 4.3
h
2s r N r N r N r N

s=0 - 4 - 4 - 7 - 12
s=1 0.86 3 0.98 2 1.1 3 1.2 3
s=2 1.0 3 1.0 2 1.0 2 1.2 2
s=3 1.0 2 1.0 2 1.0 2 1.0 2
s=4 1.0 2 1.0 2 1.0 2 1.0 1

Table 11
Example 4: mALG1 method. The convergence rates and the

iterative steps for several values of p.

384

Example 5: (low regularity solution) . We consider Ω = (−0.5, 0.5)2 and the exact solution u(x, y) =385

(x2 +y2)
γ
2 , see also Example 3, Table 8 and Table 9. We have solved the problem using linear elements k = 1386

giving to γ and p the values of the second row in Table 8. We compare the two different ALG1 methods by387

choosing three different test cases associated with three different values for p, i.e., p = {1.5, 1.8, 3}. Table388

12 corresponds to sALG1 method and it displays the convergence rates of the error and the iterative steps389

N for every mesh level. The results related to mALG1 method are displayed in Table 13. The initial guess390

is defined to be the projection of the previous coarse mesh solution. We begin with the results of sALG1391

displayed in Table 12 and are associated with l = 2 regularity. We observe that for p = 1.5 the rates, for392

both k = 1 and k = 2 spaces, are slightly less than the expected optimal r = 1 rate, but they progressively393

increase towards the optimal value. For the case of p = 1.8 the rates r of both numerical solutions k = 1 and394

k = 2 are very close to the optimal value r = 1 which is determined by the regularity of u. On the other hand395

the rates for p = 3 case are little higher on the first meshes but are progressively reduced. In general, the396

convergence rates in Table 12, which are related to l = 2 regularity, are closer to the rates presented in Table397

8, in comparison to the rates that we show in Table 9. Looking at Table 12 the column with the number of398

the nonlinear iterative steps, we observe that in general the sALG1 method has a mesh independent behavior.399

The iterative steps corresponding to k = 1 solutions are considerably more than the steps corresponding to400

k = 2 solutions. This does not have an impact on the total CPU time, since we observe that the CPU time401

of k = 2 computations is much higher that the CPU time of k = 1 computations, see the corresponding row402

in Table 12.403

Also, Table 12 shows the results for the l = 3 tests (see last rows). We observe that the rates related to404

k = 1 for all p-cases are little higher than the r = 1 (expected value). On the other hand the rates r related405
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sALG1, u ∈W l,p(Ω) with u = |x|γ , ε = 1

γ = 0.72, l = 2, p = 1.5 γ = 0.92, l = 2, p = 1.8 γ = 1.4, l = 2, p = 3
h
2s k = 1 N k = 2 N k = 1 N k = 2 N k = 1 N k = 2 N

- Rates r and steps N for sALG1

s = 0 - 22 - 14 - 17 - 11 - 24 - 16
s = 1 0.85 18 0.85 10 1.02 16 0.95 11 1.50 16 1.45 11
s = 2 0.79 17 0.86 9 0.94 15 0.95 8 1.30 12 1.43 10
s = 3 0.79 16 0.86 8 0.93 13 0.96 7 1.22 12 1.42 10
s = 4 0.80 14 0.87 7 0.94 11 0.95 6 1.17 9 1.41 7
CPU - 94s - 394s - 120s - 306s - 101s - 440s

γ = 1.72, l = 3, p = 1.5 γ = 1.92, l = 3, p = 1.8 γ = 2.4, l = 3, p = 3
h
2s k = 1 N k = 2 N k = 1 N k = 2 N k = 1 N k = 2 N

- Rates r and steps N for sALG1

s = 0 - 20 - 10 - 18 - 8 - 24 - 14
s = 1 1.35 16 1.76 6 1.35 14 1.90 6 1.17 18 2.1 12
s = 2 1.46 11 1.77 6 1.39 12 1.91 6 1.28 12 2.07 10
s = 3 1.39 8 1.78 6 1.35 8 1.92 6 1.30 11 2.04 10
s = 4 1.30 7 1.79 6 1.29 7 1.90 6 1.23 10 2.02 9
CPU - 64s - 344s - 61s - 389s - 117s - 471s

