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Abstract. This work presents recent progress in phase-field-based fracture modeling in
heterogeneous porous media. Existing algorithms that have been developed in the last
years are extended to tackle three-dimensional configurations. Our solution technique
is formulated in terms of a nested Newton loop that combines a primal-dual active set
method (required for treating the crack irreversibility) and a Newton method to solve
the nonlinear, fully-coupled PDE system. An advanced numerical test demonstrates the
capabilities of our method.

1 INTRODUCTION

Crack propagation in elastic and porous media is currently one of the major research
topics in mechanical, energy, and environmental engineering. In this paper, we concentrate
specifically on pressurized-fracture propagation in heterogeneous media towards applica-
tions in porous media. Our method of choice is a variational approach for brittle fracture
[9] that is formulated in terms of a phase-field technique. The methodology seems very
promising as attested by several major publications in recent years [6, 7, 15, 14, 4, 2, 8].
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Here, discontinuities in the displacement field across the lower-dimensional crack surface
are approximated by an auxiliary phase-field function. This is an indicator function, which
introduces a diffusive transition zone (brittle or mushy-zone are also common expressions
depending on the discipline) between the broken and the unbroken material. Most impor-
tantly, fracture nucleation, propagation, kinking, and curvilinear paths are automatically
included in the model; post-processing of stress intensity factors and remeshing resolving
the crack path are avoided. Recent progress towards hydraulic fracturing scenarios has
been made in [10] (using XFEM/GFEM), [13] (using peridynamics) [5, 1] (using varia-
tional fracture methods), and [18, 19] (phase-field methods that are related to variational
techniques).

The crucial numerical aspects of a phase-field-based fracture propagation approach are
techniques that include resolution of the length-scale parameter ε, the numerical solution
of the forward problem and enforcement of the irreversibility of crack growth. The sum
of these requirements leads to a variational inequality discretized in terms of an adaptive
finite element scheme. A robust numerical framework has been proposed in [11] in which
a primal-dual active set method [12] is combined with a Newton method for the forward
problem and leading to a nested Newton loop.

The forward problem; namely, the coupled Euler-Lagrange PDE system is addressed
monolithically in which both equations, elasticity and phase-field, are solved simulta-
neously. We propose a robust numerical scheme in terms of a Newton linearization to
treat the non-convexity of the regularized energy functional and the consequences of non-
convexity on the Euler-Lagrange system.

The key aspect of this paper is to extend these algorithms to three-dimensional
applications and to demonstrate the potential of our method for two initially non-aligned
cracks in a heterogeneous medium and their propagation leading two interaction through
joining and branching. To the best of our knowledge such a result is novel for pressurized
cracks computed with phase-field.

The outline of this work is as follows: We first state the governing equations in Section
2. Then, we briefly state our main algorithm in Section 3. A sophisticated 3D numerical
example is presented in Section 4 in order to exploit the potential of our approach.

2 NOTATION AND EQUATIONS

In this section, we explain the governing equations. Here, we adopt an phase-field-
based approach in terms of the Euler-Lagrange weak formulation for pressurized fractures
that has been derived in [17, 18, 19]. The unknown solution variables are vector-valued
displacements u and a smoothed indicator phase-field function ϕ with values in [0, 1]. For
ϕ = 0, we denote a crack region and ϕ = 1 is the unbroken material. The intermediate
values constitute a so-called transition zone that is dependent on a regularization (or
length-scale) parameter ε. In particular, ε is the thickness of the transition zone. Due to
the crack irreversibility condition,

∂tϕ ≤ 0,
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the resulting system is a variational inequality.
Let V := H1

0 (Ω) and Win := {w ∈ H1(Ω)|w ≤ ϕn−1 ≤ 1 a.e. on Ω} be the function
spaces we work with; and for later purposes we also need W := H1(Ω).

Formulation 1 (Variational inequality system for pressurized fractures) Find (u, ϕ) ∈
V ×W with((

(1− κ)ϕ2 + κ
)
σ(u), e(w)

)
− (α− 1)(ϕ2p, div w) = 0 ∀w ∈ V, (1)

as well as

(1− κ)(ϕ σ(u) : e(u), ψ−ϕ)− 2(α− 1)(ϕ p div u, ψ−ϕ)

+Gc

(
−1

ε
(1− ϕ, ψ−ϕ) + ε(∇ϕ,∇ψ−ϕ)

)
≥ 0 ∀ ψ ∈ Win ∩ L∞(Ω).

