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École Polytechnique
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Abstract

Our goal in this work is to develop and compare modified Newton methods for fully monolithic quasi-static brittle
phase-field fracture propagation. In variational phase-field fracture, a smoothed phase-field indicator variable denoting
the crack path is coupled to elasticity. Moreover, a crack irreversibility condition is incorporated. To develop a fully
monolithic scheme is an extremely challenging task since the underlying problem is non-convex and the Jacobian of
Newton’s method is indefinite. To split the problem and using alternating minimization, thus a partitioned approach, is
a possible resort. However, there a good reasons to consider monolithic approaches such as for example robustness and
efficiency. Although an error-oriented Newton method can cope with a larger variety of configurations, it appears that
this method is not always robust and also not always efficient. Inspired by nonlinear flow problems, as alternative, we
develop a modified Newton scheme in which globalization is based on a dynamic modification of the Jacobian matrix
rather than utilizing line-search or trust-region strategies. This variation switches smoothly between full Newton
and Newton-like steps. In several 2D and 3D numerical examples, all of them with different characteristic features,
our modified Newton solver is compared to a backtracking line-search Newton method, another line-search method
monitoring the global energy and allowing for negative curvatures, and to already published results of an error-
oriented version. These computations also include further modifications of Newton’s method and detailed discussions
why certain schemes either work or fail. Revisiting all findings, the main outcome of this paper is that the modified
Newton scheme with Jacobian modification is currently the only method that works in a robust and efficient way
for all provided examples, whereas line-search schemes or the error-oriented scheme show deficiencies for certain
configurations.

Keywords: phase-field fracture propagation; modified Newton’s method; Jacobian modification; line-search; inexact
augmented Lagrangian; benchmark tests;
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1. Introduction

In 1998, Francfort and Marigo [26] introduced a variational approach to Griffith’s [30] quasi-static brittle fracture
model. A numerical realization of this model was first presented by Bourdin et al. [14]. Using such a variational
approach, discontinuities in the displacement field u across the lower-dimensional crack surface are approximated
by an auxiliary phase-field function ϕ based on elliptic (Ambrosio-Tortorelli) functionals [5, 6]. The latter one is
a smoothed indicator function, which introduces a diffusive transition zone of size ε between the broken and the
unbroken material. The essential aspects of a variational fracture propagation formulation are techniques that must
include the resolution of ε with respect to the spatial discretization parameter h, the enforcement of the irreversibility
of crack growth, and the robust and efficient numerical solution of the entire problem. To anticipate the topic of this
paper, we focus specifically on the last aspect, namely on the nonlinear solution process using Newton’s method.

In 2010, Miehe et al. [50, 53] added more physical explanation and modifications to the original model, yielding
a so-called phase-field formulation for fracture propagation. Since then, the method has been extended in various
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directions as attested in papers on various solution techniques [39, 50, 53, 1, 3, 48, 27, 74, 24], isogeometric analysis
[12, 11, 34, 4, 33], discontinuous/enriched Galerkin [23, 58], adaptive (spatial) discretizations [18, 19, 8, 72], dynamic
fracture [40, 41, 12, 16, 35, 62], ductile/cohesive fracture [66, 4, 2, 64] and recent comparisons with experimental
results or extensions to multiphysics fracture [46, 55, 51, 52, 49, 56, 31, 42, 71, 17, 44] to name a few.

Due to the non-convexity of the underlying energy functional, in most approaches, the solution is obtained via
iteration between the variables, a so-called alternating minimization [14, 15, 13, 18, 48]. This idea is based on the
fact that by fixing one variable, the problem becomes convex in the other unknown. Such a partitioned approach
may however need many iterations; see [67, 27]. A quasi-monolithic approach proposed in [32] goes into the same
direction by fixing the phase-field variable ϕ in the most critical term and using an extrapolation in time ϕ̃. In fact, this
algorithm seems to be extremely robust and efficient. Thanks to the triangular block structure, the quasi-monolithic
approach could be easily treated with an MPI-parallelized preconditioned GMRES solver applied to 2D and 3D
settings [32, 43]. With regard to parallelization it is worthy to notice as well [74] in which a GPU parallelization using
a partitioned method has been proposed.

It remains an interesting and challenging problem to design a fully monolithic algorithm because the original
system is envisaged to be solved without any perturbations introduced by the numerical solution algorithm. This
reflects the paradigm that a numerical algorithm should be designed in such a way that as many properties as possible
of the continuous problem are conserved - and this is without any doubts the case for monolithic algorithms. However,
due to the non-convexity, the Jacobian matrix in Newton’s method becomes indefinite and a straightforward solution
process is not robust anymore.

Dealing with ill-conditioned matrices (namely the Hessian1 of the functional to be minimized) in Newton’s method
is well known in numerical optimization in which non-monotone, non-convex and indefinite systems often arise [61].
A common strategy is to modify the Hessian in such a way that it becomes again positive definite in order to find (at
least) a local minimum. Another approach, a special line-search technique, was developed in the 1970’s. Here, the
authors work on purpose with the ‘wrong’ Newton direction while using the negative curvature [29, 59]. However,
to find the correct balance between (steepest) descent and the negative curvature is difficult (for further comments we
refer the reader to the pages 62-63 in [61]).

For quasi-static phase-field fracture, some reliable experiences using monolithic Newton techniques have been re-
cently reported in the literature [67, 27, 73] (a monolithic concept for dynamic phase-field fracture was first presented
in [12]). These studies show, however, that the performance (as almost expected) is highly dependent on the problem
configuration, material and model parameters. The key is a careful inspection of the underlying Newton method and
the hope that special modifications yield solutions. For instance, [27] designed a special line-search algorithm, which
monitors the global energy at each Newton step. The stopping criterion is based as usually on a sufficiently small
residual (i.e., the first order necessary condition of the energy functional). Furthermore, the authors also developed
a concept to detect negative curvatures of the Newton path. Earlier work was done in [67] in which the weak form
was augmented with respect to a dissipation-based arc-length procedure in order to avoid a snapback behavior. The
most recent work is [73], which employed an error-oriented Newton method (for the basics we refer to [22]) including
comparisons to the quasi-monolithic approach from [32].

On the other hand, for nonlinear flow problems, modified Newton schemes have been proposed in [36] and further
investigated in [45, 47]. This technique tries to separate bad terms from well-posed terms in the Jacobian matrix and
to scale these bad terms in an appropriate manner such that the method dynamically varies between full Newton and
a Newton-like procedure2. However, employing this approach, classical line search procedures will not be adopted
in addition, since they would act in a counter-productive manner [45] (our own numerical experiments in Example 1
in Section 5 substantiate this claim). The main drawback of this modified Newton scheme is the lack of a rigorous
convergence result and remains thus an heuristic procedure, which however seems to work very well in practice.

The main novelty of this paper is to apply such modified Newton schemes to fully monolithic phase-field fracture
settings. Specifically, we separate the phase-field derivatives in the elasticity equation from the rest of the matrix and
introduce a control parameter ω that is updated at each Newton iteration. The main reason to apply this modified
Newton scheme is scientific curiosity, but more importantly a true necessity. In fact, we found in [73] in six different

1On the PDE level, the Hessian is nothing else then the Jacobian matrix. In the rest of the paper we use both terminologies.
2For the definition of a Newton-like procedure, we refer to page 22 in [22]. In optimization terminology, this is nothing else than a special form

of a Hessian modification (pages 48-56 in [61]).
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numerical tests that an error-oriented Newton approach lacked in some cases efficiency and would not work in one
of the six tests. From these results, it can be inferred that the developed methodology is not robust for arbitrary
configurations.

In this paper, we will indeed observe large variations of the norm of the Newton residual during single Newton
iterations. Moreover, we learn that by such a monolithic treatment the coupling is so tight that smallest perturbations
yield different crack patterns and extremely fast crack growth. The first observation coincides with the fact that
uniqueness cannot be proven for quasi-static phase-field fracture, e.g., [14, 15]. The fast crack growth is instantaneous
and much faster than observed in partitioned (alternating minimization) or quasi-monolithic approaches. This clearly
shows that numerical algorithms might have a significant impact on the crack growth, the crack path, and the crack
(tip) velocity.

Finally, the further investigation of monolithic algorithms remain important not only for the previously discussed
reasons, but also for the fact that some studies found that monolithic algorithms are more efficient in comparison to
partitioned (i.e., alternating) techniques [27, 67]. Therefore, it is interesting from the computational cost point of view
to further develop monolithic schemes. Moreover, for consistent Galerkin formulations used in adjoint-based error
estimation and gradient-based optimization, monolithic formulations are necessary. Involving phase-field fracture,
first studies with regard to these two last research topics have been recently published in [72] and [60].

The outline of this paper is as follows. In the first Section 2 the notation and the equations are provided. Next in
Section 3 several modifications of Newton methods are explained. We provide insight to the characteristic features of
the underlying problem in Section 4. Several benchmarks that include mechanics tests and pressurized fractures are
consulted in Section 5 to substantiate our algorithmic developments. The paper finishes with detailed conclusions and
acknowledgments.

2. Notation and Governing Equations

2.1. Notation

In this section, we introduce the basic notation and the underlying equations. In the following, let B ⊂ Rd, d = 2, 3
the total domain wherein C ⊂ Rd−1 denotes the fracture and Ω ⊂ Rd is the intact domain. We assume (possibly
time-dependent non-homogeneous) Dirichlet conditions on the outer boundary ∂B.

Ω

B := Ω ∪ΩF

∂B

ΩF

C

∂ΩF

Figure 1: Setup of the notation: the unbroken domain is denoted by Ω and C is the fracture. The latter one is approximated by the domain ΩF . The
half thickness of ΩF is ε. The fracture boundary is ∂ΩF and the outer boundary is ∂B. The corresponding realization using phase-field is shown in
the right subfigure. Here, the lower-dimensional fracture (ϕ = 0) is approximated with the phase-field variable. The transition zone with 0 < ϕ < 1
has the thickness of ε on each side of the fracture. Consequently, ΩF can be represented in terms of ϕ as defined in (1).

