
Introduction to Numerical Modeling

Thomas Wick

Centre de Mathématiques Appliquées (CMAP)

École Polytechnique (X)

91128 Palaiseau, France

http://www.cmap.polytechnique.fr/~wick/

thomas.wick@polytechnique.edu

Last update:
Tuesday, October 2, 2018

Front picture by Elisa Wick

1

http://www.cmap.polytechnique.fr/~wick/
mailto:thomas.wick@polytechnique.edu

Foreword

These notes accompany the class

MAP 502 - A project on numerical modeling done in two

given at École Polytechnique (France) in the Winter term 2018/2019. This is the 3rd version after the classes
taught in Winter 2016/2017 and Winter 2017/2018.

The specific focus will be on modeling and numerical methods for differential equations as they are extremely
important in a wide range of applications.

This class is divided into two parts:

• Part I: summer readings

• Part II: class on numerical modeling

and the goals are:

• Recapitulation of differential and integral calculus as well as basics in linear algebra (summer readings)

• Providing a basic understanding of mathematical modeling in terms of differential equations, their
classification, and additional ingredients such as initial and boundary conditions;

• To discretize these equations in time and space in order to prepare them algorithmically for their
computer implementation;

• To illustrate numerical results of such implementations including programming codes;

• To learn how to analyze and interprete obtained results. Do they make sense? What are typical
error sources? What is the computational complexity? How fast do we approach a final solution? What
is the rate of convergence?

The prerequisites are lectures in calculus, linear algebra and possibly an introduction to numerics. Specifically,
the summer readings (Part I) shall recapitulate the most important ingredients for numerical modeling of
differential equations considered in Part II.

These notes shall then serve as a preparation for subsequent project work done in groups of two. These
projects will have topics involving ODEs and PDEs and consist of mathematical modeling, numerical analysis
and programming of a given problem. Programming shall be preferably undertaken in open source languages
octave (the open source sister of MATLAB), python, or C++ (pure or in form of open-source finite element
packages deal.II or FreeFem++). Thus, these projects deal with scientific computing on a basic level.

I would be grateful if you let me know about errors inside these lecture notes via

thomas.wick@polytechnique.edu

This is a good place to express my thankfulness to my students from both years in the STEEM program
at Ecole Polytechnique, namely the winter term 2016/2017 and the winter term 2017/2018, since they asked
many questions from which I understood which parts of my lecture and lecture notes needed improvements.
Moreover, several misprints have been found by them.

Thomas Wick

(Palaiseau / Hannover, October 2018)

2

Author information:
Prof. Dr. Thomas Wick

Permanent address Part-time address
Institut für Angewandte Mathematik (IfAM) Centre de Mathématiques Appliquées (CMAP)
Leibniz Universität Hannover École Polytechnique
Welfengarten 1 Route de Saclay
30167 Hannover 91128 PALAISEAU Cedex
Germany France
Phone: +49 511 762 3360 —
E-Mail: thomas.wick@ifam.uni-hannover.de thomas.wick@polytechnique.edu
Web: https://www.ifam.uni-hannover.de/wick.html http://www.cmap.polytechnique.fr/~wick/

3

https://www.ifam.uni-hannover.de/wick.html
http://www.cmap.polytechnique.fr/~wick/

Contents

Contents

1 Main literature 7

2 Basics in calculus and linear algebra (summer readings) 11
2.1 Literature for the summer readings . 11
2.2 Mathematical symbols . 11
2.3 Arithmetic . 11
2.4 Differential and integral calculus . 11
2.5 Linear algebra . 11

3 Notation (summer readings) 13
3.1 Domains . 13
3.2 Independent variables . 13
3.3 Function, vector and tensor notation . 13
3.4 Partial derivatives . 13
3.5 Multiindex notation . 14
3.6 Gradient, divergence, trace, Laplace, rotation . 14
3.7 Invariants of a matrix . 15
3.8 Vector spaces . 15
3.9 Normed spaces . 16
3.10 Linear mappings . 16
3.11 Little o and big O - the Landau symbols . 17
3.12 Taylor expansion . 18
3.13 Transformation of integrals: substitution rule / change of variables 18
3.14 Gauss-Green theorem / Divergence theorem . 19
3.15 Integration by parts and Green’s formulae . 20

4 Quiz (finishing the summer readings) 21
4.1 Questions . 21

5 Motivation of numerical modeling 25
5.1 Scientific computing: Why numerical simulations? . 25
5.2 Differential equations and guiding questions . 26
5.3 Errors . 26
5.4 Concepts in numerical mathematics . 27
5.5 Well-posedness . 28
5.6 Which topics these notes do not cover . 28

6 An extended introduction to differential equations 29
6.1 Examples and applications of differential equations . 29
6.2 One important ODE . 34
6.3 Three important PDEs . 35
6.4 The general definition of a differential equation . 38
6.5 Boundary and initial conditions . 41

6.5.1 Types of boundary conditions . 41
6.5.2 Common traps and errors . 41
6.5.3 Example: Dependence of the numerical solution on the boundaries 42

6.6 Weak/variational solutions versus classical solutions . 43
6.7 The challenge of numerical modeling . 43
6.8 Philosophy of numerical modeling . 44

7 Finite differences for ODE initial-values problems 45
7.1 Problem statement of an IVP (initial value problem) . 45

4

Contents

7.2 Stiff problems . 45
7.3 Well-posedness of solutions . 46
7.4 One-step schemes . 46

7.4.1 The Euler method . 46
7.4.2 Implicit schemes . 47

7.5 Numerical analysis . 48
7.5.1 The model problem . 48
7.5.2 Splitting into stability and consistency . 48
7.5.3 Stability . 49
7.5.4 Consistency / local discretization error - convergence order 51
7.5.5 Convergence . 51

7.6 Detailed numerical tests . 53
7.6.1 Problem statement and discussion of results . 53
7.6.2 Treatment of the instability of the forward Euler method 55

7.7 Runge-Kutta methods . 56

8 Finite elements for PDE boundary values problems 59
8.1 Model problem: 1D Poisson . 59
8.2 Construction of an exact solution (only possible for simple cases!) 59
8.3 Equivalent formulations . 60
8.4 The weak form: defining a bilinear form and a linear form . 63
8.5 Finite elements in 1D . 65

8.5.1 The mesh . 65
8.5.2 Linear finite elements . 65
8.5.3 The process to construct the specific form of the shape functions 67
8.5.4 The discrete weak form . 68
8.5.5 Evaluation of the integrals . 69
8.5.6 Definition of a finite element . 70
8.5.7 Properties of the system matrix A . 71
8.5.8 Numerical test: 1D Poisson . 71

8.6 Algorithmic details . 76
8.6.1 Assembling integrals on each cell K . 76
8.6.2 Example in R5 . 76
8.6.3 Numerical quadrature . 78
8.6.4 Details on the evaluation on the master element . 81
8.6.5 Generalization to s elements . 82
8.6.6 Example: Section 8.6.2 continued using Sections 8.6.4 and 8.6.5 83

8.7 Quadratic finite elements: P2 elements . 85
8.7.1 Algorithmic aspects . 85
8.7.2 Numerical test: 1D Poisson using quadratic FEM . 86
8.7.3 Influence of numerical quadrature . 87

8.8 Solving the linear equation system . 88
8.8.1 Overview . 88
8.8.2 Basic iterative solvers . 89
8.8.3 Conjugate gradients (a Krylov space method) . 92
8.8.4 Preconditioning . 96

8.9 Numerical tests: computational convergence analysis and solver behavior 98
8.9.1 2D Poisson . 98
8.9.2 Numerical test: 3D . 99
8.9.3 Checking programming code and convergence analysis for linear and quadratic FEM . . 99
8.9.4 Convergence analysis for 1D Poisson using linear FEM 101
8.9.5 Iterative solver behavior . 102

9 Combining FD and FE: Numerical discretization of the heat equation 103
9.1 Problem . 103

5

Contents

9.2 Mathematical problem statement . 103
9.3 Temporal discretization . 103

9.3.1 Spatial discretization . 104
9.3.2 Evaluation of the integrals (1D in space) . 105
9.3.3 Final algorithms . 106

9.4 Numerical analysis: stability analysis . 108
9.4.1 Stability analysis for backward Euler . 109
9.4.2 Stability analysis for explicit Euler . 109
9.4.3 Numerical tests . 110

10 Towards nonlinear problems 113
10.1 Preface . 113
10.2 Linearization techniques . 113
10.3 Fixed-point iteration . 114
10.4 Linearization via time-lagging (example: NSE) . 114

10.4.1 Stokes linearization . 115
10.4.2 Oseen linearization . 115

10.5 Newton’s method in R - the Newton-Raphson method . 115
10.5.1 Newton’s method: overview. Going from R to Rn . 117
10.5.2 A basic algorithm for a residual-based Newton method 117
10.5.3 Example of the basic Newton method . 118
10.5.4 Example using a Newton defect-correction scheme including line search 119

10.6 Solving IVPs with implicit schemes . 120

11 Computational convergence analysis 123
11.1 Discretization error . 123

11.1.1 Relationship between h and N (DoFs) . 123
11.1.2 Discretization error . 124
11.1.3 Computationally-obtained convergence order: example for the spatial mesh parameter h 125

11.2 Iteration error . 125

12 Concluding summary 127
12.1 Summary . 127
12.2 The principles of work, study and research tasks . 127
12.3 Hints for presenting results in a presentation/talk . 128

13 Programming codes 131
13.1 Short comments on MATLAB / octave . 131
13.2 Code of Example 7.6 in Octave . 131
13.3 Short comments on Python . 133
13.4 Code of Example 8.5.8 in python . 133
13.5 Code for a straightforward implementation of Newton’s method (Example 10.5.3) 135
13.6 Code for a Newton defect-correction scheme including line search (Example 10.5.4) 136

Bibliography 139

Index 141

6

1 MAIN LITERATURE

1 Main literature

All literature given in arbitrary order!

Main literature for Part I (summer readings):

1. I.N. Bronshtein and K.A. Semendyayev and G. Musiol and H. Muehlig: Handbook of Mathematics,
Springer 2007 [7].

Main literature for the class (Part II):

1. A. Quarteroni, F. Saleri, P. Gervasio: Scientific Computing with MATLAB and Octave [25] (in English).

2. G. Strang: Computational Science and Engineering [32].

3. G. Allaire: Introduction to mathematical modelling, numerical simulation, and optimization [2] (in
English; original version in French).

4. M. Hanke-Bourgeois: Foundations of numerical mathematics and scientific computing [18] (in German).

5. T. Richter, T. Wick [29]: Introduction to numerical mathematics (in German; parts of the book have
been translated to English in these lecture notes).

Further reading (emphasis on ODEs and PDEs):

1. P. Deuflhard and F. Bornemann: Scientific computing with ordinary differential equations, Springer,
2002 (in English; original version in German) [12].

2. G. Allaire, F. Alouges: Analyse variationnelle des équations aux dérivées partielles [3] (in French).

3. C. Johnson 1987; Numerical solution of partial differential equations by the finite element method [22]
(in English; original version in Swedish)

4. P. Ciarlet 1987: The finite element method for elliptic problems [10] (in English)

5. T. Wick; Numerical methods for partial differential equations, Lecture notes, LUH, May 2018, available
online https://www.ifam.uni-hannover.de/1562.html (in English)

7

https://www.ifam.uni-hannover.de/1562.html

1 MAIN LITERATURE

8

1 MAIN LITERATURE

PART I
Summer readings

9

1 MAIN LITERATURE

10

2 BASICS IN CALCULUS AND LINEAR ALGEBRA (SUMMER READINGS)

2 Basics in calculus and linear algebra (summer readings)

The summer readings prepare for the class and the project work in autumn. The basics of arithmetics,
functions, calculus and linear algebra are recapitulated.

2.1 Literature for the summer readings
We recommend a classical world-renowned summary by Bronshtein et al. [7]: Handbook of Mathematics.

IMPORTANT: In case you have concerns, problems or questions in getting a copy of Bronshtein
[7], please contact me via thomas.wick@polytechnique.edu

2.2 Mathematical symbols
This section is optional, but likely to be useful:

1. Bronshtein at the very end, page 1160 ff: Mathematical Symbols.

2.3 Arithmetic
For arithmetic, please take Bronshtein and study:

1. Bronshtein Section 1.1 (Elementary rules for calculations).

2. Bronshtein Section 1.2 (Finite series).

2.4 Differential and integral calculus
For calculus, please take Bronshtein and study:

1. Bronshtein Chapter 2: Functions.

2. Bronshtein Chapter 6: Differentiation.

3. Bronshtein Chapter 7: Infinite Series.

4. Bronshtein Chapter 8: Integral Calculus.

2.5 Linear algebra
For linear algebra, please study in Bronshtein:

1. Bronshtein Chapter 4: Linear algebra.

11

mailto:thomas.wick@polytechnique.edu

2 BASICS IN CALCULUS AND LINEAR ALGEBRA (SUMMER READINGS)

12

3 NOTATION (SUMMER READINGS)

3 Notation (summer readings)

In this chapter, we collect most parts of the notation and some important results from linear algebra, analysis,
vector and tensor analysis, necessary for numerical mathematics.

3.1 Domains

We consider open, bounded domains Ω ⊂ Rd where d = 1, 2, 3 is the dimension. The boundary is denoted by
∂Ω. The outer normal vector with respect to (w.r.t.) to ∂Ω is n. We assume that Ω is sufficiently smooth
(i.e., a Lipschitz domain or domain with Lipschitz boundary) such that the normal n can be defined. What
also works for most of our theory are convex, polyhedral domains with finite corners. For specific definitions
of nonsmooth domains, we refer to the literature, e.g., [16].