(2)

where, σ = σ(u) is the stress tensor,

σ := σ(u) = 2µe(u) + λ tr(e(u))I,

and e(u) the symmetric strain tensor defined as

e(u) :=
1

2

(
∇u +∇uT

)
.

and µ and λ are material parameters, I is the identity matrix, Gc is the energy release
rate Gc > 0, ε is the previously mentioned crack surface regularization parameter, and
finally κ is a positive regularization parameter for the elastic energy, with κ� ε.

This system is based on a quasi-stationarity assumption in which the time t (i.e. in a
quasi-stationary setting t is more a load parameter rather than true ’time’) enters through
time-dependent boundary conditions, e.g., u = u(t) = g(t) on ∂ΩD with a prescribed
boundary function g(t) of Dirichlet-type or through time-dependent right hand side forces,
e.g., p := p(t) as used in our numerical example.

Remark 2.1 In poroelastic applications, the pressure p is obtained from solving a pressure
Darcy equation. This coupled system is solved with a fixed-stress iteration [21, 16] in which
the pressure equation and elasticity equation are solved sequentially. Correct modeling
of interface forces [17, 19] ϕ2∇p where the fluid pressure in the crack interacts with
poroelastic fluid flow. However, for a given, piece-wise constant, pressure this term is
zero and neglected in the rest of this paper. In addition, Biot’s coefficient is chosen as
α = 0. Both terms appear in situations as investigated in [20, 22, 23].
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3 NUMERICAL APPROXIMATION

Our solution algorithm is based on a combined Newton iteration (to compute an update
δUh

k such that Uh
k+1 = Uh

k +δUh
k , where k is the Newton iteration number, and h the spatial

discretization parameter) that assembles the crack irreversibility with the help of a semi-
smooth Newton method and a second Newton iteration for the fully-coupled forward
problem. The problem is quasi-static and temporal derivatives are approximated with a
backward difference scheme. Spatial discretization is based on Galerkin finite elements
using trilinear ansatz and test functions.

In the following, let the (discrete) residual be denoted by R(Uh
k ) = −A(Uh

k )(Ψh) with
Uh
k := {uh

k, ϕ
h
k} ∈ V h ×W h and (now neglecting the indices k and h):

A(U)(Ψ) =
((

(1− κ)ϕ̃2 + κ
)
σ(u), e(w)

)
− (α− 1)(ϕ̃2p, div w)

+ (1− κ)(ϕ σ(u) : e(u), ψ)− 2(α− 1)(ϕ p div u, ψ)

+Gc

(
−1

ε
(1− ϕ, ψ) + ε(∇ϕ,∇ψ)

)
= 0 ∀Ψ := {w, ψ} ∈ V ×W.

(3)

In this system, the well-known difficulty; namely the non-convexity of the first term on the

energy level,
((

(1− κ)ϕ2 + κ
)
σ(u), e(w)

)
is treated by replacing (the solution variable)

ϕ by a (known) extrapolation ϕ̃ computed from two previous time steps. This heuristic
procedure is very robust and yields excellent approximation properties with regard to the
true ϕ. Verification in terms of benchmarks is provided in [11].

The corresponding Newton matrix is built by computing the directional derivative
A′(Uh

k )(δUh
k ,Ψ

h). Then, δUh
k := {δuh

k, δϕ
h
k} ∈ V h ×W h such that

A′(U)(δU,Ψ) =
((

(1− κ)ϕ̃2 + κ
)
σ(δu), e(w)

)
+ (1− κ)(δϕσ+(u) : e(u) + 2ϕ σ(δu) : e(u), ψ)

− 2(α− 1)p(δϕdiv u + ϕ div δu, ψ)

+Gc

(1

ε
(δϕ, ψ) + ε(∇δϕ,∇ψ)

)
= 0 ∀Ψ := {w, ψ} ∈ V ×W.