Using a phase-field approach, the one-dimensional fracture C is approximated by ΩF ∈ Rd with the help of an
elliptic (Ambrosio-Tortorelli) functional [5, 6]. Using the phase-field variable ϕ (introduced in the next subsection
2.2), ΩF can be defined as:

ΩF := {x ∈ Rd | ϕ(x) < 1}. (1)
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For fracture formulations posed in a variational setting, this has been first proposed in [14]. The inner fracture
boundary is denoted by the smeared ε-dependent boundary ∂ΩF . We note that the precise location of ∂ΩF is of no
importance in this work (in contrast to [55, 44]). The reader is referred to Figure 1 for an illustration of the notation.
Since ∂ΩF depends on ε, the domains Ω and ΩF are ε-dependent, too. Finally, we denote the L2 scalar product with
(a, b) := (a, b)B :=

∫
B a · b dx for vectors a, b. For tensor-valued functions A, B, we have (A, B) := (A, B)B :=

∫
B A :

B dx.

2.2. Quasi-static phase-field for brittle fracture
We briefly recapitulate the ingredients for a phase-field model for mechanics and pressurized fractures in brittle

materials. Such a model is based on the variational/phase-field fracture approach of [26, 14]. Thermodynamically-
consistent phase-field techniques using a stress-split into tension and compression have been proposed in [7] and
[53].

The previous formulations start with an energy functional E(u, ϕ) (see also Section 3.3) which is minimized with
respect to the unknown solution variables u : B→ Rd (displacements) and a smoothed scalar-valued indicator phase-
field function ϕ : B → [0, 1]. The latter one varies in the zone of size ε from 0 (fracture) to 1 (intact material). The
first-order necessary condition are the Euler-Lagrange equations, which are obtained by differentiation with respect
to the two unknowns u and ϕ. Adding a pressure p : B→ R to the Euler-Lagrange equations that acts on the fracture
boundary has been formulated and analyzed in [54, 56, 57]. In all the previous fracture models, the physics of the
underlying problem ask to enforce a crack irreversibility condition (the crack can never heal) that is an inequality
condition in time:

∂tϕ ≤ 0. (2)

Consequently, modeling of fracture evolution problems leads to a variational inequality system, that is always, due to
this constraint, quasi-stationary or time-dependent.

The resulting variational formulation is stated in an incremental (i.e., time-discretized) formulation in which the
continuous irreversibility constraint is approximated by

ϕ ≤ ϕold.

Here, ϕold will later denote the previous time step solution and ϕ the current solution. Let V := H1
0(B) and

Win := {w ∈ H1(B)|w ≤ ϕold ≤ 1 a.e. on B}

be the function spaces we work with here; and for later purposes we also need W := H1(B). The Euler-Lagrange
system for pressurized phase-field fracture reads [57]:

Formulation 1. Let p ∈ L∞(B) be given. Find vector-valued displacements and a scalar-valued phase-field variable
{un, ϕn} := {u, ϕ} ∈ {uD + V} ×W such that at each incremental step n = 1, 2, 3, . . ., we solve((

(1 − κ)ϕ2 + κ
)
σ+(u), e(w)

)
+ (σ−(u), e(w))

+ (ϕ2 p, div w) = 0 ∀w ∈ V,
(3)

and
(1 − κ)(ϕ σ+(u) : e(u), ψ−ϕ) + 2(ϕ p div u, ψ−ϕ)

+ Gc

(
−

1
ε

(1 − ϕ, ψ−ϕ) + ε(∇ϕ,∇(ψ − ϕ))
)
≥ 0 ∀ψ ∈ Win ∩ L∞(B).

(4)

Here, Gc is the critical energy release rate, and we use the well-known law for the linear stress-strain relationship:

σ := σ(u) = 2µse(u) + λstre(u)I, (5)

where µs and λs denote the Lamé coefficients, e(u) = 1
2 (∇u + ∇uT ) is the linearized strain tensor and I is the identity

matrix.
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Furthermore in 2D, the stress σ is split into tensile σ+ and compressive parts σ− [50]:

σ+ = 2µse+ + λs < tr(e) > I,

σ− = 2µs(e − e+) + λs

(
tr(e)− < tr(e) >

)
I,

and
e+ = PΛ+PT ,

where < · > is the positive part of a function. Moreover, for d = 2, we have

Λ+ := Λ+(u) :=
(
< λ1(u) > 0

0 < λ2(u) >

)
,

where λ1(u) and λ2(u) are the eigenvalues of the strain tensor e, and v1(u) and v2(u) the corresponding (normalized)
eigenvectors. Finally, the matrix P is defined as P := P(u) := (v1, v2); namely, it consists of the column vectors
vi, i = 1, 2. In the 3D examples we simply work in this paper with (5) because only tensile forces will occur in this
specific test. Otherwise, we would have utilized the law proposed in [7] as we already implemented in our sister code
[43]. A discussion of various splitting laws can be found in [12][Section 2.2] and [3].

Remark 2.1 (Nonlinearities). Formulation 1 is nonlinear due to the monolithic formulation, the term (1− κ)(ϕ σ+(u) :
e(u), ψ−ϕ), the stress splitting, and the inequality constraint. The most critical term is the quasi-linearity

((
(1− κ)ϕ2 +

κ
)
σ+(u), e(w)

)
, which causes most of the challenges in designing reliable and efficient solution algorithms. In fact,

integrating this term with respect to u yields the corresponding term on the energy level:((
(1 − κ)ϕ2 + κ

)
σ+(u), e(u)

)
,

which has been well-characterized to be non-convex in both variables u and ϕ simultaneously in the very early work
[14, 13] (there yet without the stress-splitting though). For a simplified computational analysis, we also refer the
reader to Section 4 in this paper.

Remark 2.2 (Non-smoothness in time). As it is usual in quasi-static problems, we cannot have any regularity in time.
In practice, this means that crack propagation may not be smooth and the solution can have jumps in time in two
subsequent loading steps. Specific explanations and justifications for variational phase-field fracture can be found in
[13][Section 1.1] and [15]. For similar arguments for the pressurized phase-field fracture model, we refer to [57].

Remark 2.3. In Formulation 1, κ is a (small) positive regularization parameter for the elastic energy. Physically, κ
represents the residual stiffness of the material. Consequently, since(

(1 − κ)ϕ2 + κ
)
→ κ for ϕ→ 0,

the material stiffness decreases while approaching the fracture zone.

Remark 2.4. The pressure terms (ϕ2 p, div w) and 2(ϕ p div u, ψ−ϕ) have been derived in [54, 57] and are based on an
interface law that has been further manipulated using Gauss’ divergence theorem.

Remark 2.5. Formulation 1 does not explicitly contain time-derivatives. Rather, the time t might enter through time-
dependent boundary conditions, e.g., uD = uD(t) = g(t) on ∂B with a prescribed boundary function g(t) of Dirichlet-
type or through time-dependent right hand side forces, e.g., a time-dependent pressure force p := p(t).
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2.3. A fully monolithic semi-linear form
For the solution process, we add both equations in Formulation 1 and define a common semi-linear form:

Formulation 2. At each incremental step n, find Un := U := {u, ϕ} ∈ {uD + V} ×W such that

A(U)(Ψ − U) =

((
(1 − κ)ϕ2 + κ

)
σ+(u), e(w)

)
+ (σ−(u), e(w)) + (ϕ2 p,∇ · w)

+ (1 − κ)(ϕ σ+(u) : e(u), ψ − ϕ) + 2(ϕ p ∇ · u, ψ − ϕ)

+ Gc

(
−

1
ε

(1 − ϕ, ψ − ϕ) + ε(∇ϕ,∇ψ − ∇ϕ)
)

≥ 0,

(6)

for all Ψ := {w, ψ} ∈ V ×Win.

In order to deal with the variational inequality, the constraint ϕ ≤ ϕold is relaxed through penalization as it will be
explained in Section 2.4.

2.4. An incremental formulation using augmented Lagrangian penalization
Our strategy is as follows: we first discretize in time and work with the resulting incremental formulation. As al-

ready used in the definition of the space Win, the irreversibility constraint (2) is discretized with a backward difference
quotient such that

ϕ − ϕn−1

δt
≤ 0,

where δt = tn − tn−1. Here, ϕn−1 := ϕ(tn−1) denotes the previous time step solution and ϕ := ϕn := ϕ(tn) the current
solution. An augmented Lagrangian formulation3 of the irreversibility constraint reads [68]:

ϕ ≤ ϕn−1 → min(0,Ξ + γϕ) +

[
Ξ + γ(ϕ − ϕn−1)

]+

,

where Ξ ∈ L2 and γ > 0 and [x]+ := max(x, 0). In practice, Ξ will be obtained by an iteration.

Remark 2.6. Simplified implementations of the penalization strategy are[
Ξ + γ(ϕ − ϕn−1)

]+

,

or [
γ(ϕ − ϕn−1)

]+

.

In the latter one, Ξ is not necessary and one saves the additional iteration loop. However, this method is well-known
to be less robust because of ill-conditioning of the Jacobian matrix [61].

The resulting formulation then reads:

Formulation 3. Given an initial phase-field ϕ := ϕ0 and given either (time-dependent / time-like-dependent) non-
homogeneous boundary data uD or a pressure p(t) , 0. Compute for n = 1, 2, 3, . . . ,N the incremental solution
Un := U = {u, ϕ} ∈ {uD + V} ×W such that

A(U)(Ψ) := A(U)(Ψ) + ([Ξ + γ(ϕ − ϕn−1)]+, ψ) = 0 ∀Ψ ∈ V ×W,

where
A(U)(Ψ) =

((
(1 − κ)ϕ2 + κ

)
σ+(u), e(w)

)
+ (σ−(u), e(w)) + (ϕ2 p,∇ · w)

+ (1 − κ)(ϕ σ+(u) : e(u), ψ) + 2(ϕ p ∇ · u, ψ)

+ Gc

(
−

1
ε

(1 − ϕ, ψ) + ε(∇ϕ,∇ψ)
)
.

(7)

3For the general idea of the augmented Lagrangian method, we refer the reader to [25, 28].
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Remark 2.7 (Imposing the inequality constraint). In order to determine Ξ, we design an adaptive augmented La-
grangian formulation (the outer loop) in which we iterate according to the algorithm presented in [73] (based on
[68]). Therein, we have also shown that the adaptive choice of the inner tolerance (namely for Newton’s method) can
significantly reduce the computational cost.