Table 12
Example 5: sALG1 for solving problems with low regularity solution. The numerical convergence rates and the iterative

steps for the several values of γ and p.

mALG1, u ∈W l,p(Ω) with u = |x|γ , ε = 1

γ = 0.72, l = 2, p = 1.5 γ = 0.92, l = 2, p = 1.8 γ = 1.4, l = 2, p = 3
h
2s k = 1 N k = 2 N k = 1 N k = 2 N k = 1 N k = 2 N

- Rates r and steps N for mALG1

s = 0 - 9 - 9 - 6 6 - 9 - 10
s = 1 0.73 6 0.85 9 0.77 8 0.91 5 0.97 5 1.32 10
s = 2 0.85 6 0.90 5 0.90 8 0.95 7 1.02 7 1.40 6
s = 3 0.86 5 0.90 5 0.91 7 0.95 6 1.02 5 1.41 4
s = 4 0.87 5 0.90 4 0.92 7 0.95 6 1.01 4 1.41 3
CPU - 133s - 1174s - 188s - 1597s - 98s - 883s

γ = 1.72, l = 3, p = 1.5 γ = 1.92, l = 3, p = 1.8 γ = 2.4, l = 3, p = 3
h
2s k = 1 N k = 2 N k = 1 N k = 2 N k = 1 N k = 2 N

- Rates r and steps N for mALG1

s = 0 - 8 - 8 - 5 - 6 - 9 - 8
s = 1 1.00 4 1.74 3 1.02 4 1.81 5 0.97 7 2.02 8
s = 2 1.00 3 1.76 2 1.01 3 1.87 2 1.02 5 2.07 3
s = 3 1.00 3 1.78 2 1.01 2 1.90 2 1.01 4 2.00 2
s = 4 1.00 2 1.79 1 1.00 2 1.91 1 1.01 4 2.00 1
CPU - 76s - 356s - 61s - 335s - 76s - 338s

Table 13
Example 5: mALG1 for solving problems with low regularity solution. The numerical convergence rates and the iterative

steps for the several values of γ and p.

to p = 1.5, k = 2 solutions are little lower than expected. For the two other p-cases, the convergence rates of406

k = 2 numerical solutions are close to the expected r = 2 rate. Concerning the variations of the numbers N of407

the iterative steps, we observe similar behavior as in the previous l = 2 test case. More precisely, although the408

steps of k = 1 numerical solutions are again quite higher than the steps of k = 2 solutions, the corresponding409

CPU time of k = 1 solutions is smaller. This occurs due to the fact that ALG1 methods introduce two new410

variables, see Table 1. Thus, when we use k = 2 spaces, the resulting algebraic linear system at each Newton411

step, has a high number of unknowns, and therefore its solution requires much more computing time. Here,412

advanced techniques, e.g. efficient preconditioners such as for instance multigrid techniques must be applied.413

This is a topic that we will discuss in a forthcoming paper; see also Remark 3.6.414
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We continue with the results of mALG1 method for l = 2 regularity case, see first rows in Table 13.415

For the p = 1.5 test case, we observe that the rates r corresponding to k = 1 solutions are little lower than416

the optimal value but moving to finer meshes the rates are approaching the optimal value. For the other417

two p-cases the rates of k = 1 solutions are much closer to the expected r = 1 value. Concerning the rates418

of k = 2 solutions, we can see that are close to r = 1 which is not surprising since u ∈ W l=2,p. We have419

to remark that the rates obtained for p = 3 test case are little bit more higher than expected. Finally, we420

mention that, for all p-cases, the required number of iterative steps is not increased as we use finer grids, even421

for k = 2 spaces. This indicates that the proposed mALG1 method follows a mesh-independent behavior.422