3.2 Independent variables

A point in Rd is denoted by
x = (x1, . . . , xd).

The variable for ‘time’ is denoted by t. The euclidian scalar product is denoted by (x, y) = x · y =
∑d
i=1 xiyi.

3.3 Function, vector and tensor notation
Functions are denoted by

u := u(x)

if they only depend on the spatial variable x = (x1, . . . , xd). If they depend on time and space, they are
denoted by

u = u(t, x).

Usually in physics or engineering vector-valued and tensor-valued quantities are denoted in bold font size or
with the help of arrows. Unfortunately in mathematics, this notation is only sometimes adopted. We continue
this crime and do not distinguish scaler, vector, and tensor-valued functions. Thus for points in R3 we write:

x := (x, y, z) = x = ~x.

Similar for functions from a space u : R3 ⊇ U → R3:

u := (ux, uy, uz) = u = ~u.

And also similar for tensor-valued functions (which often have a bar or two bars under the tensor quantity) as
for example the Cauchy stress tensor σf ∈ R3×3 of a fluid:

σf := σf =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

.
3.4 Partial derivatives
We frequently use:

∂u

∂x
= ∂xu

and
∂u

∂t
= ∂tu

and
∂2u

∂t∂t
= ∂2

t u

and
∂2u

∂x∂y
= ∂xyu

13

3 NOTATION (SUMMER READINGS)

3.5 Multiindex notation
For a general description of ODEs and PDEs the multiindex notation is commonly used.

• A multiindex is a vector α = (α1, . . . , αn), where each component αi ∈ N0. The order is

|α| = α1 + . . .+ αn.

• For a given multiindex we define the partial derivative:

Dαu(x) := ∂α1
x1
· · · ∂αnxn u

• If k ∈ N0, we define the set of all partial derivatives of order k:

Dku(x) := {Dαu(x) : |α| = k}.

Example 3.1. Let the problem dimension n = 3. Then, α = (α1, α2, α3). For instance, let α = (2, 0, 1).
Then |α| = 3 and Dαu(x) = ∂2

x∂
1
zu(x).

3.6 Gradient, divergence, trace, Laplace, rotation
Well-known in physics, it is convenient to work with the nabla-operator to define derivative expressions.
The gradient of a single-valued function v : Rn → R reads:

∇v =

∂1v
...

∂nv

.
The gradient of a vector-valued function v : Rn → Rm is called Jacobian matrix and reads:

∇v =

∂1v1 . . . ∂nv1

...
...

∂1vm . . . ∂nvm

.
The divergence is defined for vector-valued functions v : Rn → Rn:

div v := ∇ · v := ∇ ·

v1

...

vn

 =

n∑
k=1

∂kvk.

The divergence for a tensor σ ∈ Rn×n is defined as:

∇ · σ =
(n∑
j=1

∂σij
∂xj

)
1≤i≤n.

The trace of a matrix A ∈ Rn×n is defined as

tr(A) =

n∑
i=1

aii.

Definition 3.2 (Laplace operator). The Laplace operator of a two-times continuously differentiable scalar-
valued function u : Rn → R is defined as

∆u =

n∑
k=1

∂kku.

14

3 NOTATION (SUMMER READINGS)

Definition 3.3. For a vector-valued function u : Rn → Rm, we define the Laplace operator component-wise
as

∆u = ∆

u1

...

um

 =

∑n
k=1 ∂kku1

...∑n
k=1 ∂kkum

.
Let us also introduce the cross product of two vectors u, v ∈ R3:u1

u2

u3

×
 v1

v2

v3

 =

u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

.
With the help of the cross product, we can define the rotation:

rotv = ∇× v =

 ∂x
∂y
∂z

×
 v1

v2

v3

 =

 ∂yv3 − ∂zv2

∂zv1 − ∂xv3

∂xv2 − ∂yv1

.
3.7 Invariants of a matrix
The principal invariants of a matrix A are the coefficients of the characteristic polynomial det(A − λI). A
matrix A ∈ R3×3 has three principal invariants; namely iA = (i1(A), i2(A), i3(A)) with

det (λI −A) = λ3 − i1(A)λ2 + i2(A)λ− i3(A).

Let λ1, λ2, λ3 be the eigenvalues of A. Then we have

i1(A) = tr (A) = λ1 + λ2 + λ3,

i2(A) =
1

2
(tr A)2 − tr (A)2 = λ1λ1 + λ1λ3 + λ2λ3,

i3(A) = det (A) = λ1λ2λ3.

Remark 3.4. If two different matrices have the same principal invariants, they also have the same eigenvalues.

Remark 3.5 (Cayley-Hamilton). Every second-order tensor (i.e., a matrix) satisfies its own characteristic
equation:

A3 − i1A2 + i2A− i3I = 0.

3.8 Vector spaces
Let K = R. In fact, K = C would work as well and any general field. But we restrict our attention in the
entire lecture notes to real numbers R.

Definition 3.6 (Vector space). A vector space or linear space over a field K is a nonempty set X (later
often denotes by V,U or also W). The space X contains elements x1, x2, . . . which are the so-called vectors.
We define two algebraic operations:

• Vector addition: x+ y for x, y ∈ X.

• Multiplication of vectors with scalars: αx for x ∈ X and α ∈ K.

These operations satisfy the usual laws that they are commutative, associative, and satisfy distributive laws.

15

3 NOTATION (SUMMER READINGS)

3.9 Normed spaces
Let X be a linear space. The mapping || · || : X → R is a norm if

i) ||x|| ≥ 0 ∀x ∈ X (Positivity)

ii) ||x|| = 0⇔ x = 0 (Definiteness)

iii) ||αx|| = |α| ||x||, α ∈ K (Homogeneity)

iv) ||x+ y|| ≤ ||x||+ ||y|| (Triangle inequality)

A space X is a normed space when the norm properties are satisfied. If condition ii) is not satisfied, the
mapping is called a semi-norm and denoted by |x|X for x ∈ X.

Definition 3.7. Let ‖ · ‖ be a norm on X. Then {X, ‖ · ‖} is called a (real) normed space.

Example 3.8. We provide some examples:

1. Rn with the euclidian norm ‖x‖ = (
∑n
i=1 x

2
i)

1/2 is a normed space.

2. Let Ω := [a, b]. The space of continuous functions C(Ω) endowed with the maximum norm

‖u‖C(Ω) = max
x∈Ω
‖u(x)‖

is a normed space.

3. The space {C(Ω), ‖ · ‖L2} with

‖u‖L2 =
(∫

Ω

u(x)2 dx
)1/2

is a normed space.

Definition 3.9. Two norms are equivalent if converging sequences have the same limits.

Proposition 3.10. Two norms || · ||A, || · ||B on X are equivalent if and only if there exist two constants
C1, C2 > 0 such that

C1||x||A ≤ ||x||B ≤ C2||x||A ∀x ∈ X
The limits are the same.

Proof. See e.g., [35].

Remark 3.11. This statements has indeed some immediate consequences. For instance, often convergence of
an iterative scheme is proven with the help of the Banach fixed point scheme in which the contraction constant
q must be smaller than 1. It is important that not all norms may satisfy q < 1, but when different norms are
equivalent and we pick one that satisfy q < 1, we can proof convergence.

3.10 Linear mappings
Let {U, ‖ · ‖U} and {V, ‖ · ‖V } be normed spaces over R.

Definition 3.12 (Linear mappings). A mapping T : U → V is called linear or linear operator when

T (u) = T (au1 + bu2) = aT (u1) + bT (u2),

for u = au1 + bu2 and for a, b ∈ R.

Example 3.13. We discuss two examples:

1. Let T (u) = ∆u. Then:

T (au1 + bu2) = ∆(au1 + bu2) = a∆u1 + b∆u2 = aT (u1) + bT (u2).

Thus, T is linear.

16

3 NOTATION (SUMMER READINGS)

2. Let T (u) = (u · ∇)u. Then:

T (au1 + bu2) = ((au1 + bu2) · ∇)(au1 + bu2) 6= a(u1 · ∇)u1 + b(u2 · ∇)u2 = aT (u1) + bT (u2).

Here, T is nonlinear.

Definition 3.14 (Linear functional). A mapping T : U → V with V = R is called linear functional.

Definition 3.15. A mapping T : U → V is called continuous when

lim
n→∞

un = u ⇒ lim
n→∞

Tun = Tu.

Definition 3.16. A linear operator T : U → V is called bounded, when the following estimate holds true:

‖Tu‖V ≤ c‖u‖U .

Theorem 3.17. A linear operator is bounded if and only if it is continuous.

Proof. See [35], Satz II.1.2.

Definition 3.18. Let T : U → V be a linear and continuous operator. The norm of T is defined as

‖T‖ = sup
‖u‖U=1

‖Tu‖V .

Since a linear T is bounded (when continuous) there exists ‖Tu‖V ≤ c‖u‖U for all u ∈ U . The smallest number
for c is c = ‖T‖.

Definition 3.19. The linear space of all linear and bounded operators from U to V is denoted by

L(U, V).

The norm of L(U, V) is the operator norm ‖T‖.

Definition 3.20 (Dual space). The linear space of all linear, bounded functionals on U (see Def. 3.14) is the
dual space, denoted by U∗, i.e.,

U∗ = L(U,R).

For f ∈ U∗, the norm is given by:
‖f‖U∗ = sup

‖u‖U=1

|f(u)|.

The dual space is always a Banach space; see again [35].

3.11 Little o and big O - the Landau symbols
Definition 3.21 (Landau symbols). (i) Let g(n) a function with g → ∞ for n → ∞. Then f ∈ O(g) if and
only if when

lim sup
n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ <∞
and f ∈ o(g) if and only if

lim
n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ = 0.

(ii) Let g(h) a function with g(h)→ 0 for h→ 0. As before, we define f ∈ O(g) and f ∈ o(g):

lim sup
h→0

∣∣∣∣f(h)

g(h)

∣∣∣∣ <∞ ⇔ f ∈ O(g),

and
lim
h→0

∣∣∣∣f(h)

g(h)

∣∣∣∣ = 0 ⇔ f ∈ o(g).

17

3 NOTATION (SUMMER READINGS)

(iii) Specifically:
lim sup
h→0

∣∣f(h)
∣∣ <∞ ⇔ f ∈ O(1),

and
lim
h→0

∣∣f(h)
∣∣ = 0 ⇔ f ∈ o(1).

Often, the notation f = O(g) is used rather than f ∈ O(g) and similarely f = o(g) rather than f ∈ o(g).

Example 3.22. Five examples:

1. 1
x = o(1

x2) (x→ 0) ,

2. 1
x2 = o(1

x) (|x| → ∞),

3. e−x = o(x−26) (x→∞).

4. Let ε→ 0 and h→ 0. We write
h = o(ε)

when
h

ε
→ 0 for h→ 0, ε→ 0,

which means that h tends faster to 0 than ε.

5. Let us assume that we have the error estimate (see sections on the numerical analysis)

‖y(tn)− yn‖2 = O(k).

Here the O notation means nothing else than

‖y(tn)− yn‖2
k

→ C for k → 0.

Here the fraction converges to a constant C (and not necessarily 0!), which illustrates that O(·) convergence is
weaker than o(·) convergence. On the other hand, this should not yield the wrong conclusion that ‖y(tn)−yn‖2
may not tend to zero. Since k → 0, also ‖y(tn)− yn‖2 → 0 must hold necessarily.

3.12 Taylor expansion
The Taylor series of a function f ∈ C∞(R) developed at a point a 6= x reads:

T (f(x)) =

∞∑
j=0

f (j)(a)

j!
(x− a)j .

3.13 Transformation of integrals: substitution rule / change of variables
One of the most important formulas in continuum mechanics and variational formulations is the substitution
rule that allows to transform integrals from one domain to another.
In 1D it holds:

Proposition 3.23 (Substituion rule in 1D). Let I = [a, b] be given. To transform this interval to a new
interval, we use a mapping T (I) = [α, β] with T (a) = α and T (b) = β. If T ∈ C1 (a continuously differentiable
mapping) and monotonically increasing (i.e., T ′ > 0), we have the transformation rule:∫ β

α

f(y) dy =

∫ T (b)

T (a)

f(y) dy =

∫ b

a

f(T (x))T ′(x) dx.

Proof. Any analysis book. Here Analysis 2, Rolf Rannacher, Heidelberg University [27].

18

3 NOTATION (SUMMER READINGS)

Remark 3.24. In case that T ′ < 0 the previous proposition still holds true, but with a negative sign:∫ β

α

f(y) dy =

∫ T (a)

T (b)

f(y) dy = −
∫ T (b)

T (a)

f(y) dy =

∫ b

a

f(T (x)) (−T ′(x)) dx.

For both cases with T ′ 6= 0 the formula works and finally yields:

Theorem 3.25. Let I = [a, b] be given. To transform this interval to a new interval [α, β], we employ a
mapping T . If T ∈ C1 (a continuously differentiable mapping) and T ′ 6= 0, it holds:∫

T (I)

f(y) dy :=

∫ β

α

f(y) dy =

∫ b

a

f(T (x)) |T ′(x)| dx =:

∫
I

f(T (x)) |T ′(x)| dx.

Proof. Any analysis book. Here Analysis 2, Rolf Rannacher, Heidelberg University [27].