2.5. Spatial discretization

We finally discuss spatial discretization, which is based on a Galerkin finite element scheme, introducing H1

conforming discrete spaces Vh ⊂ V and Wh ⊂ W consisting of bilinear functions Qc
1 on quadrilaterals (see e.g., [21]).

The discretization parameter is denoted by h. The discretized version of Formulation 3 reads:

Formulation 4. Given an initial phase-field ϕh := ϕ0
h and given either (time-dependent / time-like-dependent) non-

homogeneous boundary data uh
D or a pressure p(t) , 0. Compute for n = 1, 2, 3, . . . ,N the incremental solution

Un := Uh = {uh, ϕh} ∈ {uh
D + Vh} ×Wh such that

A(Uh)(Ψh) := A(Uh)(Ψh) + ([Ξh + γ(ϕh − ϕ
n−1
h )]+, ψh) = 0 ∀Ψh ∈ Vh ×Wh.

3. A residual-based modified Newton method with Jacobian modification

Our goal in this section is to develop Newton solvers for treating Formulation 4 in a monolithic fashion. As
mentioned in the introduction, detailed studies for brittle fracture are presented in [67, 27, 73]. These approaches
work well for standard benchmarks which others also have considered (not necessarily using monolithic approaches
[50, 53, 15, 48]), but exhibit difficulties for certain configurations with extremely fast crack growth.

We suggest in the following another method that is inspired from two sources. First, a successfully-used algorithm
for nonlinear flow problems is a modified Newton method with Jacobian modification [36, 45, 47]. This raises the
question how such a modification can be achieved in phase-field fracture. A hint can be found in [32] in which one
block in the Jacobian was zero due to an extrapolation in the phase-field variable, yielding an extremely robust and
efficient method. The idea is to introduce a control parameter ω for this specific block in a fully monolithic setting.

3.1. The Jacobian matrix

To apply Newton’s method for solving A(Uh)(Ψh) = 0, we first need to compute the derivative of A(Uh)(Ψh). We
construct the Jacobian4 by evaluating the directional derivative

A′(U)(δU,Ψ) := lim
s→0

A(U + sδU)(Ψ) − A(U)(Ψ)
s

with δU := {δu, δϕ} ∈ V ×W, which represents later the Newton update. In detail, the Jacobian is given by:

A′(U)(δU,Ψ) =

(
2δϕ(1 − κ)ϕσ+(u) +

(
(1 − κ)ϕ2 + κ

)
σ+(δu), e(w)

)
+ (σ−(δu), e(w)) + 2 (δϕ ϕp, div w)

+ (1 − κ)
(
δϕσ+(u) : e(u) + 2ϕ σ+(δu) : e(u), ψ

)
+ 2p(δϕ∇ · u + ϕ ∇ · δu, ψ)

+ Gc

(1
ε

(δϕ, ψ) + ε(∇δϕ,∇ψ)
)

+ γ(δϕ, ψ)A(ϕ) ∀Ψ := {w, ψ} ∈ V ×W,

(8)

where
A(ϕ) = {x = (x1, x2, x3) ∈ B | Ξ + γ

(
ϕ(x) − ϕ(x)n−1

)
> 0}.

In σ+(δu) and σ−(δu) we employ the derivative of e+, which is given by

e+(δu) = P(δu)Λ+PT + PΛ+(δu)PT + PΛ+PT (δu).

4In this section, we omit the index h to simplify the notation.
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Remark 3.1 (on the critical term). Recalling Remark 2.1, we observe that the critical term in the matrix is contained
in (

2δϕ(1 − κ)ϕσ+(u) +
(
(1 − κ)ϕ2 + κ

)
σ+(δu), e(w)

)
. (9)

Consulting our computational experiences from [32, 73] in which we designed a very efficient and robust method by
neglecting the cross-term block, we conjecture that the most critical term is the off-diagonal contribution

2δϕ(1 − κ)ϕσ+(u).

Related observations have been made in related studies on yield stress fluids (see [45]), where usually the derivative
of the nonlinear factor causes most difficulties in the solution process. Indeed in Section 4, we provide a detailed
simplified analysis showing that the cross-term significantly determines the properties of the Jacobian matrix.

3.2. Residual-based Newton’s method with line-search and quasi-Newton steps

In this section, we first recapitulate a monotonicity-based Newton algorithm. Globalization5 may be achieved by
a damping strategy based on a backtracking line search algorithm. After having presented the algorithm, we explain
the steps to change to a modified Newton scheme with Jacobian modification.

To measure the residuals and monitoring functions, we use the discrete norm ‖ · ‖ := ‖ · ‖l2 . At a given time instance
tn, we shall find the time step solution Un using:

Algorithm 3.1 (Residual-based Newton’s method). In this type of methods, the main criterion is a decrease of the
residual in each step. Choose an initial Newton guess U0. For the iteration steps k = 0, 1, 2, 3, . . .:

1. Find δUk := {δu, δϕ} ∈ V ×W such that

A′(Uk)(δUk,Ψ) = −A(Uk)(Ψ) ∀Ψ ∈ V ×W, (10)

Uk+1 = Uk + λkδUk, (11)

for λk = 1.
2. The criterion for convergence is the contraction of the residuals:

‖A(Uk+1)(Ψ)‖ < ‖A(Uk)(Ψ)‖. (12)

3. If (12) is violated, re-compute in (11) Uk+1 by choosing λl
k = 0.5, and compute for l = 1, ..., lM (e.g. lM = 5) a

new solution
Uk+1 = Uk + λl

kδU
k

until (12) is fulfilled for a l∗ < lM or lM is reached. In the latter case, no convergence is obtained and the program
aborts.

4. In case of l∗ < lM we check next the stopping criterion:

‖A(Uk+1)(Ψ)‖ ≤ TOLN .

If this is criterion is fulfilled, set Un := Uk+1. Else, we increment k → k + 1 and goto Step 1.

Remark 3.2 (Changes in the modified Newton scheme). In the modified Newton scheme that we present below in more
detail, we shall work with a modified Jacobian A′ω(Uk)(δUk,Ψ) and no line search, i.e., λk = 1 for all k. Furthermore,
Step 2 (inequality 12) is omitted. In place of Step 3, we compute heuristically a control parameter ω, which is derived
in Section 3.5.

5The terminology ‘globalization’ is adopted from numerical optimization (e.g., [61]) or, in general, Newton methods (e.g., [22]) and means that
the convergence radius of Newton’s method is extended by, for example, line search or trust region methods.
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Remark 3.3 (On using quasi-Newton steps). Usually, when the Newton reduction rate

θk =
‖A(Uk+1)(Ψ)‖
‖A(Uk)(Ψ)‖

,

was sufficiently good, e.g., θk ≤ θmax < 1 (where e.g. θmax ≈ 0.1), a common strategy is to work with the ‘old’ Jacobian
matrix, but with a new right hand side. This procedure is well established in the literature (see e.g., [22]) and works
usually very well. In phase-field fracture, we found the contrary that the matrix A′(Uk)(δUk,Ψ) should be assembled
at each Newton iteration step k such that it fits as well as possible to the corresponding right hand side A(Uk)(Ψ).
This is reasonable from a theoretical point of view since the matrix is indefinite and the problem non-convex. Thus,
smallest perturbations between matrix and right hand side, may lead to large mismatches, which then further result in
a blow-up of the residual and therefore divergence of Newton’s method causing the iteration to stop. In Section 5, we
illustrate our experiences with the help of one example.

3.3. A Newton method with line-search based on energy monitoring

In this section, we implement another line-search based Newton method while monitoring the global energy. This
idea has been applied to phase-field fracture in [27]. Furthermore, as it is well-known in numerical optimization for
highly non-convex problems [61], the authors of [27] implemented a strategy that also allows for negative curvatures
of the Newton path by utilizing negative line search parameters λk.

The key idea relies on the energy representation of the underlying Formulation 1. For quasi-static brittle fracture in
elasticity this is the original functional proposed and analyzed in [14, 15]. For pressurized fractures, the corresponding
energy functional has been designed and analyzed in [54]. The latter one reads:

E(u, ϕ) =
1
2

∫
B

(
(1 − κ)ϕ2 + κ

)
σ(u) : e(u) dx +

∫
B
ϕ2 p∇ · u dx + Gc

∫
B

( 1
2ε

(1 − ϕ)2 +
ε

2
|∇ϕ|2

)
dx. (13)

When we formally extend this functional utilizing stress-splitting and explicitely account for the crack irreversibility
constraint, we arrive at:

E(U) := E(u, ϕ) =
1
2

∫
B

(
(1 − κ)ϕ2 + κ

)
σ+(u) : e(u) dx +

∫
B
σ−(u) : e(u) dx +

∫
B
ϕ2 p∇ · u dx

+ Gc

∫
B

( 1
2ε

(1 − ϕ)2 +
ε

2
|∇ϕ|2

)
dx + IK(ϕn−1)(ϕ), (14)

where IK(ϕn−1)(ϕ) is the energy form of the penalization term of one of the possible strategies given in Section 2.4.
For details, we refer the reader to [68][Section 3]. A formal differentiation of E(u, ϕ) with respect to u and ϕ into the
directions w and ψ yields

E′(U)(Ψ) := E′(u, ϕ; w, ψ) = A(u, ϕ)(w, ψ) =: A(U)(Ψ)

and thus Formulation (3).
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We are now prepared for stating the algorithm. In our notation, a slightly-adapted algorithm proposed in [27]
reads:

Algorithm 3.2 (A Newton method with line-search based on energy monitoring). The main criterion is a decrease of
the energy E(U) at each step. Choose an initial Newton guess U0. For the iteration steps k = 0, 1, 2, 3, . . .:

1. Find δUk := {δu, δϕ} ∈ V ×W such that

A′(Uk)(δUk,Ψ) = −A(Uk)(Ψ) ∀Ψ ∈ V ×W, (15)

Uk+1 = Uk + λkδUk, (16)

for λk = 1.
2. The criterion for convergence is the decrease of energy:

E(Uk+1) < E(Uk) + R, (17)

where R > 0 is a number to allow for a slight increase of the energy due to numerical errors (round-off, for
instance). In our numerical tests, we choose a rather large value R = 0.01, which avoids going to often into the
line search loop and still yields the reliable numerical results.

3. If (17) is violated, re-compute in (16) Uk+1 by choosing λl
k ∈ [−1, 1] and update accordingly

Uk+1 = Uk + λl
kδU

k,

until (17) is fulfilled. How to obtain λl
k is explained in Remark 3.4.