Here, we also observe that the number of the iterative steps for both cases k = 1 and k = 2 are very close,423

and such a behavior did not appear in sALG1 method. Concerning the CPU times displayed in the last row,424

similar comments as in previous tests of sALG1 method can be expressed.425

The last rows in Table 13 show the results related to l = 3 regularity test case. We observe that for each426

of the three p-tests the error related to k = 1 spaces convergences at the optimal rate r = 1, as predicted by427

Theorem 2.33, see also Table 8. As in the previous examples, the error convergence rates related to k = 2428

numerical solutions is little below the expected value for the case of p = 1.5, but the rates are in agreement429

with the predicted rates for the rest p-cases. In general, we can say that the rates behave in a similar manner430

as in Example 3, where the residual-based method applied, see last lines in Table 8. Also, Table 13 presents431

the actual number of the nonlinear iterative steps at every mesh. We see that the iterative steps of both432

k = 1 and k = 2 solutions are very close. For each choice of p, the solution is obtained in very few iterative433

steps even on the last mesh levels. Also we note that the number of the iterative steps is not increased as434

we increase the value of p. We did not observe the same in Table 12 which shows the results for the sALG1435

method. This fact indicates the robustness of the new proposed mALG1 method with respect the choice of436

p. Finally, in the last row in Table 13, we can see the corresponding CPU times. As in the l = 2 case and as437

in sALG1 method, the CPU times of k = 2 solutions are quite larger than the CPU times of k = 1 solutions.438

This is not the case for the two Newton methods, see last row in Table 9.439

As a final comment we can say that the two ALG1 methods appear to be quite appropriate for solving440

the nonlinear system in (3.4). This seems to be a result of the particular decomposition of the problem and441

the treatment of the nonlinear terms. On the other hand, this ALG1 decomposition introduces additional442

unknowns, which results in the creation of a large system.443

5. Conclusions. In this article, we applied finite element methods for the numerical solution of p-power-444

law diffusion problems. Under some regularity assumptions for the exact solution we derived a priori error445

estimates. The theoretical error estimates were demonstrated by numerical examples using several values446

for the parameters of the problem. Next, we presented nonlinear iterative solvers. Initially, we analyzed447

two Newton-like iterative methods, a residual-based and an error-oriented technique. We discussed in detail448

the condition properties of the Newton iterative matrix. Even though the error-oriented procedure finds the449

solution in less iterations than the residual-based technique, the latter is easier to be materialized. However, in450

the error-oriented method the linear system is solved twice, which finally makes the two methods to be appear451

equivalent in terms of CPU time. In addition, we applied two augmented Lagrangian methodologies for solving452

the original p-type elliptic problem. The resulting iterative methods can be characterized by the simplicity453

of the algorithm and are able to provide a nice handling of the nonlinear terms via the decomposition of454

the original problem. Nevertheless, the introduction of the additional unknowns that accompanies the ALG1455

framework, yields a large system at each Newton step. For an efficient solution of this system, it seems that456

we need to apply more advanced techniques, which we envisage to develop in future work.457
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[30] Ern A. and Vohraĺık M. Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs.518

SIAM J. Sci. Comput., 35(4):A1761– A1791, 2013.519

[31] Hirn A. Finite element approximation of singular power-law systems. Math. Comp, 82(283):1247–1268, 2013.520

[32] Glowinski R. Numerical Methods for Nonlinear Variational Problems (Scientific Computation). Scientific Computation.521

Springer-Verlag, Berlin-Heidelberg, 2 edition, 2008.522

[33] Adams R. A. and Fournier J. J. F. Sobolev Spaces, volume 140 of Pure and Applied Mathematics. ACADEMIC PRESS-523

imprint Elsevier Science, second edition, 2003.524

[34] Diening L. and Ettwein F. Fractional Estimates for Non-differentiable Elliptic Systems with General Growth. Forum525

Mathematicum, 20(3):523–556, 2008.526

[35] Bangerth W., Heister T., and Kanschat G. Differential Equations Analysis Library, 2012.527

[36] Bangerth W., Hartmann R., and Kanschat G. deal.II – a general purpose object oriented finite element library. ACM528

Trans. Math. Softw., 33(4):24/1–24/27, 2007.529
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