Remark 3.26. We observe the relation between the integration increments:

dy = |T ′(x)| dx.

Example 3.27. Let T be a affin-linear transformation defined as

T (x) = ax+ b.

Then,
dy = |a|dx.

In higher dimensions, we have the following result of the substitution rule (also known as change of
variables under the integral):

Theorem 3.28. Let Ω ⊂ Rn be an open, measurable, domain. Let the function T : Ω → R be of class C1,
one-to-one (injective) and Lipschitz-continuous. Then:

• The domain Ω̂ := T (Ω) is measurable.

• The function f(T (·))|detT ′(·)| : Ω→ R is (Riemann)-integrable.

• For all measurable subdomains M ⊂ Ω it holds the substitution rule:∫
T (M)

f(y) dy =

∫
M

f(T (x))|detT ′(x)| dx,

and in particular as well for M = Ω.

Proof. Any analysis book. See e.g., [27] or [23][Chapter 9].

Remark 3.29. In continuum mechanics, T ′ is the so-called deformation gradient and J := det(T ′), the
volume ratio.

3.14 Gauss-Green theorem / Divergence theorem
The Gauss-Green theorem or often known as divergence theorem, is one of the most useful formulas in
continuum mechanics and numerical analysis.
Let Ω ⊂ Rn an bounded, open domain and ∂Ω of class C1.

Theorem 3.30 (Gauss-Green theorem / Divergence theorem). Suppose that u := u(x) ∈ C1(Ω̄) with x =
(x1, . . . , xn). Then: ∫

Ω

uxi dx =

∫
∂Ω

uni ds, for i = 1, . . . , n.

In compact notation, we have ∫
Ω

div u dx =

∫
∂Ω

u · nds

for each vector field u ∈ C1(Ω̄;Rn).

Proof. The proof is nontrivial. See for example [23].

19

3 NOTATION (SUMMER READINGS)

3.15 Integration by parts and Green’s formulae
One of the most important formulae in applied mathematics, physics and continuum mechanics is integration
by parts.
From the divergence Theorem 3.30, we obtain immediately:

Proposition 3.31 (Integration by parts). Let u, v ∈ C1(Ω̄). Then:∫
Ω

uxiv dx = −
∫

Ω

uvxi dx+

∫
∂Ω

uvni ds, for i = 1, . . . , n.

In compact notation: ∫
Ω

∇uv dx = −
∫

Ω

u∇v dx+

∫
∂Ω

uvn ds.

Proof. Apply the divergence theorem to uv. Exercise.

We obtain now some further results, which are very useful, but all are based directly on the integration by
parts. For this reason, it is more important to know the divergence theorem and integration by parts formula.

Proposition 3.32 (Green’s formulas). Let u, v ∈ C2(Ω̄). Then:∫
Ω

∆u dx =

∫
∂Ω

∂nu ds,∫
Ω

∇u · ∇v dx = −
∫

Ω

∆u v dx+

∫
∂Ω

v ∂nu ds.

Proof. Apply integration parts.

Proposition 3.33 (Green’s formula in 1D). Let Ω = (a, b). Let u, v ∈ C2(Ω̄). Then:∫
Ω

u′(x) · v′(x) dx = −
∫

Ω

u′′(x) v(x) dx+ [u′(x)v(x)]x=b
x=a

Proof. Apply integration parts.

20

4 QUIZ (FINISHING THE SUMMER READINGS)

4 Quiz (finishing the summer readings)

The following questions may serve as a little reminder to test what we have learned during the summer readings.

4.1 Questions
1. Which programming languages do you know?

2. Which programming languages have you used so far?

3. What is a derivative of a function f : R→ R? Give an example.

4. What is a partial derivative? Give an example.

5. Differentiate f(x, y) = x2 + y3 with respect to y.

6. Differentiate f(x, y) = x2y3 with respect to x and y.

7. What is the Hessian matrix?

8. What does ∆u for a function u : R2 → R mean?

9. How is the divergence operator defined and what is its physical meaning?

10. What is ∇ · v for a function v : R2 → R2?

11. What is a norm? Why do we need a norm? Can you define the defining properties of a norm?

12. In case you have heard about ‘numerical modeling’ or ’scientific computing’: what is your understanding
of these terminologies?

13. Have you had classes on differential equations so far?

14. Did you get to know differential equations in some other classes, e.g., engineering classes? If yes, can
you give an example?

15. What is a sequence of numbers (e.g., give an example) and what is convergence?

16. Do you know how to solve a linear equation system Ax = b with A ∈ Rn×n, x ∈ Rn, b ∈ Rn?

17. Solve (by hand) the following linear equation system:

x+ 2y + z = 4

−2x+ y + 3z = 7

2x− 3y − 2z = −10

Formulate first A, x and b and compute then the solution of Ax = b.

18. Evaluate
∫ 3

−2
x3 dx

19. What is the substitution rule (in 1D and higher dimensions)?

20. What is integration by parts (in 1D and higher dimensions)?

21. Evaluate the concrete points xj for n = 4 using the following definition:

xj = jh, h =
1

n+ 1
, 0 ≤ j ≤ n+ 1, h = xj+1 − xj .

22. What is a Taylor expansion? Why is Taylor useful?

23. What is a metric space? Give an example?

21

4 QUIZ (FINISHING THE SUMMER READINGS)

24. How is the space C[a, b] defined?

25. Define the triangle inequality. How is Young’s inequality defined?

26. What is the Cauchy-Schwarz inequality?

27. Do you know what a Cauchy sequence is?

28. What is a complex number? Give an example.

29. (only with a computer) Implement in your preferred programming language the phrase ‘Hello MAP 502’,
which is then printed on the screen.

30. (only with a computer) Implement the calculation 1 + 5 in your preferred programming language and
print the result on the screen.

31. Evaluate ∫ π/4

0

x3 · cos(x) dx

32. What is the limit of the sequence
(1 +

x

n
)n?

22

4 QUIZ (FINISHING THE SUMMER READINGS)

PART II
Class on numerical modeling

23

4 QUIZ (FINISHING THE SUMMER READINGS)

24

5 MOTIVATION OF NUMERICAL MODELING

5 Motivation of numerical modeling

5.1 Scientific computing: Why numerical simulations?
The key question is why we need numerical simulations? The answer is that in fact in recent decades thanks to
the developments of computers, a third pillar of science has been established that sits between experiments and
theory: Numerical Modeling. Numerical modeling is a part of scientific computing. Scientific computing
comprises three main fields:

• Mathematical modeling and analysis of physical, biological, chemical, economical, financial processes,
and so forth;

• Development of reliable and efficient numerical methods and algorithms;

• Implementation of these algorithms into a software.

All these steps work in a feed-back manner and the different subtasks interact with each other. It is in fact
the third above aspect, namely software and computers, who helped to establish this third category of science.
Thus, a new branch of mathematics, numerical mathematics/scientific computing, has been established. This
kind of mathematics is experimental like experiments in physics/chemistry/biology.
Therefore, numerical modeling offers to investigate research fields that have partially not been addressable.

Why? On the one hand experiments are often too expensive, too far away (Mars, Moon, astronomy in general),
the scales are too small (nano-scale for example); or experiments are simply too dangerous. On the other hand,
mathematical theory or the explicit solution of an (ambitious) engineering problem in an analytical manner is
often impossible! “The third pillar of science: scientific computing” (1)

Adaptivity

(model, mesh)

Model

(ODE, PDE)

Discretization

(FD, FE, FV)

Simulation

Uniqueness

Existence

Well−posedness

Theory

Problem

finance, biology, medicine)

(Astronomy, chemistry, physics, A
V

O
N

I TL I
D A

Analysis

of results

Thomas Wick (Heidelberg) Adaptive Finite Elements and Optimization 4

Figure 1: The third pillar of science between theory and experiments: scientific computing.

Thanks to progress in computer technology, scientific computing (or numerical modeling or computational
science) plays a major role in nowadays research. However, there is a great danger that research becomes
superficial because it sounds easy just to push the button of a computer, run the software/program, and
everything is solved. A careful analysis of the underlying algorithms and the obtained solutions is indispensable.
Here, it is in particular an advantage to activate imagination and physical sense. If something is weird in
scientific computing, it can often already be identified by just looking into the graphical solution and double-
checking physical plausibility. On the other hand, a certain depth in theory is helpful as well to judge simulation
results. Thus a peculiar challenge working in this field is that an intrinsic interdisciplinary motivation and
education must be present by these researchers.

25

5 MOTIVATION OF NUMERICAL MODELING

5.2 Differential equations and guiding questions
The goal of this lecture is to restrict our focus to differential equations. These have endless applications
in science and engineering and serve perfectly to provide an idea of numerical modeling. Let us first roughly
define the meaning of a differential equation:

Definition 5.1. A differential equation is a mathematical equation that relates the function with its derivatives.

Differential equations can be split into two classes:

Definition 5.2 (Ordinary differential equation (ODE)). An ordinary differential equation (ODE) is an
equation (or equation system) involving an unknown function of one independent variable and certain of its
derivatives.

Definition 5.3 (Partial differential equation (PDE)). A partial differential equation (PDE) is an equation (or
equation system) involving an unknown function of two or more variables and certain of its partial derivatives.

A solution u of a differential equation is in most cases (except for simple academic test cases in which a
manufactured solution can be constructed) computed with the help of discretization schemes generating a
sequence of approximate solutions {uh}h→0. Here h is the so-called discretization parameter. For h → 0 we
(hopefully) approach the continuous solution u.

Important questions are

• What kind of discretization scheme shall we use?

• How do we design algorithms to compute uh?

• Can we proof that these algorithms really work?

• Are they robust and, ideally, efficient?

• How far is uh away from u in a certain (error) norm?

• The discretized systems (to obtain uh) are often large with a huge number of unknowns: how do we solve
these linear equation systems?

• What is the computational cost?

5.3 Errors
In order to realize these algorithmic questions, we go ahead and implement them in a software (for instance
Matlab/octave, python, fortran, C++, Java) using a computer. Here, three major error sources that need to
be addressed:

• The set of numbers is finite and a calculation is limited by machine precision, which results in round-off
errors.

• The memory of a computer (or cluster) is finite and thus functions and equations can only be repre-
sented through approximations. Thus, continuous information has to be represented through discrete
information, which results in investigating so-called discretization errors.

• All further simplifications of a numerical algorithm (in order to solve the discrete problem), with the final
goal to reduce the computational time, are so-called systematic errors. One example is the stopping
criterion after how many steps an iteration is stopped.

Finally, there are model errors such as:

• In order to make a ‘quick guess’ of a possible solution and to start development of an algorithm to address
at a later stage a difficult problem, often complicated (nonlinear) differential equations are reduced to
simple (in most cases linear) versions, which results in the so-called model error.

26

5 MOTIVATION OF NUMERICAL MODELING

• Data errors: the data (e.g., input data, boundary conditions, parameters) are finally obtained from
experimental data and may be inaccurate themselves.

It very important to understand that we never can avoid all these errors. The important aspect is to
control these errors and to provide answers if these errors are sufficiently big to influence the interpretation
of numerical simulations or if they can be assumed to be small. A big branch of numerical mathematics is to
derive error estimates that allow to predict about the size of arising errors.

5.4 Concepts in numerical mathematics
In [29], we defined seven concepts that are very characteristic for numerical modeling and will frequently
encounter us in the forthcoming chapters:

1. Approximation: since analytical solutions are not possible to achieve as we just learned in the previous
section, solutions are obtained by numerical approximations.

2. Convergence: is a qualitative expression that tells us when members an of a sequence (an)n∈N are
sufficiently close to a limit a. In numerical mathematics this limit is often the solution that we are
looking for.

3. Order of convergence: While in analysis are often interested in the convergence itself, in numerical
mathematics we must pay attention how long it takes until a numerical solution has sufficient accuracy.
The longer a simulation takes, the more time and more energy (electricity to run the computer, air
conditioning of servers, etc.) are consumed. Therefore, we are heavily interested in developing fast
algorithms. In order to judge whether a algorithm is fast or not we have to determine the order of
convergence.

4. Errors: Numerical mathematics can be considered as the branch ‘mathematics of errors’. What does
this mean? Numerical modeling is not wrong, inexact or non-precise! Since we cut sequences after a
final number of steps or accept sufficiently accurate solutions obtained from our software, we need to say
how well this numerical solution the (unknown) exact solution approximates. In other words, we need to
determine the error, which can arise in various forms as we discussed in the previous section.

5. Error estimation: This is one of the biggest branches in numerical mathematics. We need to derive
error formulae to judge the outcome of our numerical simulations and to measure the difference of the
numerical solution and the (unknown) exact solution in a certain norm.

6. Efficiency: In general we can say, the higher the convergence order of an algorithm is, the more efficient
our algorithm is. Therefore, we obtain faster the numerical solution to a given problem. But numerical
efficiency is not automatically related to resource-effective computing. For instance, developing a parallel
code using MPI (message passing interface) will definitely yield in less CPU (central processing unit)
time a numerical solution. However, if a parallel machine does need less electricity (and thus less money)
than a sequential desktop machine/code is a priori unclear.

7. Stability: Despite being the last concept, in most developements, this is the very first step to check.
How robust is our algorithm against different model and physical parameters? Is the algorithm stable
with respect to different input data? This condition relates in the broadest sense to the third condition
of Hadamard defined in Section 5.5.