4. We check next the stopping criterion:
‖A(Uk+1)(Ψ)‖ ≤ TOLN .

If this is criterion is fulfilled, set Un := Uk+1 and goto the next loading step. Else, we increment k → k + 1 and
goto Step 1 in this Newton algorithm.

Remark 3.4 (on negative line search parameters). A standard line search algorithm tries to find λl
k ∈ (0, 1] in Step 3. If

a negative curvature is detected at λl
k = 0 (for details we refer to [27][Section 4.2]), it might be necessary to allow for

negative λl
k. One possible choice is to extend the line-search parameter interval to [−1, 0). Our version is to discretize

the interval [−1, 1] by taking uniform step sizes λl
k, e.g., l = 40, and to check condition (17) in Step 3 of the above

algorithm. The first 20 line search steps are taken from (0, 1]. If they do not yield a satisfactory energy decrease,
we choose 20 negative values from less than 0 to −1. An accurate method to choose an optimal λl

k is described in
[27][Section 4.2.1]. When necessary, we bypass these additional computations and simply take a larger l to satisfy
condition (17).

Remark 3.5. The authors of [27] also observed sometimes an energy increase, which is not possible with the above
algorithm. Indeed, the line-search procedure in [27] was only activated after certain ‘critical’ situations (e.g., a sharp
energy increase) were observed.

Remark 3.6. Another, somewhat similar, adaptation would be to use

E(Uk+1) < E(U0) + R, (18)

rather than (17). The most important aspect is a final energy decrease in comparison to the initial energy E(U0). Thus,
this idea allows intermediate violations of (17) and thus a relaxation of the very strict monitor.

Remark 3.7 (Limitations of the energy-based line-search monitor). Monitoring the energy in Newton’s method is
simple for the equations considered in this paper. However, we emphasize that this idea is limited to problems that
allow for an energy formulation. For instance, the extension to a fully monolithic fluid-filled fracture formulation
does not yield a global energy functional, but only a free energy (Lyapunov) functional with dissipation as explained
in [56][Section 2.4]. On the other hand, using splitting algorithms that decouple other physics from the phase-field
displacement system [44] would still allow to implement an energy monitor in the time-discretized (i.e., incremental)
version of the problem.
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3.4. Block structure of the Jacobian, solution vector, and right hand side

Before we can design another Newton method, we need to understand the structure of the linear system (10) to be
solved at each Newton iteration. For the spatial discretization, we use the previously introduced spaces Vh ×Wh with
vector-valued basis

{ψi |i = 1, . . . ,N},

where the basis functions are primitive (they are only non-zero in one component), so we can separate them into
displacement and phase-field basis functions and sort them accordingly:

ψi =

(
χu

i
0

)
, for i = 1, . . . ,Nu,

ψ(Nu+i) =

(
0
χ
ϕ
i

)
, for i = 1, . . . ,Nϕ,

where Nu + Nϕ = N. This is now used to transform (10) into a system of the form

MδU = F, (19)

where M is a block matrix (the Jacobian) and F the right hand side consisting of the residuals. The unknown solution
vector is δU. The block structures are

M =

(
Muu Muϕ

Mϕu Mϕϕ

)
, F =

(
Fu

Fϕ

)
, δU =

(
δUu

δUϕ

)
,

with entries coming from (8):

Muu
i, j =

((
(1 − κ)ϕ2 + κ

)
σ+(χu

j ), e(χu
i )
)

+ (σ−(χu
j ), e(χu

i )),

Muϕ
i, j =

(
2χϕj (1 − κ)ϕσ

+(u), e(χu
i )
)

+ 2 (χϕj ϕp, div χu
i ),

Mϕu
i, j = 2(1 − κ)(ϕ σ+(χu

j ) : e(u), χϕi ) + 2p(ϕ div(χu
j ), χ

ϕ
i ),

Mϕϕ
i, j = (1 − κ)(σ+(u) : e(u)χϕj , χ

ϕ
i ) + 2p(div(u)χϕj , χ

ϕ
i )

+ Gc

(1
ε

(χϕj , χ
ϕ
i ) + ε(∇χϕj ,∇χ

ϕ
i )

)
+ γ(χϕj , χ

ϕ
i )A(ϕ).

The right hand side consists of the corresponding residuals (see Formulation 3 and therein (7)). In particular, we have

Fu
i = −A(Uk)(χu

i )

=

((
(1 − κ)ϕk

2 + κ
)
σ+(uk), e(χu

i )
)

+ (σ−(uk), e(χu
i )) + (ϕ2

k p, div χu
i ),

Fϕ
i = −A(Uk)(χϕi ) = (1 − κ)(ϕk σ

+(uk) : e(uk), χϕi ) + 2(ϕk p div uk, χ
ϕ
i )

+ Gc

(
−

1
ε

(1 − ϕk, χ
ϕ
i ) + ε(∇ϕk,∇χ

ϕ
i )

)
+ ([Ξh + γ(ϕk − ϕ

n−1
k ), ]+, χ

ϕ
i ).

In the matrix, the degrees of freedom that belong to Dirichlet conditions (here only the displacements since we
assume Neumann conditions for the phase-field variable) are strongly enforced by replacing the corresponding rows
and columns as usually done in a finite element code.

3.5. A modified Newton method with Jacobian modification

Rather than employing line search in Step 3 in Algorithm 3.1, we introduce a control parameter ω ∈ [0, 1] inside
the Jacobian, which decides whether a full Newton system (ω = 1), a Newton-like system with 0 < ω < 1 or even
ω = 0 is solved. The choice of this parameter is heuristic, but the key idea very simple. Inspired by several studies
that have been performed for nonlinear flow [36, 45, 47], we further develop these concepts in the following.

11



As shown in Section 3.4, formally, the Jacobian reads at each Newton step k:

M =

(
Muu Muϕ

Mϕu Mϕϕ

)
.

The critical block is Muϕ, particularly
(2χϕj (1 − κ)ϕσ

+(u), e(χu
i )) (20)

as it was already identified in [32] (see also the Remarks 3.8 below and 3.1 above). Thus the goal is to design a
procedure in which this block is dynamically activated or disabled during a Newton iteration. Incorporating ω brings
us to

M =

(
Muu ωMuϕ

Mϕu Mϕϕ

)
=

(
Muu 0
Mϕu Mϕϕ

)
+ ω

(
0 Muϕ

0 0

)
. (21)

Remark 3.8 (Extrapolated scheme). In the extrapolated scheme, we replace ϕ2 by a linear-in-time extrapolation ϕ̃2 in
the first line of the residual (7). When computing the Jacobian, the block Muϕ

i, j is zero after differentiation with respect
to ϕ. Therefore, the matrix M has always a triangular block structure:

M =

(
Muu 0
Mϕu Mϕϕ

)
. (22)

This pattern greatly facilitates the linear solution, particularly the design of preconditioners when using an iterative
technique, such as GMRES, for instance. Evidence is shown in several studies for 2D and 3D problems where we
could extend relatively easily the idea presented in [32] to parallel computations in 3D [43].

Remark 3.9. Since the blocks Mϕu and Muϕ are identical since the matrix M is symmetric by construction, one may
try to build a symmetric approximation by

M =

(
Muu ωMuϕ

ωMϕu Mϕϕ

)
=

(
Muu 0

0 Mϕϕ

)
+ ω

(
0 Muϕ

Mϕu 0

)
. (23)

We carried out some further numerical tests exploiting this idea (not shown in this paper though), but found inferior
performance of the Newton solver. From a numerical standpoint, this is clear because removing more terms in the
matrix weakens further the performance of the Newton scheme since the Jacobian and the residual fit less together.
For this reason, we did not further pursue this idea in our current work and we worked rather with the decomposition
(21).

3.5.1. Computing the control parameter ω
The choice of ω is done in a dynamic way dependent on the previous two Newton residuals. Thus, at each Newton

step k, the parameter ω := ωk is updated if applicable.
We define the residual and reciprocal residual reductions, respectively:

Qk+1 =
‖A(Uk+1)(Ψ)‖
‖A(Uk)(Ψ)‖

, Qrec
k+1 =

‖A(Uk)(Ψ)‖
‖A(Uk+1)(Ψ)‖

. (24)

If Qk+1 < 1, the new residual is smaller and we classify this step as a ‘good’ step. Moreover, if Qk+1 → 0, the better
the current step. On the other hand, if Qk+1 ≥ 1, the new residual is larger than the old one and we have the situation
in which a monotonicity-based Newton method would fail and, for example, an error-oriented version may perform
better [22].

We summarize the key ideas and construction of the control parameter ω in the following:

Definition 3.3 (Computing ωk+1). At the Newton step k, let 0 ≤ ωk ≤ 1 be given and let S ∈ R+ ∪ {0}. We define

ω := ωk+1 = Sωk. (25)
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Proposition 3.4 (Motivation of S ). The scaling parameter S is motivated as follows:

1. S must yield ωk+1 ∈ [0, 1].
2. S � 1 should yield ωk+1 → 1 (full Newton).
3. S → 0 should yield ωk+1 → 0 (Newton-like / fixed-point like scheme).

Proposition 3.5 (A specific realization of S ). Given Proposition 3.4, the scaling parameter S can be realized, using
the residuals Qk+1 and Qrec

k+1 defined in (24), as follows:

1. For Qk+1 → 0 (and Qrec
k+1 → ∞) the matrix M defined in (21) has good properties and we can work with a full

Newton step, i.e., S � 1 yielding ωk+1 = 1.
2. On the other hand, for Qrec

k+1 → 0 (and Qk+1 → ∞), the matrix M becomes ill-conditioned, and S → 0 yielding
ωk+1 � 1 should be employed.

3. These observations yield the following possible realization of S :

S :=
( a
exp (Qrec

k+1)
+

b
exp (Qk+1)

)
. (26)

4. The control parameter a is related to a fixed-point step with small ωk+1 and thus a < 1 should be chosen.
5. The control parameter b is related to a full Newton step with ωk+1 = 1 and thus b ≥ 1 should be chosen.
6. Both control parameters will be further explained and specified in Section 3.5.3.