(4)

Furthermore, (B)ii is a diagonal mass matrix [12].
The semi-smooth Newton method can be interpreted as a primal-dual active set method

and vice versa [12]. With these preparations, we define our solution algorithm:

Algorithm 3.1 ([11]) Repeat for k = 0, 1, 2, . . . :

1. Assemble residual R(Uh
k )

2. Compute active set Ak = {i | (B−1)ii(R
h
k)i + c(δUh

k )i > 0}, i : is a DoF

3. Assemble matrix G = A′(Uh
k )(·,Ψh) and right-hand side F = −A(Uh

k )(Ψh)
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4. Eliminate rows and columns in Ak from G and F to obtain G̃ and F̃

5. Solve the linear system G̃δUh
k = F̃ , i.e,

Ã′(Uh
k )(δUh

k ,Ψ
h) = −Ã(Uh

k )(Ψh) ∀Ψ ∈ V h ×W h. (5)

6. Find a step size 0 < ω ≤ 1 using line search to get

Uh
k+1 = Uh

k + ωδUh
k ,

with R̃(Uh
k+1) < R̃(Uh

k ).

Finish if both stopping criteria are fulfilled simultaneously:

Ak+1 = Ak and R̃(Uh
k ) < TOL .

4 NUMERICAL TEST: TWO PENNY-SHAPED FRACTURES IN A HET-
EROGENEOUS MEDIUM

In this final section, we present an advanced numerical example that demonstrates the
capabilities for realistic scenarios of our method. This example is computed based on the
finite element software deal.II [3] and based on an extension of the programming code
developed for [11].

(a) Two initial fractures (b) Heterogeneity

Figure 1: (a) Two initial penny shaped crack is position in the middle of the media. (b)
Young’s modulus(E) has the value range of the shale rock region; E ∈ [1 GPa, 10 GPa]
and ν = 0.15.

We take a setting with two initial penny-shaped fractures in a 3D heterogeneous
medium. The locally refined grid in the cube Ω = (0m, 4m)3 with hanging nodes is
shown in Figure 1a. The cells around the crack interface are refined (if ϕ(x, t) < 0.8) us-
ing the a predictor-corrector strategy [11]. In Figure 1a two initial fractures are described.
The top fracture is centered at (2, 3, 2)[m] with radius r = 0.5m in y = 3m-plane and
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the bottom fracture is centered at (2.5, 2, 2)[m] with radius r = 0.5m in x = 2.5m-plane.
The crack is approximated as a volume by extending it with the spatial discretization
parameter h. The thickness of both fractures are 2hmin. As outer boundary conditions
we set the displacements zero on ∂Ω.

The pressure is constant in space with α = 0 in (1), but it is linearly increasing in
time as p = t × 1 MPa[Pa], where t is the current time. The numerical constants are
given as k = 10−10× hmin and ε = 2hmin. Here hmin = 0.0541266m and the time steps are
dt = 0.01s.

We observe joining and branching of non-planar fractures in heterogeneous media.
Those are automatically captured by the phase field method. See Figure 2 and Figure 3
for the details. Finally, in Figure 3, the bulk and crack energies are observed. We clearly
see that the crack energy remains constant while the cracks are not growing and this
energy increases for growing fractures.

(a) n = 10 (b) n = 11 (c) n = 13

(d) n = 14 (e) n = 15 (f) n = 16

Figure 2: Sequence of snapshots of fractures propagating at each time step number n in
3D heterogeneous media. The blue regions corresponds to ϕ < 0.1. Both fractures grow
non-planarly, then they join at n = 11 and start branching at n = 13.
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(a) Joining of two fractures (b) Branching after joining

Figure 3: Detailed snapshots of the areas where the cracks are (a) joining at n=11 and
(b) branching at n=13.
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Figure 4: Evolution of bulk and crack energies. The crack energy starts increasing when
the two fractures start growing at n = 10 (equal to t = 0.1). The bulk energy remains
increasing even for propagating fractures since the applied pressure is still advanced.

5 CONCLUSIONS

In this work, we applied recently developed algorithms to compute three-dimensional
pressurized-fracture propagation in heterogeneous media. The proposed method is effi-
cient and robust. The novelty in comparison to existent literature is a detailed numerical
simulation to show three-dimensional complex crack patterns, their forming, growth and
joining.
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