27

5 MOTIVATION OF NUMERICAL MODELING

5.5 Well-posedness
The concept of well-posedness is very general and in fact very simple:

• The problem under consideration has a solution;

• This solution is unique;

• The solution depends continuously on the problem data.

The first condition is immediately clear. The second condition is also obvious but often difficult to meet - and
in fact many physical processes do not have unique solutions. The last condition says if a variation of the
input data (right hand side, boundary values, initial conditions) vary only a little bit, then also the (unique)
solution should only vary a bit.

Remark 5.4. Problems in which one of the three conditions is violated are ill-posed.

5.6 Which topics these notes do not cover
These notes do not cover other important fields of numerical modeling such as:

• Interpolation and approximation (however they appear implicitly e.g., by approximating differential
equations in terms of difference quotients);

• Numerical integration/quadrature (short remarks exist though);

• Numerical schemes for orthogonalization (such as Gram-Schmidt);

• Numerical computation of eigenvalue problems.

These topics can be found, for instance, in the literature provided at the beginning in Section 1.

28

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

6 An extended introduction to differential equations

After having setup the mathematical basics, we turn our focus now onto the main aim of this class: differential
equations. For a summary, we also refer (again) to Bronshtein [7].

6.1 Examples and applications of differential equations
We start with some examples:

• An ODE example (initial value problem). Let us compute the growth of a species (for example human
beings) with a very simple (and finally not that realistic) model. But this shows that reality can be
represented to some extend at least by simple models, but that continuous comparisons with other data
is also necessary. Furthermore, this also shows that mathematical modeling often starts with a simple
equation and is then continuously further augmented with further terms and coefficients. In the final
end we arrive at complicated formulae.

To get started, let us assume that the population number is y = y(t) at time t. Furthermore, we assume
constant growth g and mortalities rates m, respectively. In a short time frame dt we have a relative
increase of

dy

y
= (g −m)dt

of the population. Re-arranging and taking the limit dt→ 0 yields:

lim
t→0

dy

dt
= (g −m)y

and thus
y′ = (g −m)y.

For this ordinary differential equation (ODE), we can even explicitely compute the solution:

y(t) = c exp((g −m)(t− t0)).

This can be achieved with separation of variables:

y′ =
dy

dt
= (g −m)y (1)

⇒
∫
dy

y
=

∫ t

t0

(g −m)dt (2)

⇒ Ln|y|+ C = (g −m)(t− t0) (3)
⇒ y = exp[C] · exp[(g −m)(t− t0)] (4)

In order to work with this ODE and to compute the future development of the species we need an initial
value at some starting point t0:

y(t0) = y0.

With this value, we can further work to determine the constant exp(C):

y(t0) = exp(C) exp[(g −m)(t0 − t0)] = exp(C) = y0. (5)

Let us say in the year t0 = 2011 there have been two members of this species: y(2011) = 2. Supposing a
growth rate of 25 per cent per year yields g = 0.25. Let us say m = 0 - nobody will die. In the following
we compute two estimates of the future evolution of this species: for the year t = 2014 and t = 2022.
We first obtain:

y(2014) = 2 exp(0.25 ∗ (2014− 2011)) = 4.117 ≈ 4.

29

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

Thus, four members of this species exist after three years. Secondly, we want to give a ‘long term’
estimate for the year t = 2022 and calculate:

y(2022) = 2 exp(0.25 ∗ (2022− 2011)) = 31.285 ≈ 31.

In fact, this species has an increase of 29 members within 11 years. If you translate this to human beings,
we observe that the formula works quite well for a short time range but becomes somewhat unrealistic
for long-term estimates though.

• Laplace’s equation (boundary value problem) . This equation has several applications, e.g., Fick’s law
of diffusion or heat conduction (temporal diffusion) or the deflection of a solid membrane:

Formulation 6.1 (Laplace problem / Poisson problem). Let Ω be an open set. The Laplace problem
reads:

−∆u = 0 in Ω.

The Poisson problem reads:
−∆u = f in Ω.

The physical interpretation is as follows. Let u denote the density of some quantity, for instance con-
centration or temperature, in equilibrium. If G is any smooth region G ⊂ Ω, the flux of u through the
boundary ∂G is zero: ∫

∂G

F · ndx = 0. (6)

Here F denotes the flux density and n the outer normal vector. Gauss’ divergence theorem yields:∫
∂G

F · ndx =

∫
G

∇ · F dx = 0.

Since this integral relation holds for arbitrary G, we obtain

∇ · F = 0 in Ω. (7)

Now we need a second assumption (or better a relation) between the flux and the quantity u. In many
situations it is reasonable to assume that the flux is proportional to the negative gradient −∇u of the
quantity u. For instance, the rate at which energy ‘flows’ (or diffuses) as heat from a warm body to a
colder body is a function of the temperature difference. The larger the temperature difference, the larger
the diffusion. We consequently obtain as further relation:

F = −∇u.

Plugging into the Equation (7) yields:

∇ · F = ∇ · (−∇u) = −∇ · (∇u) = −∆u = 0.

This is the simplest derivation one can make. Adding a constant (material) parameter would yield:

∇ · F = ∇ · (−a∇u) = −∇ · (a∇u) = −a∆u = 0.

And adding a nonconstant and spatially dependent material further yields:

∇ · F = ∇ · (−a(x)∇u) = −∇ · (a(x)∇u) = 0.

In this last equation, we do not obtain any more the classical Laplace equation but a diffusion equation
in divergence form.

30

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

• In this next example let us again consider some concentration, but now a time dependent situation,
which brings us to a first-order hyperbolic equation. The application might be transport of a species/-
concentration in some fluid flow (e.g. water) or nutrient transport in blood flow. Let Ω ⊂ Rn be an
open domain, x ∈ Ω the spatial variable and t the time. Let ρ(x, t) be the density of some quantity (e.g.,
concentration) and let v(x, t) its velocity. Then the vector field

F = ρv in Rn

denotes the flux of this quantity. Let G be a subset of Ω. Then we have as in the previous case (Equation
(6)) the definition: ∫

∂G

F · ndx.

But this time we do not assume the ‘equilibrium state’ but ‘flow’. That is to say that the outward flow
through the boundary ∂G must coincide with the temporal decrease of the quantity:∫

∂G

F · nds = − d

dt

∫
G

ρ dx.

We then apply again Gauss’ divergence theorem to the left hand side and bring the resulting term to
the right hand side. We now encounter a principle difficulty that the domain G may depend on time
and consequently integration and differentiation do not commute. Therefore, in a first step we need to
transform the integrand of

d

dt

∫
G

ρ dx

onto a fixed referene configuration Ĝ in which we can insert the time derivative under the integral sign.
Then we perform the calculation and transform lastly everything back to the physical domain G. Let
the mapping between Ĝ and G be denoted by T . Then, it holds:

x ∈ G : x = T (x̂, t), x̂ ∈ Ĝ.

Moreover, dx = J(x̂, t)dx̂, where J := det(∇T). Using the substitution rule (change of variables) in
higher dimensions (see Section 3.13) yields:

d

dt

∫
G

ρ(x, t) dx =
d

dt

∫
Ĝ

ρ(T (x̂, t), t)J(x̂, t)dx̂.

We eliminated time dependence on the right hand side integral and thus differentiation and integration
commute now:∫

Ĝ

d

dt

(
ρ(T (x̂, t), t)J(x̂, t)

)
dx̂ =

∫
Ĝ

(d
dt
ρ(T (x̂, t), t) · J(x̂, t) + ρ(T (x̂, t), t)

d

dt
J(x̂, t)

)
dx̂

Here, d
dtρ(T (x̂, t), t) is the material time derivative of a spatial field (see e.g., [20]), which is not the same

as the partial time derivative! In the last step, we need the Eulerian expansion formula

d

dt
J = ∇ · v J.

31

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

Then: ∫
Ĝ

(d
dt
ρ(T (x̂, t), t) · J(x̂, t) + ρ(T (x̂, t), t)

d

dt
J(x̂, t)

)
dx̂

=

∫
Ĝ

(d
dt
ρ(T (x̂, t), t) · J(x̂, t) + ρ(T (x̂, t), t)∇ · v J

)
dx̂

=

∫
Ĝ

(d
dt
ρ(T (x̂, t), t) + ρ(T (x̂, t), t)∇ · v

)
J(x̂, t)dx̂

=

∫
G

(d
dt
ρ(x, t) + ρ(x, t)∇ · v

)
dx

=

∫
G

(
∂tρ(x, t) +∇ρ(x, t) v + ρ(x, t)∇ · v

)
dx

=

∫
G

(
∂tρ(x, t) +∇ · (ρv)

)
dx.

Collecting the previous calculations brings us to:∫
G

(∂tρ+∇ · F) dx =

∫
G

(∂tρ+∇ · (ρv) dx, where F = ρv as introduce before.

This is the so-called continuity equation (or mass conservation). Since G was arbitrary, we are allowed
to write the strong form:

∂tρ+∇ · (ρv) = 0 in Ω. (8)

If there are sources or sinks, denoted by f , inside Ω we obtain the more general formulation:

∂tρ+∇ · (ρv) = f in Ω.

On the other hand, various simplifications of Equation (8) can be made when certain requirements are
fulfilled. For instance, if ρ is not spatially varying, we obtain:

∂tρ+ ρ∇ · v = 0 in Ω.

If furthermore ρ is constant in time, we obtain:

∇ · v = 0 in Ω.

This is now the mass conservation law that appears for instance in the incompressible Navier-Stokes
equations, which are discussed a little bit later below.

In terms of the density ρ, we have shown in this section:

Theorem 6.2 (Reynolds’ transport theorem). Let Φ := Φ(x, t) be a smooth scalar field and Ω a (moving)
domain. It holds:

d

dt

∫
Ω

Φ dx =

∫
∂Ω

Φv · nds+

∫
Ω

∂Φ

∂t
dx

The first term on the right hand side represents the rate of transport (also known as the outward
normal flux) of the quantity Φv across the boundary surface ∂Ω. This contribution originates from the
moving domain Ω. The second contribution is the local time rate of change of the spatial scalar field
Φ. If the domain Ω does not move, the first term on the right hand side will of course vanish. Using
Gauss’ divergence theorem it holds furthermore:

d

dt

∫
Ω

Φ dx =

∫
Ω

∇ · (Φ v) dx+

∫
Ω

∂Φ

∂t
dx.

32

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

• Elasticity (Lamé-Navier) : elastic deformation of a solid. This example is already difficult because a
system of nonlinear equations is considered:

Formulation 6.3. Let Ω̂s ⊂ Rn, n = 3 with the boundary ∂Ω̂ := Γ̂D ∪ Γ̂N . Furthermore, let I := (0, T]
where T > 0 is the end time value. The equations for geometrically non-linear elastodynamics in the
reference configuration Ω̂ are given as follows: Find vector-valued displacements ûs := (û

(x)
s , û

(y)
s , û

(z)
s) :

Ω̂s × I → Rn such that

ρ̂s∂
2
t ûs − ∇̂ · (F̂ Σ̂)− ∂t∇̂ · (Σ̂v) = 0 in Ω̂s × I,

ûs = 0 on Γ̂D × I,

F̂ Σ̂ · n̂s = ĥs on Γ̂N × I,

ûs(0) = û0 in Ω̂s × {0},

v̂s(0) = v̂0 in Ω̂s × {0}.

We deal with two types of boundary conditions: Dirichlet and Neumann conditions. Furthermore, two
initial conditions on the displacements and the velocity are required. The constitutive law is given by the
geometrically nonlinear tensors (see e.g., Ciarlet [9]):

Σ̂ = Σ̂s(ûs) = 2µÊ + λtr(Ê)I, Ê =
1

2
(F̂T F̂ − I). (9)

Here, µ and λ are the Lamé coefficients for the solid. The solid density is denoted by ρ̂s and the solid
deformation gradient is F̂ = Î + ∇̂ûs where Î ∈ R3×3 is the identity matrix. Furthermore, n̂s denotes
the normal vector.

Figure 2: 3D (linearized) elasticity: uy solution and mesh. The elastic beam is attached at x = 0 in the
y − z plane by ux = uy = uz = 0. All other boundaries are traction free (homogeneous Neumann
conditions).

33

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

• Navier-Stokes problem (fluid mechanics). Flow equations in general are extremely important and have an
incredible amount of possible applications such as for example water (fluids), blood flow, wind, weather
forecast, aerodynamics:

Formulation 6.4. Let Ωf ⊂ Rn, n = 3. Furthermore, let the boundary be split into ∂Ωf := Γin ∪Γout ∪
ΓD ∪ Γi. The isothermal, incompressible (non-linear) Navier-Stokes equations read: Find vector-valued
velocities vf : Ωf × I → Rn and a scalar-valued pressure pf : Ωf × I → R such that

ρf∂tvf + ρfvf · ∇vf −∇ · σf (vf , pf) = 0 in Ωf × I, (10)
∇ · vf = 0 in Ωf × I, (11)

vDf = vin on Γin × I, (12)

vf = 0 on ΓD × I, (13)
−pfnf + ρfνf∇vf · nf = 0 on Γout × I, (14)

vf = hf on Γi × I, (15)
vf (0) = v0 in Ωf × {t = 0}, (16)

where the (symmetric) Cauchy stress is given by

σf (vf , pf) := −pI + ρfνf (∇v +∇vT),

with the density ρf and the kinematic viscosity νf . The normal vector is denoted by nf .