Corollary 3.6 (Further properties of S ). The scaling parameter S has the following properties:

1. S is bounded from below by zero: since a, b,Qk+1,Qrec
k+1 ≥ 0, we have S ≥ 0 yielding ωk+1 ≥ 0.

2. S is not bounded from above. Consequently, it may easily happen that ωk+1 > 1 in (25). Therefore we use a
simple projection:

Set ωk+1 := 1 if ωk+1 > 1.

3.5.2. The modified Newton algorithm
We define

A′ω(U)(δU,Ψ) =

(
ω2δϕ(1 − κ)ϕσ+(u) +

(
(1 − κ)ϕ2 + κ

)
σ+(δu), e(w)

)
+ (σ−(δu), e(w)) + 2 (ωδϕϕp, div w)

+ (1 − κ)
(
δϕσ+(u) : e(u) + 2ϕ σ+(δu) : e(u), ψ

)
+ 2p(δϕ∇ · u + ϕ ∇ · δu, ψ)

+ Gc

(1
ε

(δϕ, ψ) + ε(∇δϕ,∇ψ)
)

+ γ(δϕ, ψ)A(ϕ) ∀Ψ := {w, ψ} ∈ V ×W,

(27)

which is (8) except that the terms with δϕ multiplied by the w test function are scaled with ω and in particular the very
first term.

At a given time instance tn, we shall find the time step solution Un using:

Algorithm 3.7 (Modified Newton’s method with Jacobian modification). Choose an initial Newton guess U0 and an
initial guess for the control parameter, i.e., ω0 = 1. For the iteration steps k = 0, 1, 2, 3, . . .:

1. Find δUk := {δu, δϕ} ∈ V ×W such that

A′ω(Uk)(δUk,Ψ) = −A(Uk)(Ψ) ∀Ψ ∈ V ×W, (28)

Uk+1 = Uk + δUk. (29)

2. Compute:
ω := ωk+1 = Sωk, (30)

with S determined by (26).
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3. Check
‖A(Uk+1)(Ψ)‖ ≤ TOLN .

If this criterion is fulfilled, set Un := Uk+1. Else, we increment k → k + 1 and goto Step 1.

Remark 3.10. In this algorithm, we do not have any convergence monitor and it can happen that Newton’s method
diverges. Thus, we also check in Step 3 whether

‖A(Uk+1)(Ψ)‖ < TOLup
N , TOLup

N = 1012,

otherwise we stop the algorithm because of divergence. In Section 5, we see that for backtracking line-search such a
behavior is indeed detected, but in which the modified Newton method (without convergence monitor) yields excellent
performance. We notice that TOLup

N seems very high, but there are examples in Section 5 where the residual goes up
to 107 but nonetheless Newton’s method will finally still converge.

3.5.3. On the choice of a and b
The choices of a and b are heuristic. As outlined in Proposition 3.5, the parameter a controls the influence of block

Muϕ. The parameter b controls the rate to go back to full Newton steps in case sufficient performance of the solver is
detected. Therefore, we propose the following bounds:

0 ≤ a < 1 and 1 ≤ b < ∞.

Let us discuss the idea in more detail. If Qk+1 � 1 we had a good reduction and we can use a higher ωk+1 in the next
step. Formula (26) yields

lim
Qrec

k+1→∞
lim

Qk+1→0
S → b ⇒ ωk+1 = bωk ⇒ ωk+1 ≥ ωk.

On the other hand if Qk+1 > 1 or even Qk+1 � 1 (thus Qrec
k+1 → 0) we want to eliminate the irregular terms in the

Jacobian matrix and rather work with a Newton-like method in which the Jacobian is approximated by minimizing
the influence of the term (20). Here:

lim
Qrec

k+1→0
lim

Qk+1→∞
S → a ⇒ ωk+1 = aωk ⇒ ωk+1 < ωk.

Since due to the construction, we cannot ensure a priori that S is bounded from above, the requirement 0 ≤ ωk+1 ≤ 1
may be violated. In this case, a projection is used (see Corollary 3.6).

Possible choices of a and b:

• Choice 1: a = 0.001 and b = 10 drastically tries to remove the entire block Muϕ and moderately goes back to
full Newton;

• Choice 2: a = 0.1 and b = 2 tries moderately to remove the influence of block Muϕ and moderately goes back
to full Newton;

• Choice 3: a = 0 and b = 0 resulting in S = 0 from which we obtain ωk = 0 for all k and thus never work with
block Muϕ.

Obviously, the smaller a � 1 is chosen, the faster we obtain a Newton-like (fixed-point) scheme. Secondly, the larger
we choose b ≥ 1, the faster we go back to a full Newton scheme. For more choices of a and b and their consequences
in the numerical examples, we specifically refer to Section 5.1.
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4. Computational analysis of a simplified characteristic problem

We illustrate the features of the underlying equations and behavior of Newton’s method with a very simple ex-
ample. This configuration has many characteristic features of the original problem and enables us to study some
important properties of Newton’s method.

In R2 we want to minimize the function F : R2 → R given by

F(x, y) = (κ + x2)y2, κ > 0, (x, y) ∈ R2.

The function is visualized in Figure 2.

Remark 4.1 (Link to phase-field fracture). In phase-field fracture, the critical part of the underlying energy functional
(see e.g., Functional (13)), originally proposed without any pressures and for C|e(u)|2 = |∇u|2 in [26, 14], is:

Ecrit(u, ϕ) =
1
2

∫
B

(κ + (1 − κ)ϕ2)︸            ︷︷            ︸
∼(κ+x2)

C|e(u)|2︸  ︷︷  ︸
∼y2

dx, (31)

where Ce(u) = σ(u) := 2µe(u) + λtr(e(u))I.

The function F(x, y) represents the main term of the energy formulation of the fracture problem in a simplified
fashion. Here the variable x represents ϕ and y the displacements u (i.e., the stresses σ(u)). Clearly, we see that
the minimal value of F(x, y) is zero, however the solution (x, y) is not unique: any pair (x, 0) with x ∈ R will yield
F(x, 0) = 0. The non-uniqueness is due to the non-convexity of F(x, y).
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Figure 2: Visualization of F(x, y) and its contour lines. Specifically, we easily see that the minimum is not unique. We also observe that by fixing
one variable, the problem becomes strictly convex in the other unknown.

To solve the above problem numerically, we calculate the first-order derivative6

F′(x, y) = (2xy2, 2(κ + x2)y)T .

In order to solve F′(x, y) = 0 for obtaining the solution pair (x, y), we apply Newton’s method. The Hessian7 of F(x, y)
is given by:

H f := H f (x, y) = F′′(x, y) =

(
2y2 4xy
4xy 2(κ + x2)

)
.

6In PDE language, the so-called residual.
7In PDE language the so-called Jacobian.
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It is obvious to see that H f is indefinite with the determinant det(H f ) = −12x2y2 + 4κy2. Consequently, Newton’s
method, given (x0, y0), find (xk+1, yk+1) for k = 0, 1, 2, 3, . . .,

H f (xk, yk)(δx, δy)T = −F′(xk, yk),(
xk+1
yk+1

)
=

(
δx
δy

)
+

(
xk

yk

)
,

might produce non-descending steps.
In the following, we carry out some computations with interesting results. The programming code is based on

octave [38] and is a further extension of [37]. In the first setting, we take κ = 0.01 and as initial Newton guess, we
take (x0, y0) = (−5, 4). The only convergence monitoring criterion is whether the residual norm is smaller than a given
tolerance, i.e.,

|F′(xk+1, yk+1)| < TOL, TOL = 10−8.

Despite being close to an optimal solution, Newton’s method needs 27 iterations to converge. As optimal solution we
obtain

x̄ = 8.71 × 10−4, ȳ = 2.20 × 10−7.

Here, indeed F(x̄, ȳ) = 4.82 × 10−16 ≈ 0. However the most significant observation is that Newton’s method does not
converge monotonically but exhibits slight oscillations as visualized in Figure 3. Therefore, any monotonicity-based
Newton method would fail.
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Figure 3: Evolution of the residual norm |F′(xk , yk)| (left) and the energy F(xk , yk) (right) for full Newton (no modifications), modified Newton
(a = 0.01, b = 5), Newton with S = 0, the line-search procedure with energy monitor (LS with energy), and a backtracking line search with
λk = 0.5. Using the line-search procedure with energy monitor, we notice that two times, namely at the Newton steps k = 23 and k = 30, a negative
λk = −0.05 is chosen, which justifies [27] to consider also negative curvatures of the Newton path. The performances of all algorithms in this
example depend on the initial guess (x0, y0) and the choice of the solver parameters a, b, S , λk and R. Therefore, other parameter choices could
further reduce the number of Newton iterations, in particular for the last two schemes with line-search procedures.

In our second test, we work with Algorithm 3.7. Introducing ω, the Hessian matrix reads:(
2y2 ω4xy
4xy 2(κ + x2)

)
.

Choosing a = 0.01 and b = 5, we obtain the result in 15, much less, iterations:

x̄ = 2.62 × 10−4, ȳ = 3.79 × 10−7,

with F(x̄, ȳ) = 1.44 × 10−15.
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Figure 4: Evolution of the eigenvalues for the three test cases full Newton, modified Newton and S = 0.

We also choose the extreme case S = 0 resulting in ω = 0, thus

H f (x, y) =

(
2y2 0
4xy 2(κ + x2)

)
.

Here, the matrix H f becomes positive semi-definite det(H f ) = 4x2y2 + 4κy2, even positive definite for any y , 0.
Thus, Newton can converge extremely fast in two steps, despite the fact that the modified H f does not correspond to
the true derivative of the right hand side residual F′(x, y). Indeed, we observe

x̄ = 0, ȳ = −8.88 × 10−16,

and F(x̄, ȳ) = 7.89 × 10−33 ≈ 0. The evolution of the eigenvalues that confirm the properties of the respective Hessian
matrices are pictured in Figure 4.

We next perform two additional computations using Algorithm 3.1 with λk = 0.5 and Algorithm 3.2 with R = 0
and l = 40. These findings are also displayed in Figure 3. In particular, the line-search procedure with energy
monitoring (Section 3.3) minimizes at each Newton step the global energy F(xk, yk). In general the residual norm has
the same behavior, but there are steps k = 24, 28, 31 in which the energy decreases, but the residual does increase.