Figure 3: Prototype example of a fluid mechanics problem (isothermal, incompressible Navier-Stokes equa-
tions): the famous Karman vortex street. The setting is based on the benchmark setting [30] and
the code can be found in NonStat Example 1 in [15] www.dopelib.net.

Remark 6.5. The two Formulations 6.3 and 6.4 are very important in many applications and their coupling
results in fluid-structure interaction. Here we notice that flow fluids are usually modeled in Eulerian coordinates
and solid deformations in Lagrangian coordinates. In the case of small displacements, the two coordinate
systems can be identified, i.e., Ω̂ ' Ω. This is the reason why in many basic books - in particular basics of
PDE theory or basics of numerical algorithms - the ‘hat’ notation (or similar notation to distinguish coordinate
systems) is not used.

Exercise 1. Recapitulate (in case you have had classes on continuum mechanics) the differences between
Lagrangian and Eulerian coordinates.

6.2 One important ODE
In the first of the previous examples (setting a = g −m), we introduced one of the most important ODEs:

y′ = ay, y(t0) = y0.

This ODE serves often as model problem and important concepts such as existence, uniqueness, stability are
usually introduced in terms of this ODE.

34

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

6.3 Three important PDEs
From the previous considerations, we can extract three important types of PDEs. But we refrain to give the
impression that all differential equations can be classified and then a receipt for solving them applies. This
is definitely not true. However, in particular for PDEs, we are often faced with three outstanding types of
equations and often ‘new’ equations can be related or simplified to these three types.

6.3.0.1 The PDEs They read:

• Poisson problem: −∆u = f is elliptic: second order in space and no time dependence.

• Heat equation: ∂tu−∆u = f is parabolic: second order in space and first order in time.

• Wave equation: ∂2
t u−∆u = f is hyperbolic: second order in space and second order in time.

All these three equations have in common that their spatial order is two (the highest derivative with respect
to spatial variables that occurs in the equation). With regard to time, there are differences: the heat equation
is of first order whereas the wave equation is second order in time.
Let us now consider these three types in a bit more detail. The problem is given by:

Formulation 6.6. Let f : Ω → R be given. Furthermore, Ω is an open, bounded set of Rn. We seek the
unknown function u : Ω̄→ R such that

Lu = f in Ω, (17)
and bc and ic. (18)

Here, the linear second-order differential operator is defined by:

Lu := −
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj

with the symmetry assumption aij = aji.

The operator L generates a quadratic form Σ, which is defined as

Σ(ξ) :=

n∑
i,j=1

aij(x)ξiξj .

The properties of the form Σ (and consequently the classification of the underlying PDE) depends on the
eigenvalues of the matrix A:

A = (aij)
n
ij=1.

At the a given point x ∈ Ω, the differential operator L is said to be elliptic if all eigenvalues of A are non-zero
(the matrix A is positive definite) and have the same sign: Equivalently one can say:

Definition 6.7. A PDE operator L is (uniformly) elliptic if there exists a constant θ > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2,

for a.e. x ∈ Ω and all ξ ∈ Rn.

For parabolic PDEs one eigenvalue of A is zero whereas the others have the same sign. Finally, a hyperbolic
equation has one eigenvalue that has a different sign (negative) than all the others (positive).
Even so that we define separate types of PDEs, in many processes there is a mixture of these classes in

one single PDE - depending on the size of certain parameters. For instance, the Navier-Stokes equations
for modeling fluid flow, vary between parabolic and hyperbolic type depending on the Reynold’s number
Re ∼ ν−1

f (respectively a characteristic velocity and a characteristic length). In this case the coefficients aij
of the operator L are non-constant and change with respect to space and time.

35

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

6.3.0.2 Poisson problem/Laplace equation The Poisson equation is a boundary-value problem and will be
derived from the general definition (very similar to the form before). Elliptic problems are second-order in
space and have no time dependence.

Formulation 6.8. Let f : Ω → R be given. Furthermore, Ω is an open, bounded set of Rn. We seek the
unknown function u : Ω̄→ R such that

Lu = f in Ω, (19)
u = 0 on ∂Ω. (20)

Here, the linear second-order differential operator is defined by:

Lu := −
n∑

i,j=1

∂xj (aij(x)∂xiu) +

n∑
i=1

bi(x)u∂xi + c(x)u,

with the symmetry assumption aij = aji and given coefficient functions aij , bi, c. Alternatively we often use
the compact notation with derivatives defined in terms of the nabla-operator:

Lu := −∇ · (a∇u) + b∇u+ cu.

Finally we notice that the boundary condition (20) is often called homogeneous Dirichlet condition.

Remark 6.9. If the coefficient functions a, b, c also depend on the solution u we obtain a nonlinear PDE.

Formulation 6.10 (Poisson problem). Setting in Formulation 6.8, aij = δij and bi = 0 and c = 0, we obtain
the Laplace operator. Let f : Ω → R be given. Furthermore, Ω is an open, bounded set of Rn. We seek the
unknown function u : Ω̄→ R such that

Lu = f in Ω, (21)
u = 0 on ∂Ω. (22)

Here, the linear second-order differential operator is defined by:

Lu := −∇ · (∇u) = −∆u.

In the following we discuss some characteristics of the solution of the Laplace problem, which can be
generalized to general elliptic problems.

Theorem 6.11 (Strong maximum principle for the Laplace problem). Suppose u ∈ C2(Ω)∩C(Ω̄) is a solution
of Laplace problem. Then

max
Ω̄

u = max
∂Ω

u.

From the maximum principle we obtain immediately uniqueness of a solution

Theorem 6.12 (Uniqueness of the Laplace problem). Let g ∈ C(∂Ω) and f ∈ C(Ω). Then there exists at
most one solution u ∈ C2(Ω) ∩ C(Ω̄) of the boundary-value problem:

−∆u = f in Ω, (23)
u = g on ∂Ω. (24)

6.3.0.3 Heat equation We now study parabolic problems, which contain as the most famous example the
heat equation. Parabolic problems are second order in space and first order in time.
In this section, we assume Ω ⊂ Rn to be an open and bounded set. The time interval is given by I := (0, T]

for some fixed end time value T > 0.
We consider the initial/boundary-value problem:

36

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

Formulation 6.13. Let f : Ω× I → R and g : Ω→ R be given. We seek the unknown function u : Ω̄× I → R
such that

∂tu+ Lu = f in Ω× I, (25)
u = 0 on ∂Ω× [0, T], (26)
u = g on Ω× {t = 0}. (27)

Here, the linear second-order differential operator is defined by:

Lu := −
n∑

i,j=1

∂xj (aij(x, t)∂xiu) +

n∑
i=1

bi(x, t)u∂xi + c(x, t)u,

for given (possibly spatial and time-dependent) coefficient functions aij , bi, c.

We have the following:

Definition 6.14. The PDE operator ∂t +L is (uniformly) parabolic if there exists a constant θ > 0 such that
n∑

i,j=1

aij(x, t)ξiξj ≥ θ|ξ|2,

for all (x, t) ∈ Ω × I and all ξ ∈ Rn. In particular this operator is elliptic in the spatial variable x for each
fixed time 0 ≤ t ≤ T .

Formulation 6.15 (Heat equation). Setting in Formulation 6.13, aij = δij and bi = 0 and c = 0, we obtain
the Laplace operator. Let f : Ω → R be given. Furthermore, Ω is an open, bounded set of Rn. We seek the
unknown function u : Ω̄→ R such that

∂tu+ Lu = f in Ω× I, (28)
u = 0 on ∂Ω× [0, T], (29)
u = g on Ω× {t = 0}. (30)

Here, the linear second-order differential operator is defined by:

Lu := −∇ · (∇u) = −∆u.

The heat equation has an infinite propagation speed for disturbances. If the initial temperature is non-
negative and is positive somewhere, the temperature at any later time is everywhere positive. For the heat
equation, a very similar maximum principle as for elliptic problems holds true.

Theorem 6.16 (Strong maximum principle for the heat equation). Suppose u ∈ C2
1 (Ω × I) ∩ C(Ω̄ × I) is a

solution of heat equation. Then
max
Ω̄×I

u = max
∂Ω

u.

And also as for elliptic problems one can proof uniqueness for the parabolic case in a similar way.

6.3.0.4 Wave equation In this section, we shall study hyperbolic problems, which are natural generalizations
of the wave equation. As for parabolic problems, let Ω ⊂ Rn to be an open and bounded set. The time interval
is given by I := (0, T] for some fixed end time value T > 0.
We consider the initial/boundary-value problem:

Formulation 6.17. Let f : Ω× I → R and g : Ω→ R be given. We seek the unknown function u : Ω̄× I → R
such that

∂2
t u+ Lu = f in Ω× I, (31)

u = 0 on ∂Ω× [0, T], (32)
u = g on Ω× {t = 0}, (33)

∂tu = h on Ω× {t = 0}. (34)

37

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

In the last line, ∂tu = v can be identified as the velocity. Furthermore, the linear second-order differential
operator is defined by:

Lu := −
n∑

i,j=1

∂xj (aij(x, t)∂xiu) +

n∑
i=1

bi(x, t)u∂xi + c(x, t)u

for given (possibly spatial and time-dependent) coefficient functions aij , bi, c.

Remark 6.18. Actually the wave equation is often written in terms of a first-order system in which the
velocity is introduced and a second-order time derivative is avoided. Then the previous equation reads: Find
u : Ω̄× I → R and v : Ω̄× I → R such that

∂tv + Lu = f in Ω× I, (35)
∂tu = v in Ω× I, (36)
u = 0 on ∂Ω× [0, T], (37)
u = g on Ω× {t = 0}, (38)
v = h on Ω× {t = 0}. (39)

We have the following:

Definition 6.19. The PDE operator ∂2
t + L is (uniformly) hyperbolic if there exists a constant θ > 0 such

that
n∑

i,j=1

aij(x, t)ξiξj ≥ θ|ξ|2.

for all (x, t) ∈ Ω × I and all ξ ∈ Rn. In particular this operator is elliptic in the spatial variable x for each
fixed time 0 ≤ t ≤ T .

And as before, setting the coefficients functions to trivial values, we obtain the original wave equation. In
contrast to parabolic problems, a strong maximum principle does not hold for hyperbolic equations. And
consequently, the propagation speed is finite.

6.4 The general definition of a differential equation
After the previous examples, let us precise the definition of a differential equation. The definition holds true
for ODEs and PDEs equally. In order to allow for largest possible generality we first need to introduce some
notation. Common is to use the multiindex notation as introduced in Section 3.5.

Definition 6.20 (Evans [14]). Let Ω ⊂ Rn be open. Furthermore, let k ≥ 1 an integer that denotes the order
of the differential equation. Then, a differential equation can be expressed as: Find u : Ω→ R such that

F (Dku,Dk−1u, . . . ,D2u,Du, u, x) = 0, for x ∈ Ω,

where
F : Rn

k

× Rn
k−1

× Rn
2

× Rn × R× Ω→ R.

Example 6.21. We provide some examples. Let us assume the spatial dimension to be 2 and the temporal
dimension is 1. That is for a time-dependent ODE n = 1 and for time-dependent PDE cases, n = 2 + 1 = 3,
and for stationary PDE examples n = 2.

1. ODE model problem: F (Du, u) := u′ − au = 0 where F : R1 × R→ R. Here k = 1.

2. Laplace operator: F (D2u) := −∆u = 0 where F : R4 → R. That is k = 2 and lower derivatives of order
1 and 0 do not exist.

3. Heat equation: F (D2u,Du) = ∂tu−∆u = 0 where F : R9 × R3 → R. Here k = 2 is the same as before,
but a lower-order derivative of order 1 in form of the time derivative does exist.

38

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

4. Wave equation: F (D2u) = ∂2
t u−∆u = 0 where F : R9 → R.

We finally, provide classifications of linear and nonlinear differential equations. Simply speaking: each
differential equation, which is not linear is called nonlinear. However, in the nonlinear case a further refined
classification can be undertaken.

Definition 6.22 (Evans[14]). Differential equations are divided into linear and nonlinear as follows:

1. A differential equation is called linear if it is of the form:∑
|α|≤k

aα(x)Dαu− f(x) = 0.

2. A differential equation is called semi-linear if it is of the form:∑
|α|=k

aα(x)Dαu+ a0(Dk−1u, . . . ,D2u,Du, u, x) = 0.

Here, nonlinearities may appear in all terms of order |α| < k, but the highest order |α| = k is fully linear.

3. A differential equation is called quasi-linear if it is of the form:∑
|α|=k

aα(Dk−1u, . . . ,D2u,Du, u, x)Dαu+ a0(Dk−1u, . . . ,D2u,Du, u, x) = 0.

Here, full nonlinearities may appear in all terms of order |α| < k, in the highest order |α| = k, nonlinear
terms appear up to order |α| < k.

4. If none of the previous cases applies, a differential equation is called (fully) nonlinear.

Example 6.23. We provide again some examples:

1. All differential equations from Example 6.21 are linear.

2. Euler equations (fluid dynamics, special case of Navier-Stokes with zero viscosity). Here, n = 2+1+1 = 4
(in two spatial dimensions). Let us consider the momentum part of the Euler equations:

∂tvf + vf · ∇vf +∇pf = f(x).

Here the highest order is k = 1 (in the temporal variable as well as the spatial variable). But in front
of the spatial derivative, we multiply with the zero-order term vf . Consequently, the Euler equations are
quasi-linear because a lower-order term of the solution variable is multiplied with the highest derivative.

3. Navier-Stokes momentum equation:

∂tvf − ρfνf∆vf + vf · ∇vf +∇pf = f(x).