Of course, our problem of interest in Section 2 is more complex since we do not seek a single point, but a solution
(uk, ϕk) minimizing E(uk, ϕk) in a function space setting. We cannot expect in general that the Newton-like scheme
with ω < 1 converges as fast as in this example. However, these findings indicate us that the modified Newton scheme
may work for the original problem at hand.

Recapitulating the key findings of this section, we found that even for a pretended very simple optimization prob-
lem, Newton’s method does not converge monotonically and may need many iterations. Secondly, the modification
of the Jacobian according to Section 3.5 can yield a significant reduction of iteration steps. Thirdly, the line-search
method with energy monitoring can specifically control the total energy, but should allow for working with negative
line-search parameters.

5. Numerical tests

In this final section, we shall investigate the performance of the modified Newton scheme with Jacobian modi-
fication. We study several numerical tests: revisiting a benchmark from mechanics, e.g., [50] in which previously
other nonlinear schemes already worked well. Secondly, we compute a propagating pressurized fracture [68] in which
previously extremely many iterations were required. Next, a screw tension test is considered [69], which would not
work so far for fully monolithic formulations [73]. Finally, we consider two 3D scenarios each with two fractures. In
Table 1, we briefly explain the schemes implemented in this paper.

Furthermore, in all tests the inexact augmented Lagrangian iteration from [73] is adopted. Here, the tolerance of
the Newton solver is chosen adaptively with respect to the L2 error of the augmented Lagrangian iteration. All numer-
ical examples in this paper are computed with a self-developed code based on the open-source finite element package
deal.II [10, 9] and specifically on the deal.II-template for solving nonlinear coupled PDE-multiphysics problems [70].
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Table 1: Newton schemes used in this work.
No. Name used in Sec. 5 Scheme Features

1 Mod. New Modified Newton a = 0.01, b = 5; adaptive choice of ωk

2 Line search New. / LS New. Newton line search Backtracking line search with max. 5 LS iterations
3 S = 0 Modified Newton S = 0; thus ωk = 0 for all k
4 Mod. New + Line search (LS) Mixed Newton Combining schemes 1 and 2
5 Mod. New. + QN steps Modified Newton Jacobian not build at every iteration step
6 No criterion Newton no LS, ωk = 1, no check of Step 3 in Alg. 3.1
7 a = x, b = y Modified Newton Different values than in 1, e.g., x = 0.05, y = 2.
8 LS with Energy Newton line search Line search with energy monitor (Section 3.3)

5.1. Single edge notched shear test
In this first example, we restrict our attention to an elastic crack-propagation example. The geometric and material

properties are the same as used in [50]. In the single edge notched shear test, it is important to consider the correct
boundary conditions and the spectral decomposition of the stress σ(u) into tensile σ+(u) and compressive parts σ−(u).
We refer to [53, 7] for a detailed physical motivation. A comparison highlighting the properties of one or the other
splitting model has been published in [3]. In particular, the Miehe et al. splitting does not release all stresses once
the fracture reaches the bottom part of the specimen. The characteristic feature of this test is that an initial crack
is prescribed in the geometry rather than with phase-field and that the crack will slowly develop, followed by faster
growth.

5mm

5mm

5mm5mm

u

slit

Figure 5: Example 1: Single edge notched shear test.
We prescribe the following conditions: On the left and
right boundaries, uy = 0mm and traction-free in x-
direction. On the bottom part, we use ux = uy = 0mm
and on Γtop, we prescribe uy = 0mm and ux as stated
in (32). Finally, the lower part of the slit is fixed in
y-direction, i.e., uy = 0mm. We notice that the initial
crack is described in the geometry by doubling the
degrees of freedom on the respective faces. Conse-
quently, the initial phase-field is ϕ0 = 0 in the entire
domain.

Configuration. The geometry and boundary conditions are dis-
played in Figure 5. In particular the initial domain has already
a slit (fracture). The initial mesh is 4, 5 and 6 times uniformly
refined, leading to 1024, 12771 and 50115 mesh cells, with h =

0.044mm, 0.022mm and 0.011mm, respectively. The initial phase-
field is given by ϕ0 = 1.

Boundary conditions. We increase the displacement on Γtop over
time, namely we apply a time-dependent non-homogeneous Dirich-
let condition:

ux = tū, ū = 1 mm/s, (32)

where t denotes the total time. For phase-field, we prescribe homo-
geneous Neumann conditions on the entire boundary.

Parameters. Specifically, we use µ = 80.77kN/mm2, λ =

121.15kN/mm2, and Gc = 2.7N/mm. In this example p = 0. The
time step size is chosen as δt = 10−4s. The (relative) tolerance of the
augmented Lagrangian loop is TOLAL = 10−5. Furthermore, we set
κ = 10−12h[mm] and ε = 2h.

Quantities of interest. To check the solution, we observe the crack
path and in particular the time instant when the crack reaches the
lower boundary. Secondly, we evaluate the surface load vector on
Γtop := {(x, y) ∈ B| 0mm ≤ x ≤ 10mm, y = 10mm} as

τ = (Fx, Fy) :=
∫

Γtop

σ(u)n ds,

with normal vector n, and we are particularly interested in Fx. Moreover, we compare the performances of the first 6
nonlinear methods presented in Table 1.
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Discussion of findings. The crack pattern at various times and the final displacement field are shown in Figure 6 and
is in good agreement to other results reported in the literature, e.g., [50, 12]. The first important observation can be
found in Figure 7, which shows in the left and right subfigures that independently of the specific Newton scheme, the
load-displacement curve does not change. Of course this is a general hope that the numerical scheme does not change
the physical result, which is indeed the case here; in Section 5.3 we however see that the numerical scheme does
change the results for certain configurations. Finally, in the middle subfigure of Figure 7 we provide a comparison on
three different mesh levels. These results coincide with observations made in [32, 73].

Figure 6: Example 1: Crack pattern at T = 0.0105s, 0.0120s, 0.0130s. The last figure shows that final displacement field at T = 0.0130s and in
particular the jump of displacements across the crack. Since a continuous finite element is used, the solution in the jump is continuous. However,
the original given crack was built into the geometry and is therefore discontinuous.
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In the following we provide a detailed study of the Newton solver performances. As it can be observed in Figure
8, except the scheme without any criterion (see Table 1), all schemes work. The most expensive schemes are clearly
the Newton-like scheme S = 0 and the combination modified Newton with quasi-Newton steps, in which the Jacobian
is not re-build at every step. This is an important observation because it limits an often-used feature (see also Remark
3.3) to reduce the computational cost of Newton methods (see e.g., [22]). In phase-field fracture it seems that the
Jacobian matrix and the right hand residual should fit as well as possible and small perturbations increase significantly
the computational cost. Next in the right subfigure (top) in Figure 8, we also see that the line search procedure is
more efficient from time T = 0.0108s than the modified Newton scheme. This holds true on coarse and finer meshes
as the middle subfigure of Figure 8 displays. Finally, we perform comparisons on different meshes for both the line
search and modified Newton approaches. Except when the fracture tries to reach the lower boundary, we observe very
reasonable Newton iteration numbers; also in view of the iteration numbers reported in [27].

In Figure 9, we exemplarily show the behavior of several schemes in certain Newton cycles. First, we observe
divergence for the method without any criterion. Next, we detect monotone, but slow convergence for S = 0. The
line search scheme (as we already discussed) converges fastest but in a non-monotone fashion. The modified Newton
scheme is highly oscillatory, but finally converges as well.
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Figure 7: Example 1: Load-displacement evolution. At left, all schemes are compared on refinement level 4. In the top right subfigure, the modified
Newton scheme is compared on three mesh levels. On the bottom, the three best schemes are compared on refinement level 6. In the top left figure,
the important observation is that we only identify two colors: red and black. The red curve belongs to ‘no criterion’ and the computation fails
due to a residual blow-up (see Figure 9) before the crack reaches the bottom left corner. All other computations are valid and yield the same
load-displacement curve. The latter observations show that different numerical solvers do not alter the physical model and therefore, only the black
curve is visible.
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Figure 8: Example 1: Total number of Newton iterations per time step. Top: at refinement level 4 all schemes are compared and then focused
on the two best schemes. Middle: Comparison of three schemes on refinement level 6. Bottom: Comparison of the modified Newton scheme
for different mesh levels 4,5,6 (left) and using backtracking line search (right). In this example, the line search scheme is more efficient than the
modified Newton approach.
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Figure 9: Example 1: Exemplary Newton divergence at T = 0.0108s for the method without any criterion (left). Newton performance for the
converging schemes at right at T = 0.0111s.

Next, we compare various choices for a and b for the modified Newton scheme in Figure 10. Here, the scheme
with very small a and a moderate b works best. The schemes a = 0.001 and b = 100 that causes rapid changes
in ω has the worst performance. In Figure 11, we display our findings using the line search procedure with energy
monitoring. The performance is similar to a standard line search method with backtracking and both line search
methods perform slightly better than the modified Newton scheme (see e.g., 11 the right subfigure) with a = 0.001
and b = 10. Moreover, observing again [27][Figures 21-23], we see a very comparable number of Newton steps and
energy values (Figure 12) per loading step, from which we infer that our implementation of their scheme is correct.
Finally, we study in Figure 13 the evolution of ω during the Newton iteration at the critical step 111. The worst
scheme, a = 0.001, b = 100, shows highly oscillatory behavior. The best scheme uses moderate ω and then goes back
(or close) to ω = 1.
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Figure 10: Example 1: Total number of Newton iterations on refinement level 4 per time step for various choices of a and b of the modified Newton
scheme. At right, we focus on three configurations that perform best.
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Figure 11: Example 1: Total number of Newton iterations for the line-search based method with energy monitoring (LS with energy) from Section
3.3 and comparison with the modified Newton scheme with a = 0.001 and b = 10. For this test case, both schemes show a comparable performance.
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Figure 12: Example 1: Evolution of the global energy functional E(Uk) during the Newton iterations k for the line-search based method with energy
monitoring from Section 3.3 for the five critical steps in which the fracture reaches the bottom boundary of the specimen. The number of Newton
iterations and energy values are comparable to the values published in [27]. The energy may slightly increase due to the parameter R = 0.01, but
most importantly the final energy is lower than the initial energy at Newton step No. 0. The fracture reaches the lower boundary at T = 0.0111s.
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Figure 13: Example 1: Evolution of ω at time step 111 (T = 0.0111s) versus the total number of Newton iterations. We observe that the first
choice a = 0.001 and b = 100 yields highly oscillatory behavior and is not adequate, leading to the largest number of iteration steps to converge.
In general, we see that however smaller values for a, but moderate increase in b, yields a fewer number of iterations to converge. In this respect
the best scheme for this test case is the choice a = 0.0001 and b = 10, which can also compete in terms of computational cost with the line search
version as it can be seen in Figure 8 at top right. As final comment, we notice that all choices for a and b yield finally convergence from which we
infer that the modified Newton scheme is robust with respect to these parameter choices.
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5.2. A pressurized propagating fracture
In this second test, we consider a pressurized propagating fracture. The configuration is the same as presented in

[68] and an extension of the important Sneddon/Lowengrub benchmark [63].
The characteristic feature of this test is that an initial crack is prescribed with the help of the phase-field variable.

Secondly, the crack will propagate instantaneously through the entire domain.

Configuration. We deal with the following geometric data: Ω = (0m, 4m)2 and a (prescribed) initial crack with half
length l0 = 0.2m on ΩF = (1.8− h, 2.2 + h)× (2− h, 2 + h) ⊂ Ω. The initial mesh is 6, 7 and 8 times uniformly refined,
leading to 4096, 16384 and 65536 mesh cells, with h = 0.088m, 0.044m and 0.022m, respectively.

Boundary and initial conditions. In contrast to Example 1, the initial crack is described with the help of the phase-
field function ϕ. We set at t = 0:

ϕ0 = 0 in ΩF , and ϕ0 = 1 in B \ΩF . (33)

As boundary conditions, we set the displacements to zero on ∂Ω and for the phase-field, homogeneous Neumann
conditions are prescribed.

Parameters. The fracture toughness is chosen as Gc = 1.0N/m. The mechanical parameters are Young’s modulus
and Poisson’s ratio Es = 1.0Pa and νs = 0.2. The relationship to the Lamé coefficients µs and λs is given by:

µs =
Es

2(1 + νs)
, λs =

νsEs

(1 + νs)(1 − 2νs)
.

The regularization parameters are chosen as ε = 2h and κ = 10−12h. Furthermore, the relative augmented Lagrangian
tolerance is TOLAL = 10−2.

Input data. At each time step the pressure load p is increased as

p(t) = 0.1 + t · 0.1, 0s ≤ t ≤ 14s,

where t denotes the current time.

Quantities of interest. We observe the length/path of the fracture as well as the number of Newton and augmented
Lagrangian iterations.

Discussion of findings. The findings of this test significantly differ from published results in two ways: the final crack
pattern depends on the mesh as pictured in Figure 14 and on the solver parameters (see Figure 15). However, the
time point at which the crack starts propagating and reaches the boundary is the same for different solvers on the
same mesh. The different crack patterns may be related to the non-uniqueness of the underlying continuous problem.
It is the first time, that we observe for this configuration non-unique results, possibly thanks to the fully monolithic
formulation and higher accuracy of the coupling conditions.

Comparing Figure 16 to published results in [73], it can be inferred that the modified Newton scheme is much
more efficient and reliable than alternating minimization, an error-oriented Newton scheme or even the extrapolated
scheme. One has to notice that the pressure for the error-oriented scheme in [73] had to be reduced in order to keep
Newton’s method converging. In the current study, we could use the same pressure increments as for the extrapolated
scheme and the Newton iterations are still less. We finally notice that several augmented Lagrangian iterations per
time step have been performed (see Figure 17). For instance at T = 11s, refinement level 8, we observe 338 Newton
iterations, and 20 augmented Lagrangian iterations (actually this is the maximum that we allow). This means 17
Newton iterations per augmented Lagrangian iteration. In view of Section 4, these findings are not too bad. It is
clear that the computational cost can be drastically reduced by weakening the tolerance for the augmented Lagrangian
iteration. Such a study (for the screw tension test), including possible pitfalls, has been provided in [73]. In Figure
18, we observe ω for different choices of a and b. For smaller a, the control parameter ω becomes very small at the
critical times T = 11s and T = 12s.
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Finally, we ran several tests using the line-search procedure described in Section 3.3. In comparison to Example
1, we could not achieve satisfactory results. Depending on the number of Newton steps and augmented Lagrangian
steps, the final number of iterations was not at all competitive. On the other hand, we also tested various modifications
of the energy functional (14) in Step 3 in Algorithm 3.2. For instance, the full version would accept Newton updates
in which at T = 12s the fracture completely vanishes, i.e., ϕ = 1, with the result that E(U) ≈ 0, which is, of course,
admissible from the energy point of view (recall our findings in Section 4 in Figure 3). We then tested a simplified
version by observing only the bulk energy in the convergence monitor. Here, we obtain the same crack pattern as
displayed in Figure 14, but with more Newton steps. In all tests, we also observed that negative line search parameters
were taken, but which only partially yielded results. We also had test cases in which no final convergence could be
reached. These observations coincide with the statement in [61] that the correct choice of negative search directions
may become challenging. We have not yet found a final solution to this problem. In consequence, in view of all
results obtained in this subsection and [73][Section 5.4], we conclude that using a fully monolithic scheme, only the
modified Newton method seems to yield reliable results for this setting.

Figure 14: Example 2: Crack pattern for the modified Newton scheme (a = 0.01, b = 5) on three refinement levels at times T = 11 (refinement
level 6), T = 12 (refinement level 7), T = 13 (refinement level 8). The final crack path is mesh-dependent (but also possibly on solver settings) and
the propagation slightly is shifted towards later times when refining the mesh.

Figure 15: Example 2: Crack pattern on refinement level 7 and T = 12 but different solvers: modified Newton with a = 0.01, b = 5 (left),
a = 0.1, b = 2 (middle) and S = 0 (right).
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Figure 16: Example 2: Comparison of the total number of Newton iterations for the modified scheme with a = 0.01 and b = 5 (left). On refinement
level 7 we compare four different schemes (right subfigure). These total numbers must be put into relation with the augmented Lagrangian iterations
per time step. Specifically, to get a more realistic idea, per time step the number of Newton steps must be divided by the corresponding number of
augmented Lagrangian iterations provided in Figure 17.
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Figure 17: Example 2: Comparison of the total number of augmented Lagrangian iterations for the modified scheme with a = 0.01 and b = 5 (left).
On refinement level 7 we compare four different schemes (at right).
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Figure 18: Example 2: Evolution of ω at three different times T = 4, 11, 12s for two parameter choices a = 0.1 and b = 2 (left) and a = 0.01 and
b = 5 (right). We observe that the first choice at left, leads in certain steps to very small ω ≈ 0, whereas for the latter choice, the smallest ω is of the
order 10−4. Apart from these critical steps at T = 11s and T = 12s, the modified Newton scheme requires in general smaller ω at the beginning of
the Newton iteration and then goes back to full Newton steps as exemplarily shown for T = 4s. These observations hold true for all 0s ≤ T ≤ 10s,
but are not shown here, except for T = 4s.

5.3. Screw tension tests
This third test is split into two subtests. In contrast to the previous examples, no initial fracture is prescribed in the

first subtest. Rather, a fracture will develop due to high stresses, which highlights that the phase-field model indeed
recognizes high stress regions in which the material will damage. For theoretical work on crack nucleation in brittle
materials we refer the reader to [20, 65].

Figure 19: Example 3: Mesh of screw simulations. The screw is fixed
at the bottom, at top we have non-homogeneous Dirichlet conditions in
y-direction (uniform tension). The units are in mm.

In the second test, an initial fracture is prescribed
representing a hollow-rolled screw motivated by ex-
perimental data [69]. Therein two hollow-rolled sce-
narios are considered: a short crack with 3mm initial
length and a long crack with 6mm initial length.

Configuration. The geometric setting is displayed in
Figure 19. The total length is 17.20mm. The initial
mesh is once uniformly refined yielding 13760 mesh
elements.

Initial conditions. In Example 3a, the initial screw is
undamaged and therefore ϕ0 = 1 in B. In Exam-
ple 3b (short), an initial crack with the help of the
phase-field variable is prescribed along ΩF = {x =

0 ± 2h;−10mm ≤ y ≤ −7mm}, thus ϕ0 = 0 in
ΩF . In Example 3b (long), an initial crack with the
help of the phase-field variable is prescribed along
ΩF = {x = 0 ± 2h;−13mm ≤ y ≤ −7mm}, thus ϕ0 = 0
in ΩF .

Boundary conditions. Crack growth is driven by a
non-homogeneous Dirichlet condition for the dis-
placement field u on Γtop, the head of the screw at
y = 0.0. We increase the displacement on Γtop at each
time step such that the head is pulled, namely

uy = δt × ū, ū = 1.0 mm,

where δt = 10−2s.
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Parameters. As model parameters, we choose γ = 1, κ = 10−10h, ε = 2h mm. We notice that the maximum number
of possible augmented Lagrangian iterations is 20 and TOLAL = 10−3. The total time is not specified a priori but
rather by the fact when the screw is damaged. The time step size is δt = 0.01s. As material parameters, we use
µ = 80.77kN/mm2, λ = 121.15kN/mm2 and Gc = 2.7N/mm. As in Example 1, we set p = 0.

Figure 20: Example 3a: Crack pattern (top) and vertical displacements (bottom) at T = 0.1s and T = 0.11s using the modified Newton scheme
with a = 0.01, b = 5.

Quantities of interest. We observe the crack patterns and vertical displacement fields. Furthermore, we study the
evolution of the bulk and crack energies (extracted from (14)):

EB =

∫
Ω

([1 − κ]ϕ2 + κ)ψ(e) dx, (34)

and

EC =
Gc

2

∫
Ω

( (ϕ − 1)2

ε
+ ε|∇ϕ|2

)
dx, (35)

with the strain energy functional

ψ(e) := µtr(e(u)2) +
1
2
λtr(e(u))2, with e := e(u) :=

1
2

(∇u + ∇uT ),

and |∇ϕ|2 := ∇ϕ · ∇ϕ. Finally, we study Newton iteration numbers and Newton’s behavior at selected time steps.
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Discussion of findings. We infer from the Figures 20, 21, 22, and 23 that these results differ in comparison to alternat-
ing minimization [69] and the quasi-monolithic method [73]. As in the previous example, we observe an immediate
and instantaneous crack explosion (propagation). For better quantification of these results, we plot in Figure 24 the
respective energies. Therein, we observe very well that indeed the material is completely broken since the bulk energy
drops to zero.