Here k = 2. But the coefficients in front of the highest order term, do not depend on vf . Consequently,
the Navier-Stokes equations are semi-linear or linear. Well, we have again the nonlinearity of the first
order convection term vf · ∇vf . Thus the Navier-Stokes equations are semi-linear.

4. A fully nonlinear situation would be:

∂tvf − ρfνf (∆vf)2 + vf · ∇vf +∇pf = f(x).

Example 6.24 (Development of numerical methods for nonlinear equations). In case you are given a nonlinear
IBVP and want to start developing numerical methods for this specific PDE, it is often much easier to start
with appropriate simplifications in order to build step-by-step your final method. Let us say you are given the
nonlinear time-dependent PDE

∇u∂2
t u+ u · ∇u− (∆u)2 = f

Then, you could abstract the problem as follows:

39

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

1. Consider the linear equation:
∂2
t u−∆u = f

which is nothing else than the wave equation.

2. Add a slight nonlinearity to make the problem semi-linear:

∂2
t u+ u · ∇u−∆u = f

3. Add ∇u such that the problem becomes quasi-linear:

∇u∂2
t u+ u · ∇u−∆u = f

4. Make the problem fully nonlinear by considering (∆u)2:

∇u∂2
t u+ u · ∇u− (∆u)2 = f.

In each step, make sure that the corresponding numerical solution makes sense and that your developments so
far are correct. If yes, proceed to the next step.

Remark 6.25. The contrary to the previous example works as well and arises very often in practice. And
should be kept in mind! Often you are given a very complicated PDE (or PDE system). Let assume we deal
with a fully nonlinear PDE problem. If you have undertaken the implementation recognize a difficulty, you can
reduce (should!) the PDE term by term and make it step by step simpler up to a linear version. The same
procedure holds true for the mathematical analysis. If a proof does not work, we try to neglect terms or to
linearize them.

Exercise 2. We work in R2. Let F = I+∇u, where I is the identity matrix in R2 and u a given deformation.

1. Write F component-wise.

2. Compute the determinant J := det(F).

Let us consider now the following problem. Find v : Ω ⊂ R2 → R2 such that:

−div(JσfF
T) = f in Ω,

v = 0 on ∂Ω,

where ∂Ω is the boundary of Ω and f a given volume force. Furthermore,

σf = ν(∇vF−1),

where ν is a material parameter.

1. Compute F−1.

2. Linearize the PDE-operator −div(JσfF
T). Hint: Try to get rid of the transformations J and F . Under

which assumptions are they small?

3. Write the final PDE −div(A) = f component-wise. Here, A is now the linearized part from the task
before.

Exercise 3. Classify the following PDEs into linear and nonlinear PDEs (including a short justification):

−∇ · (|∇u|p−2∇u) = f

det(∇2u) = f

∂2
t u+ 2a∂tu− ∂xxu = 0, a > 0

∂tu+ u∂xu = 0

∂tt −∆u+m2u = 0, m > 0.

How can we linearize nonlinear PDEs? Which terms need to be simplified such that we obtain a linear PDE?

40

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

6.5 Boundary and initial conditions
As seen in the previous sections, all PDEs are complemented with boundary conditions and in the time-
dependent case, also with initial conditions. Actually, these are crucial ingredients for solving differential
equations. Often, one has the (wrong) impression that only the PDE itself is of importance. But what
happens on the boundaries finally yields the ‘result’ of the computation. And this holds true for analytical
(classical) as well as computational solutions.

6.5.1 Types of boundary conditions

In Section 6.3, we have mainly dealt with homogeneous Dirichlet conditions of the form u = 0 on the boundary.
In general three types of conditions are of importance:

• Dirichlet (or essential) boundary conditions: u = gD on ∂ΩD; when gD = 0 we say ‘homogeneous’
boundary condition.

• Neumann (or natural) boundary conditions: ∂nu = gN on ∂ΩN ; when gN = 0 we say ‘homogeneous’
boundary condition.

• Robin (third type) boundary condition: au + b∂nu = gR on ∂ΩR; when gR = 0 we say ‘homogeneous’
boundary condition.

On each boundary section, only one of the three conditions can be described. In particular the natural
conditions generalize when dealing with more general operators L. Here in this section, we have assumed
L := −∆u.

Example 6.26. Let us compute the heat distribution in PC 41. The room volume is Ω. The window wall is
a Dirichlet boundary ∂DΩ and the remaining walls are Neumann boundaries ∂NΩ. Let K be the air viscosity.
We consider the heat equation: Find T : Ω× I → R such that

∂tT + (v · ∇)T −∇ · (K∇T) = f in Ω× I,
T = 18C on ∂DΩ× I,

K∇T · n = 0 on ∂NΩ× I,
T (0) = 15C in Ω× {0}.

The homogeneous Neumann condition means that there is no heat exchange on the respective walls (thus
neighboring rooms will have the same room temperature). The nonhomogeneous Dirichlet condition states that
there is a given temperature of 18C, which is constant in time and space (but this condition may be also
non-constant in time and space). Possible heaters in the room can be modeled via the right hand side f .

6.5.2 Common traps and errors

We provide a list of traps and challenges:

• If your solution is ‘wrong’ (why-ever you might know this) then check of course the PDE but also the
boundary conditions;

• Do you correctly apply the boundary conditions in your computer program to all boundary parts? Be
careful, no explicit prescription means that implicitly Neumann conditions are applied (more details in
Section 8);

• Often physical formulae assume that the solution has been computed on an infinite domain. However in
a computer program we must cut the domain to a finite dimensional subset. Thus, boundary conditions
will influence the result. The question is how much such ‘artificial’ boundary conditions will influence
the findings?

41

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

6.5.3 Example: Dependence of the numerical solution on the boundaries

To illustrate the dependence of the numerical solution on the boundaries (or the domain size), let us consider
an example from channel fluid flow as sketched in Figure 4

Ω

Γf,D
x→∞

x

y

Ω

Γf,D

Γf,D

Γin

x→ −∞

Γout

Figure 4: Truncation of an unbounded fluid domain and introducing artificial boundary conditions on Γin and
Γout.

Moreover, we are interested in evaluating quantities of interest (or mathematically-speaking functionals of
interest). In solid mechanics, these are deflections and deformations: what is the displacement of a bridge
subject to weather (wind) or forces caused by trucks driving over it. In fluid mechanics, one is often interested
in evaluating surface forces such as drag and lift. What have these comments to do with boundary conditions?
As previously claimed, boundary conditions and the domain size can have significant influence on quantities of
interest - even when these functional evaluations are far away from the boundary. Ideally, the domain should
be infinitely large (see again Figure 4) such that boundary conditions do not play a role. However, this is in
most case impossible to achieve due to computational cost.

Let us illustrate these considerations with an example: in channel flow with an elastic beam, we want to
evaluate the tip-deflection of the beam and also drag and lift forces acting on this beam and the hole. The
questions is where to we cut the channel in order to impose artificial boundary conditions. We run numerical
simulations for four different channel lengths 5.0m, 2.5m, 1.5m and 1.0m leading to the results presented in
Table 1 in which we clearly see that some of the functionals depend significantly on the length of the channel.
For example the relative error of the drag evaluation is about 14%.

Table 1: Dependence of functional evaluations on the length (i.e., on the boundaries) of the channel.

Length ux(A)[10−5] uy(A)[10−4] Drag Lift

5.0 2.02 8.22 16.7 0.74

2.5 2.27 8.22 15.3 0.74

1.5 2.38 8.23 14.6 0.74

1.0 2.47 7.94 14.3 0.73

42

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

Figure 5: Fluid flow and structural deformations computed for different channel lengths to illustrate depen-
dence of functional evaluations on boundary conditions.

Definition 6.27 (Drag and lift). Drag and lift are important technical quantities in fluid dynamics. The drag
force acts in the opposite direction of the relative motion of the object that is subject to a fluid (or air). The
lift force is perpendicular to the drag.

6.6 Weak/variational solutions versus classical solutions
To solve explicitly a differential equation is only possible for specific special test cases. Thus, a classical
solution is in most cases not possible to achieve. Moreover, they require in many cases too much regularity
which is difficult to handle as well as often not met by practical applications (e.g., singularities in the domain
as corners or slit domains). In order to study well-posedness and simultaneously provide a framework for
numerical computations, we work with weak (or variational) solutions based on Galerkin techniques. In
physics and mechanics this procedure is well-known as the principle of virtual work. Such approaches are
introduced in Section 8. Thus, we lower our requirements on the smoothness of the solution. For instance error
estimates of the form ‖u − uh‖ for elliptic problems require lower regularity when working with variational
concepts (e.g., finite elements) than using finite differences.

6.7 The challenge of numerical modeling
To finalize this first chapter we provide a list of typical difficulties:

• PDEs are more difficult than ODEs.

• Nonlinear equations are more difficult than linear equations.

• Higher-order PDEs/ODEs are more difficult than low-order PDEs/ODEs.

• Systems are harder than single equations.

• The more coupling terms appear, the more difficult the solution process becomes.

• Interface coupling for two (or more) PDEs is harder than volume coupling.

• Multidomain problems are harder than single domain problems.

• For most PDEs/ODEs an explicit formula of a solution does not exist, and therefore numerical modeling
becomes indispensable.

• Correct implementation and debugging code takes a lot of time.

43

6 AN EXTENDED INTRODUCTION TO DIFFERENTIAL EQUATIONS

6.8 Philosophy of numerical modeling
All the previous types of different equations we have seen in this chapter have different properties and these
properties on the continuous level should be maintained as well as possible after numerical
discretization. Thus it is extremely important to understand the properties of a differential equation (at
least to some extend) on the continuous level (ODE/PDE theory) in order to be able to derive and analyze
appropriate algorithmic schemes.

44

7 FINITE DIFFERENCES FOR ODE INITIAL-VALUES PROBLEMS

7 Finite differences for ODE initial-values problems

Finite differences have been very popular in the past and are still very important to solve initial-value problems
(IVP) and boundary value problems (BVP). Often finite differences are used in combination with other dis-
cretization methods as for example finite elements (Section 8). For example in a time-dependent PDE, we need
to discretize in time and space. Using the Rothe method (horizontal method of lines) temporal discretization
is often based on finite differences and spatial discretization on finite elements. In these notes we restrict
ourselves to single-step methods. Multistep methods are treated elsewhere (e.g., [18]).

7.1 Problem statement of an IVP (initial value problem)
We consider ODE initial values problems of the form:

Formulation 7.1. Find a differentiable function y(t) for 0 ≤ t < T <∞ such that

y′(t) = f(t, y(t)),

y(0) = y0.

The second condition is the so-called initial condition. Furthermore, y′(t) = d
dty is the time derivative with

respect to time.

The model problem of an ODE is

y′ = λy, y(0) = y0, y0, λ ∈ R. (40)

This ODE has the solution:
y(t) = exp(λt)y0.

Furthermore, Problem (40) is an example of an autonomous and linear ODE. It is autonomous because the
right hand side does not explicitly depend on the variable t, i.e., f(t, y) = f(y) = λy. And this ODE is linear
because the coefficient λ is independent of the solution y. One further classification can be made in case the
right hand side f = 0. Then we say that the ODE is homogeneous.

7.2 Stiff problems
An essential difficulty in developing stable numerical schemes, is associated with stiffness, which we shall
define in the following. Stiffness is very important in both ODE and (time-dependent) PDE applications. The
latter situation will be discussed in Section 9.4.

Definition 7.2. An IVP is called stiff (along a solution y(t)) if the eigenvalues λ(t) of the Jacobian f ′(t, y(t))
yield the stiffness ratio:

κ(t) :=
maxReλ(t)<0 |Reλ(t)|
minReλ(t)<0 |Reλ(t)|

� 1.

In the above case for the model problem, the eigenvalue corresponds directly to the coefficient λ.
It is however not really true to classify any ODE with large coefficients |λ| � 1 always as a stiff problem.

Here, the Lipschitz constant of the problem is already large and thus the discretization error asks for relatively
small time steps. Rather stiff problems are characterized as ODE solutions that contain various components
with (significant) different evolutions over time; that certainly appears in ODE systems in which we seek
y(t) ∈ Rn rather than y(t) ∈ R.
A very illustrative example can be found in [32] in which for instance a solution to an ODE problem may

look like:
y(t) = exp(−t) + exp(−99t).

Here, the first term defines the trajectory of the solution whereas the second term requires very small time
steps in order to resolve the very rapid decrease of that function.

45

7 FINITE DIFFERENCES FOR ODE INITIAL-VALUES PROBLEMS

7.3 Well-posedness of solutions
In ODE lectures, we usually learn first the theorem of Peano, which ensures existence (but not uniqueness)
of an ODE. In these notes, we consider directly the Picard-Lindelöf theorem, which establishes existence and
uniqueness.
Consider the n-dimensional case:

y′(t) = f(t, y(t))

where y(t) = (y1, . . . , yn)T and f(t, x) = (f1, . . . , fn)T . Let an initial point (t0, y0) ∈ R × Rn be given.
Furthermore, define

D = I × Ω ⊂ R1 × Rn

and let f(t, y) be continuous on D. We seek a solution y(t) on a time interval I = [t0, t0 + T] that satisfies
y(t0) = y0.
A crucial aspect for uniqueness is a Lipschitz condition on the right hand side f(t, y):

Definition 7.3 (Lipschitz condition). The function f(t, y) on D is said to be (uniformly) Lipschitz continuous
if for L(t) > 0 it holds

‖f(t, x1)− f(t, x2)‖ ≤ L(t)‖x1 − x2‖, (t, x1), (t, x2) ∈ D.