Figure 21: Example 3a: Crack pattern at T = 0.11s using the modified Newton scheme with a = 0.01, b = 5 (left) and at T = 0.12s for S = 0
(right). Depending on the solver, the final crack patterns differ and are not unique. However, they appear at the same time instance. Moreover,
these patterns differ significantly in time and path from the results obtained in [73].

Figure 22: Example 3b (short hollow-rolled): Crack pattern (top) and vertical displacements (bottom) at T = 0.1s and T = 0.11s using the modified
Newton scheme with a = 0.01, b = 5. These results again differ significantly in time and crack path from the results in [73] using an extrapolated
scheme and [69] in which alternating minimization was adopted. Most importantly, the screw will not anymore break in the middle due to the
hollow-rolled region but again on the head as in Example 3a.
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Most significantly, the final crack patterns differ significantly from previous findings. The differences are with
respect to the time point when the material breaks (earlier than in alternating minimization or extrapolation because
the coupling conditions are tighter due to monolithic coupling). In addition, this test shows the non-uniqueness in
terms of different final crack paths since fractures will develop instantaneously and depend on tolerances and stopping
criteria.

In Example 3a, similar to the simplified study in Section 4, the best performance is obtained by setting the pa-
rameter S = 0 (see left subfigure of Figure 25), thus removing constantly the entire second block in the first line of
the Jacobian. However, in Example 3b, S = 0 does also fail. The line search Newton scheme does not work from
the very first time step on as it is highlighted in the middle figure of Figure 25. In order to further substantiate our
observations from Example 1 (Section 5.1), we provide another test in which the combination of the modified Newton
scheme with line-search is not very efficient as confirmed by the left subfigure of Figure 25. Finally, we observe a
dramatic behavior of Newton’s method in Figure 26. The initial residual is 102 and then goes up to 107 and then drops
until the tolerance 10−7. Thus, there is a variation of 1014 in the residual norm for successfully computing one time
step.

Figure 23: Example 3b (long hollow-rolled): Crack pattern (top) and vertical displacements (bottom) at T = 0.1s and T = 0.11s using the modified
Newton scheme with a = 0.01, b = 5. Here, we observe similar to [69] that the screw will be cracked in the middle. Obviously, the length of the
damaged zone has an impact where the screw will totally damage under tension.
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Figure 24: Example 3a/b: evolution of the bulk and crack energies. The drop of the bulk energy characterizes crack growth. Once the bulk energy
is zero, the screw is totally cracked. Therefore, from the instant of time of total damage the respective energies should remain constant, which is
nicely shown by the computation of further time steps until T = 0.12s. In addition, in Example 3a, we observe a dependence of crack growth on
the numerical solver because the bulk energy decrease happens at different time points.
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Figure 25: Example 3: Comparison of the total number of Newton iterations. At left the screw without any initial crack. In the middle and on the
right, the Newton performance of the hollow-rolled screw is shown.
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Figure 26: Example 3: Exemplary performance of Newton’s method for the screw without crack at T = 1s and T = 9s (left and middle,
respectively). At right, the performances at T = 10s for both hollow-rolled screws are shown.
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5.4. Two 3D situations with two interacting fractures
In this final example we investigate again two subtests, but now in three dimensions. In the first subtest, Young’s

modulus is constant. In the second subtest, Young’s modulus is cell-wise different yielding a heterogeneous material.
Since the computational cost is immediately high, we implemented local mesh refinement. We consider two initial
fractures which are subject to increasing pressure. In this test, we study various parameter choices for the modified
Newton method.

Configuration. We work in the cube B = (0, 10)3. Two initial fractures are located at ΩF1 = {x = 2.6 ± h; 3.8 ≤ y ≤
5.5; z = 4 ± h} and ΩF2 = {5.5 ≤ x ≤ 7; y = 4 ± h; z = 6 ± h}. The initial geometry is two times uniformly refined and
three times locally in the subcube Bsub = (3, 7)3. This yields 8576 mesh elements and 40364 degrees of freedom. The
smallest h is hmin = 0.54m.

Figure 27: Example 4: Crack pattern at different times T = 0, 8, 9, 12s. The crack suddenly grows as in the two previous examples.

Parameters. The time step size is δt = 1s and we compute until the end time T = 14s. Young’s modulus is E = 5Pa
for the homogeneous material test case and E ∈ [2, 10]Pa for the heterogeneous material test case. Poisson’s ratio
is νs = 0.2. Furthermore Gc = 1.0N/m. Moreover, γ = 100 and κ = 10−10h, ε = 2hmin. The relative augmented
Lagrangian tolerance is TOLAL = 10−3, but at maximum 3 iterations in order to keep the computational cost reasonable
(we perform however two tests with maximal 10 iterations for comparisons).

Input data. The pressure is linearly increasing:

p(t) = 0.001 + t · 0.25.
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Quantities of interest. In this example, we observe the fracture pattern, and study various choices of a and b and their
influence on the performance of the nonlinear solver.

Discussion of findings. The crack evolution is displayed in Figure 27. As in the two previous examples, the crack
will not significantly develop, but explode from T = 8s to T = 9s. Clearly, the Newton iterations numbers then go up
as observed in Figure 28. In T = 9s, the fracture reaches the boundary and the physical meaning of the further crack
patterns are clearly questionable because of the boundary influence. Nevertheless we compute further until T = 12s
to observe whether the computation continues and to study further the Newton performance. Then in Figure 29, we
allow for more augmented Lagrangian iterations and also study Newton’s behavior at the critical time (at which the
crack explodes).
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Figure 28: Example 4: Total number of Newton iterations per time step. At each time step, also three augmented Lagrangian iterations are
performed such that in average at each time step 1/3 of the above numbers are required for solving the system per augmented Lagrangian step.
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Figure 29: Example 4: Total number of Newton iterations per time step in which 10 maximum augmented Lagrangian iterations are allowed per time
step (left). At right, for the homogeneous test case, the performance of Newton’s method at the critical time T = 8s is shown. Here, convergence
patterns for three different augmented Lagrangian iterations are shown. Clearly, with each augmented Lagrangian iteration, the solution is improved
and Newton’s method needs less steps to converge. For the first two AL iterations, the final tolerance is not reached because of the adaptive choice
of Newton’s tolerance (see Section 4 in [73]).
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6. Conclusions

In this paper, we further developed Newton algorithms for solving nonlinearly coupled variational phase-field
fracture problems in a monolithic fashion. A novel algorithm is based on a dynamic modification of the Jacobian
matrix depending on the fraction of the current residual in comparison to the previous residual. This idea was in-
spired from nonlinear fluid flow problems. For better understanding of the idea and the algorithm and its possible
behavior, a simplified, but characteristic problem was studied in Section 4. This problem already shows high Newton
iterations numbers despite its simplicity. In the final section, several numerical tests have been performed. Here,
line-search Newton algorithms are compared to modified Newton schemes. All these configurations have particular
characteristics, which we recapitulate in the following.

6.1. Summaries of the numerical examples

In Example 1, the single edged notched shear test, an initial crack was built into the geometry and then a phase-field
fracture will slowly develop. Here, we observed that line-search-based Newton performed as reliable as the modi-
fied Newton scheme with dynamic Jacobian modification. Moreover, the line-search scheme with energy monitoring
proposed in [27] yielded similar performance. We also found that the common strategy to reduce the computational
cost by introducing quasi-Newton steps is not advisable for phase-field fracture due to the strong coupling the dis-
placements and phase-field variable. In these cases, the numerical perturbation between the Jacobian matrix and the
right hand side residual becomes too large causing Newton’s method to diverge. In the second example, a pressurized
propagating fracture, an initial crack with the help of the phase-field function was prescribed. Here at some point, the
fracture will propagate extremely fast and the final crack patterns depend on the mesh and on the solver parameters.
In this example, the modified Newton scheme with dynamic Jacobian modification yields very good findings, whereas
an error-oriented version works as well, but is not efficient at all [73]. In Example 3, a screw test, fracture nucleation
in the region of the highest stresses is the key characteristic feature of this test. Here, the error-oriented Newton
method will not work [73] and also a backtracking line search Newton method fails. The modified Newton scheme
yields excellent results and therefore we could close the gap that fully monolithic schemes would previously not work
for this test case. Moreover, similar to Example 2, the final crack pattern differ depending on the chosen Newton
parameters. In the final example, we addressed a 3D configuration in homogeneous and heterogeneous media. Also
here, we observed extremely fast crack growth and reasonable Newton iteration numbers.

6.2. Final analysis, interpretation and outlook

In summary, we draw the conclusion that, first, the fully monolithic solution of phase-field fracture, due to the
nonlinearities and non-convexity remains extremely challenging. Secondly, the performance of the algorithms is
problem-dependent. Indeed, the modified Newton scheme is not the most efficient scheme in some tests, but most im-
portantly the method is robust. In all tests the chosen parameters a = 0.01 and b = 5 would yield results independently
of the configuration, material parameters, input data, time steps, and mesh sizes. Thus it was not necessary to ‘tune’
for each configuration these solver parameters. On the other hand, we have chosen a range of different parameters a
and b in the Examples 1 and 2 in which the influence on the Newton solver becomes significant, but still all choices
for a and b would work.

Specifically, the last three examples with very fast crack growth exhibited a high number of Newton iterations
at the moment where the crack starts growing (i.e., exploding). But these numbers seem reasonable in view of the
complexity of the underlying problem. Importantly, the computational cost is (significantly) lower than seen in other
results [73]. Moreover, these results also differ observing the quantities of interest. Crack growth happens earlier and
faster and consequently, the crack velocity is different in particular in comparison to alternating minimization and an
extrapolated scheme.

The achievement of having a robust Newton solver available, allows us now to further increase the efficiency of
numerical simulations of phase-field fracture problems and its informative value. Possible immediate applications
are further improvements and studies on parallel computations, multiphysics fracture, adjoint-based a posteriori error
estimation and gradient-based optimization. We finally notice that the very fast crack growth in the last three exam-
ples raises the question whether a quasi-static model is still sufficient or a dynamic fracture model would be more
appropriate. We will work on this question in future studies as well.
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