The function is said to be (locally) Lipschitz continuous if the previous statement holds on every bounded subset
of D.

Theorem 7.4 (Picard-Lindelöf). Let f : D → Rn be continuous and Lipschitz. Then there exists for each
(t0, y0) ∈ D a ε > 0 and a solution y : I := [t0 − ε, t0 + ε]→ Rn of the IVP such that

y′(t) = f(t, y(t)), t ∈ I, y(t0) = y0.

Proof. See for example [18].

7.4 One-step schemes

7.4.1 The Euler method

The Euler method is the most simplest scheme. It is an explicit scheme and also known as forward Euler
method.
We consider again the IVP from before and the right hand side satisfies again a Lipschitz condition. Ac-

cording to Theorem 7.4, there exists a unique solution for all t ≥ 0.
For a numerical approximation of the IVP, we first select a sequence of discrete (time) points:

t0 < t1 < . . . < tN = t0 + T.

Furthermore we set
In = [tn−1, tn], kn = tn − tn−1, k := max

1≤n≤N
kn.

The derivation of the Euler method is as follows: approximate the derivative with a forward difference quotient
(we sit at the time point tn−1 and look forward in time):

y′(tn−1) ≈ yn − yn−1

kn

Thus: y′(tn−1) = f(tn−1, yn−1(tn−1)). Then the ODE can be approximated as:

yn − yn−1

kn
≈ f(tn−1, yn−1(tn−1))

Thus we obtain the scheme:

46

7 FINITE DIFFERENCES FOR ODE INITIAL-VALUES PROBLEMS

Algorithm 7.5 (Euler method). For a given starting point y0 := y(0) ∈ Rn, the Euler method generates a
sequence {yn}n∈N through

yn = yn−1 + knf(tn−1, yn−1), n = 1, . . . N,

where yn := y(tn).

Remark 7.6 (Notation). The chosen notation is not optimal in the sense that yn denotes the discrete solution
obtained by the numerical scheme and y(tn) the corresponding (unknown) exact solution. However, in the
literature one often abbreviates yn := y(tn), which would both denote the exact solution. One could add
another index ykn (k for discretized solution with step size k) to explicitely distinguish the discrete and exact
solutions. In these notes, we hope that the reader will not confuse the notation and we still use yn for the
discrete solution and y(tn) for the exact solution.

7.4.2 Implicit schemes

With the same notation as introduced in Section 7.4.1, we define two further schemes. Beside the Euler
method, low-order simple schemes are implicit Euler and the trapezoidal rule. The main difference is that in
general a nonlinear equation system needs to be solved in order to compute the solution. On the other hand
we have better numerical stability properties in particular for stiff problems (an analysis will be undertaken
in Section 7.5).
The derivation of the backward Euler method is derived as follows: approximate the derivative with a

backward difference quotient (we sit at tn and look back to tn−1):

y′(tn) =
yn − yn−1

kn

Consequently, we take the right hand side f at the current time step y′(tn) = f(tn, yn(tn)) and obtain as
approximation

yn − yn−1

kn
= f(tn, yn(tn)).

Consequently, we obtain a scheme in which the right hand side is unknown itself, which leads to a formulation
of a nonlinear system:

Algorithm 7.7 (Implicit (or backward) Euler). The implicit Euler scheme is a defined as:

y0 := y(0),

yn − knf(tn, yn) = yn−1, n = 1, . . . , N

In contrast to the Euler method, the ‘right hand side’ function f now depends on the unknown solution yn.
Thus the computational cost is (much) higher than for the (forward) Euler method. But on the contrary, the
method does not require a time step restriction as we shall see in Section 7.5.3.

To derive the trapezoidal rule, we take again the difference quotient on the left hand side but approximate
the right hand side through its mean value:

yn − yn−1

kn
=

1

2

(
f(tn, yn(tn)) + f(tn−1, yn−1(tn−1))

)
,

which yields:

Algorithm 7.8 (Trapezoidal rule (Crank-Nicolson)). The trapezoidal rule reads:

y0 := y(0),

yn = yn−1 +
1

2
kn

(
f(tn, yn) + f(tn−1, yn−1

)
, n = 1, . . . , N.

It can be shown that the trapezoidal rule is of second order, which means that halving the step size kn leads to
an error that is four times smaller. This is illustrated with the help of a numerical example in Section 7.6.

47

7 FINITE DIFFERENCES FOR ODE INITIAL-VALUES PROBLEMS

7.5 Numerical analysis
In the previous section, we have constructed algorithms that yield a sequence of discrete solution {yn}n∈N. In
the numerical analysis our goal is to derive a convergence result of the form

‖yn − y(tn)‖ ≤ Ckα

where α is the order of the scheme. This result will tell us that the discrete solution yn really approximates
the exact solution y and if we come closer to the exact solution at which rate we come closer.

7.5.1 The model problem

To derive error estimates we work with the model problem:

y′ = λy, y(0) = y0, y0, λ ∈ R. (41)

7.5.2 Splitting into stability and consistency

For linear numerical schemes the convergence is composed by stability and consistency. First of all we have
from the previous section that yn is obtained for the forward Euler method as:

yn = (1 + kλ)yn−1, (42)
= BEyn−1, BE := (1 + kλ). (43)

Let us write the error at each time point tn as:

en := yn − y(tn) for 1 ≤ n ≤ N.

It holds:

en = yn − y(tn),

= BEyn−1 − y(tn),

= BE(en−1 + y(tn−1))− y(tn),

= BEen−1 +BEy(tn−1)− y(tn),

= BEen−1 +
k(BEy(tn−1)− y(tn))

k
,

= BEen−1 − k
y(tn)−BEy(tn−1)

k︸ ︷︷ ︸
=:ηn−1

.

Therefore, the error can be split into two parts:

Definition 7.9 (Error splitting of the model problem). The error at step n can be decomposed as

en := BEen−1︸ ︷︷ ︸
Stability

− kηn−1︸ ︷︷ ︸
Consistency

. (44)

The first term, namely the stability, provides an idea how the previous error en−1 is propagated from tn−1 to tn.
The second term ηn−1 is the so-called truncation error (or local discretization error), which arises because the
exact solution does not satisfy the numerical scheme and represents the consistency of the numerical scheme.
Moreover, ηn−1 yields the speed of convergence of the numerical scheme.

In fact, for the forward Euler scheme in (44), we observe for the truncation error:

ηn−1 =
y(tn)−BEy(tn−1)

k
=
y(tn)− (1 + kλ)y(tn−1)

k
(45)

=
y(tn)− y(tn−1)

k
− λy(tn−1) (46)

=
y(tn)− y(tn−1)

k
− y′(tn−1). (47)

48

7 FINITE DIFFERENCES FOR ODE INITIAL-VALUES PROBLEMS

Thus,

y′(tn−1) =
y(tn)− y(tn−1)

k
− ηn−1, (48)

which is nothing else than the approximation of the first-order derivative with the help of a difference quotient
plus the truncation error. We investigate these terms further in Section 7.5.4 and concentrate first on the
stability estimates in the very next section.

7.5.3 Stability

The goal of this section is to control the term BE = (1 + kλ). Specifically, we will justify why |BE | ≤ 1 should
hold. The stability is often related to non-physical oscillations of the numerical solution. Otherwise speaking,
a nonstable scheme shows artificial oscillations as for example illustrated in Figure 7.
We recapitulate (absolute) stability and A-stability. From the model problem

y′(t) = λy(t), y(t0) = y0, λ ∈ C,

we know the solution y(t) = y0 exp(λt). For t→∞ the solution is characterized by the sign of Reλ:

Reλ < 0 ⇒ |y(t)| = |y0| exp(Reλ)→ 0,

Re λ = 0 ⇒ |y(t)| = |y0| exp(Reλ) = |y0|,
Re λ > 0 ⇒ |y(t)| = |y0| exp(Reλ)→∞.

For a good numerical scheme, the first case is particularly interesting whether such a scheme can produce a
bounded discrete solution when the continuous solution has this property.

Definition 7.10 ((Absolute) stability). A (one-step) method is absolute stable for λk 6= 0 if its application to
the model problem produces in the case Reλ ≤ 0 a sequence of bounded discrete solutions: supn≥0 |yn| < ∞.
To find the stability region, we work with the stability function R(z) where z = λk. The region of absolute
stability is defined as:

SR = {z = λk ∈ C : |R(z)| ≤ 1}.

Remark 7.11. Recall that R(z) := BE.

The stability functions to explicit, implicit Euler and trapezoidal rule are given by:

Proposition 7.12. For the simplest time-stepping schemes forward Euler, backward Euler and the trapezoidal
rule, the stability functions R(z) read:

R(z) = 1 + z,

R(z) =
1

1− z
,

R(z) =
1 + 1

2z

1− 1
2z
.

Proof. We take again the model problem y′ = λy. Let us discretize this problem with the forward Euler
method:

yn − yn−1

k
= λyn−1 (49)

⇒ yn = (yn−1 + λk)yn−1 (50)
= (1 + λk)yn−1 (51)
= (1 + z)yn−1 (52)
= R(z)yn−1. (53)

49

7 FINITE DIFFERENCES FOR ODE INITIAL-VALUES PROBLEMS

For the implicit Euler method we obtain:
yn − yn−1

k
= λyn (54)

⇒ yn = (yn−1 + λk)yn (55)

⇒ yn =
1

1− ak
yn (56)

⇒ yn =
1

1− z︸ ︷︷ ︸
=:R(z)

yn. (57)

The procedure for the trapezoidal rule is again the analogous.

Definition 7.13 (A-stability). A difference method is A-stable if its stability region is part of the absolute
stability region:

{z ∈ C : Re z ≤ 0} ⊂ SR,
here Re denotes the real part of the complex number z. A brief introduction to complex numbers can be found
in any calculus lecture dealing with those or also in the book [29].

In other words:

Definition 7.14 (A-stability). Let {yn}n the sequence of solutions of a difference method for solving the ODE
model problem. Then, this method is A-stable if for arbitrary λ ∈ C− = {λ : Re(λ) ≤ 0} the approximate
solutions are bounded (or even contractive) for arbitrary, but fixed, step size k. That is to say:

|yn+1| ≤ |yn| <∞ for n = 1, 2, 3, . . .

Remark 7.15. A-stability is attractive since in particular for stiff problems we can compute with arbitrary
step sizes k and do not need any step size restriction.

Proposition 7.16. The explicit Euler scheme cannot be A-stable.

Proof. For the forward Euler scheme, it is R(z) = 1 + z. For |z| → ∞ is holds R(z)→∞ which is a violation
of the definition of A-stability.

Remark 7.17. More generally, explicit schemes can never be A-stable.

Example 7.18. We illustrate the previous statements.

1. In Proposition 7.12 we have seen that for the forward Euler method it holds:

yn = R(z)yn−1,

where R(z) = 1 + z. Thus, according to Definition 7.13 and 7.14, we obtain convergence when the
sequence {yn} is contracting:

|R(z)| ≤ |1 + z| ≤ 1. (58)
Thus if the value of λ (in z = λk) is very big, we must choose a very small time step k in order to achieve
|1− λk| < 1. Otherwise the sequence {yn}n will increase and thus diverge (recall that stability is defined
with respect to decreasing parts of functions! Thus, the continuous solution is bounded and consequently
the numerical approximation should be bounded, too). In conclusions, the forward Euler scheme is only
conditionally stable, i.e., it is stable provided that (58) is fulfilled.

2. For the implicit Euler scheme, we see that a large λ and large k even both help to stabilize the iteration
scheme (but be careful, the implicit Euler scheme, stabilizes actually too much. Because it computes
contracting sequences also for case where the continuous solution would grow). Thus, no time step
restriction is required. Consequently, the implicit Euler scheme is well suited for stiff problems with large
parameters/coefficients λ.

Remark 7.19. The previous example shows that a careful design of the appropriate discretization scheme
requires some work: there is no a priori best scheme. Some schemes require time step size restrictions in
case of large coefficients (explicit Euler). On the other hand, the implicit Euler scheme does not need step
restrictions but may have in certain cases too much damping. Which scheme should be employed for which
problem depends finally on the problem itself and must be carefully thought for each problem again.

50

7 FINITE DIFFERENCES FOR ODE INITIAL-VALUES PROBLEMS

7.5.4 Consistency / local discretization error - convergence order

We address now the second ‘error source’ in (44). The consistency determines the precision of the scheme
and will finally carry over the local rate of consistency to the global rate of convergence. To determine the
consistency we assume sufficient regularity of the exact solution such that we can apply Taylor expansion.
The idea is then that all Taylor terms of combined to the discrete scheme. The lowest order remainder term
determines finally the local consistency of the scheme.
We briefly formally recall Taylor expansion. For a function f(x) we develop at a point a 6= x the Taylor

series:

T (f(x)) =

∞∑
j=0

f (j)(a)

j!
(x− a)j .

Let us continue with the forward Euler scheme and let us now specify the truncation error ηn−1 in (48):

y′(tn−1) + ηn−1 =
y(tn)− y(tn−1)

k
.

To this end, we need information about the solution at the old time step tn−1 in order to eliminate y(tn).
Thus we use Taylor and develop y(tn) at the time point tn−1:

y(tn) = y(tn−1) + y′(tn−1)k +
1

2
y′′(τn−1)k2

We obtain the difference quotient of forward Euler by the following manipulation:

y(tn)− y(tn−1)

k
= y′(tn−1) +

1

2
y′′(τn−1)k.

We observe that the first terms correspond to (47). Thus the remainder term is

1

2
y′′(τn−1)k

and therefore the truncation error ηn−1 can be estimated as

‖ηn−1‖ ≤ max
t∈[0,T]

1

2
‖y′′(t)‖k = O(k).

Therefore, the convergence order is k (namely linear convergence speed).

7.5.5 Convergence

With the help of the two previous subsections, we can easily show the following error estimates:

Theorem 7.20 (Convergence of implicit/explicit Euler). We have

max
tn∈I
|yn − y(tn)| ≤ c(T, y)k = O(k),

where k := maxn kn.

Proof. The proof does hold for both schemes, except that when we plug-in the stability estimate one should
recall that the backward Euler scheme is unconditionally stable and the forward Euler scheme is only stable

51

7 FINITE DIFFERENCES FOR ODE INITIAL-VALUES PROBLEMS

when the step size k is sufficiently small. It holds for 1 ≤ n ≤ N :

|yn − y(tn)| = ‖en‖ = k‖
n−1∑
k=0

Bn−kE ηk‖

≤ k
n−1∑
k=0

‖Bn−kE ηk‖ (triangle inequality)

≤ k
n−1∑
k=0

‖Bn−kE ‖ ‖ηk‖

≤ k
n−1∑
k=0

‖Bn−kE ‖ Ck (consistency)

≤ k
n−1∑
k=0

1 Ck (stability)

= kN Ck

= T Ck, where we used k = T/N

= C(T, y)k

= O(k)

In Section 7.6 we demonstrate in terms of a numerical example that the forward Euler scheme will fail when
the step size restrication is not satisfied, consequently the scheme is not stable and therefore, the convergence
result does not hold true.

Theorem 7.21 (Convergence of trapezoidal rule). We have

max
t∈I
|yn(t)− y(t)| ≤ c(T, y)k2 = O(k2),

The main message is that the Euler schemes both converge with order O(k) (which is very slow) and the
trapezoidal rule converges quadratically, i.e., O(k2).
Let us justify the convergence order for the forward Euler scheme in more detail now.

Theorem 7.22. Let I := [0, T] the time interval and f : I ×Rd → Rd continuously differentiable and globally
Lipschitz-continuous with respect to y:

‖f(t, y)− f(t, z)‖2 ≤ L‖y − z‖2

for all t ∈ I and y, z ∈ Rd. Let y be the solution to

y′ = f(t, y), y(0) = y0.

Furthermore let yn, n = 1, . . . , n the approximations obtained with the Euler scheme at the nodal points tn ∈ I.
Then it holds

‖y(tn)− yn‖2 ≤
(1 + Lk)n − 1

2L
‖y′′‖ k ≤ eLT − 1

2L
‖y′′‖ k = c(T, y)k = O(k),

for n = 0, . . . , N .

Proof. The proof follows [18], but consists in working out the steps shown at the beginning of Section 7.5,
Section 7.5.3, and Section 7.5.4.

52

7 FINITE DIFFERENCES FOR ODE INITIAL-VALUES PROBLEMS

7.6 Detailed numerical tests
In this section we demonstrate our algorithmic developments in terms of a numerical example. The program-
ming code is written in octave (which is the open-source sister of MATLAB) presented in Section 13.2.

7.6.1 Problem statement and discussion of results

Example 7.23. Solve our ODE model problem numerically. Let a = g − m be a = 0.25 or a = −0.25 or
a = −10 (three test scenarios). The IVP is given by:

y′ = ay, y(2011) = 2.

Use the forward Euler (FE), backward Euler (BE), and trapezoidal rule (CN) for the numerical approximation.
Please observe the accuracy in terms of the discretization error and for (stiff) equations with a large negative
coefficient a = −10� 1 the behavior of the three schemes.

In order to calculate the convergence order α from numerical results, we make the following derivation. Let
P (k)→ P for k → 0 be a converging process and assume that

P (k)− P̃ = O(kα).

Here P̃ is either the exact limit P (in case it is known) or some ‘good’ approximation to it. Let us assume
that three numerical solutions are known (this is the minimum number if the limit P is not known). That is

P (k), P (k/2), P (k/4).

Then, the convergence order can be calculated via the formal approach P (k) − P̃ = ckα with the following
formula:

Proposition 7.24 (Computationally-obtained convergence order). Given three numerically-obtained values
P (k), P (k/2) and P (k/4), the convergence order can be estimated as:

α =
1

log(2)
log
(∣∣∣ P (k)− P (k/2)

P (k/2)− P (k/4)

∣∣∣). (59)

The order α is an estimate and heuristic because we assumed a priori a given order, which strictly speaking
we have to proof first.

Proof. We assume:

P (k)− P (k/2) = O(kα),

P (k/2)− P (k/4) = O((k/2)α).

First, we have

P (k/2)− P (k/4) = O((k/2)α) =
1

2α
O(kα)

We simply re-arrange:

P (k/2)− P (k/4) =
1

2α

(
P (k)− P (k/2)

)
⇒ 2α =

P (k)− P (k/2)

P (k/2)− P (k/4)

⇒ α =
1

log(α)

P (k)− P (k/2)

P (k/2)− P (k/4)

In the following we present our results for the (absolute) error for test case 1 (a = 0.25) on such three mesh
levels:

53

7 FINITE DIFFERENCES FOR ODE INITIAL-VALUES PROBLEMS

Scheme #steps k Absolute error
===
FE err.: 8 0.36 +0.13786
BE err.: 8 0.36 -0.16188
CN err.: 8 0.36 -0.0023295
FE err.: 16 0.18 +0.071567
BE err.: 16 0.18 -0.077538
CN err.: 16 0.18 -0.00058168
FE err.: 32 0.09 +0.036483
BE err.: 32 0.09 -0.037974
CN err.: 32 0.09 -0.00014538
===

• The absolute error at the end time T in the forth column is computed as

eN = |y(T)− yN |,

where y(T) is the exact solution and yN the numerical approximation at the end time value at the final
numerical step N .

• In the second column, i.e., 8, 16, 32, the number of steps (= number of intervals, i.e., so called mesh cells
- speaking in PDE terminology) are given. In the column after, the errors are provided.

• In order to compute numerically the convergence order α with the help of formula (59), we work with k =
kmax = 0.36. Then we identify in the above table that P (kmax) = P (0.36) = |y(T) − y8|, P (kmax/2) =
P (0.18) = |y(T)− y16| and P (kmax/4) = P (0.09) = |y(T)− y32|.

• We monitor that doubling the number of intervals (i.e., halving the step size k) reduces the error in
the forward and backward Euler scheme by a factor of 2. This is (almost) linear convergence, which is
confirmed by using Formula (59) yielding α = 0.91804. The trapezoidal rule is much more accurate (for
instance using n = 8 the error is 0.2% rather than 13−16%) and we observe that the error is reduced by
a factor of 4. Thus quadratic convergence is detected. Here the ‘exact’ order on these three mesh levels
is α = 1.9967.

• A further observation is that the forward Euler scheme is unstable for n = 16 and a = −10 and has a
zig-zag curve, whereas the other two schemes follow the exact solution and the decreasing exp-function.
But for sufficiently small step sizes, the forward Euler scheme is also stable which we know from our
A-stability calculations. These step sizes can be explicitely determined for this ODE model problem and
shown below.

Figure 6: Example 7.23: on the left, the solution to test 1 is shown. In the middle, test 2 is plotted. On the
right, the solution of test 3 with n = 16 (number of intervals) is shown. Here, n = 16 corresponds to
a step size k = 0.18 which is slightly below the critical step size for convergence (see Section 7.6.2).
Thus we observe the instable behavior of the forward Euler method, but also see slow convergence
towards the continuous solution.

54

7 FINITE DIFFERENCES FOR ODE INITIAL-VALUES PROBLEMS

7.6.2 Treatment of the instability of the forward Euler method

With the help of Example 7.18 let us understand how to choose stable step sizes k for the forward Euler
method. The convergence interval reads:

|1 + z| ≤ 1 ⇒ |1 + ak| ≤ 1

In test 3, a = −10, which yields:
|1 + z| ≤ 1 ⇒ |1− 10k| ≤ 1

Thus, we need to choose a k that fulfills the previous relation. In this case this, k < 0.2 is calculated.
This means that for all k < 0.2 we should have convergence of the forward Euler method and for k ≥ 0.2
non-convergence (and in particular no stability!). We perform the following additional tests:

• Test 3a: n = 10, yielding k = 0.3;

• Test 3b: n = 15, yielding k = 0.2; exactly the boundary of the stability interval;

• Test 3c: n = 16, yielding k = 0.18; from before;

• Test 3d: n = 20, yielding k = 0.15.

The results of test 3a,3b,3d are provided in Figure 7 and visualize very nicely the theoretically predicted
behavior.

Figure 7: Example 7.23: tests 3a,3b,3d: Blow-up, constant zig-zag non-convergence, and convergence of the
forward Euler method.

Exercise 4. Consider the ODE-IVP:

y′(t) = ay(t), y(t0) = 7,

where t0 = 5 and T = 11.

1. Implement the backward Euler scheme. and set the model parameter to a = 2

2. Run a second test with a = −2.

3. Implement the forward Euler scheme. What is the critical step size (Hint: Determine the stability
interval).

4. Implement the Crank-Nicolson scheme.

5. Perform a computational analysis and detect the convergence order.

55

7 FINITE DIFFERENCES FOR ODE INITIAL-VALUES PROBLEMS

7.7 Runge-Kutta methods
A drawback of the Euler methods and to some extend of the trapezoidal rule as well is the low order and slow
convergence. This has been justified both theoretically and in terms of the previous example.
In this section, we briefly motivate the idea how to obtain higher-order methods. Our model problem is as

before:

y′(t) = f(t, y), t ∈ I,
y(t0) = y0.

The explicit Euler methods reads:

yn+1 = yn + kf(tn, yn), k = tn+1 − tn.

The basic idea to obtain higher-order methods is pretty simple: replace f(·) by a general function F (·):

yn+1 = yn + kF (k, tn, yn, yn+1), k = tn+1 − tn.

The question is how F (·) does look like? Well, we use again Taylor and assume that f ∈ C∞:

y(tn+1) = y(tn) + y′(tn)k +
1

2
y′′(tn)k2 + · · · =

s∑
j=1

1

j!
y(j)(tn)kj .

We now use the ODE:
y′ = f(t, y) → y′′ = f ′(t, y) → y′′′ = f ′′(t, y), . . .

Then the Taylor expansion can be written as:

y(tn+1) = y(tn) + k

s∑
j=1

1

j!
y(j−1)(tn)kj−1

︸ ︷︷ ︸
=:F (k,tn,yn,yn+1)

.

In principle we would be finished now. There is however a very practical difficulty; namely the higher-order
derivatives of f(t, y). For complicated functions they become tedious to be evaluated - especially if we think
to use a finite difference scheme as time stepping scheme for a PDE (see Section 9). Thus we want to get rid
of the f(t, y) derivatives. The idea is to replace f (j−1) be difference quotients. This will lead to a recursive
iteration. The ansatz is:

F (k, tn, yn, yn+1) :=

s∑
j=1

bjkj

with

kj := f(tn + cjk, ηj),

s∑
j=1

bj = 1.

The trick is to determine bj , cj and ηj , where ηj can be further derived as (using the previously mentioned
recursion and difference quotients):

ηj = yn + k

s∑
ν=1

ajν f(tn + cνk, ην)︸ ︷︷ ︸
=kν

,

s∑
ν=1

ajν = cj , 1, . . . , s.

Let us pause for a moment and denote the different coefficients we have introduced so far:

• ηj : stages

• s: stage number

• cj : nodes

56

7 FINITE DIFFERENCES FOR ODE INITIAL-VALUES PROBLEMS

• bj : weights

• ajν are the entries of the so-called Runge-Kutta matrix.

Remark 7.25 (Explicit Runge-Kutta schemes). If ajν = 0 for all ν ≥ j, we obtain explicite Runge-Kutta
schemes; otherwise the scheme will be implicit.

The previous coefficients will be determined in such a way that we obtain (hopefully) the optimal order m = s:
s∑
j=1

bjkj =

s∑
j=1

kj−1

j!
f (j−1)(tn) +O(km).

To determine the consistency order we proceed as for the Euler schemes and plug the exact solution into the
numerical scheme. The local truncation error is then given as:

τn :=
y(tn+1)− y(tn)

k
− F (k, tn, y(tn), y(tn+1)).

Example 7.26. Let us illustrate the previous developments for two cases (the reader can find many more in
the cited literature):

1. s = 1 (explicit Euler): c1 = a11 = 0 and b1 = 1 yielding k1 = f(tn, yn).

2. s = 4 (classical fourth-order Runge-Kutta):

yn+1 = yn +
1

6
k[k1 + k2 + k3 + k4].

Here we four stages (s = 4) and therefore the consistency order m = 4. Furthermore:

k1 = f(tn, yn),

k2 = f(tn+0.5, yn +
1

2
kk1),

k3 = f(tn+0.5, yn +
1

2
kk2),

k4 = f(tn+1, yn + kk3).

One can also derive a tableau of the coefficients as follows:

c A

bT

Example 7.27. Using the previous tableau we can express some schemes as follows:

1. Explicit Euler:
0 0

1

2. Implicit Euler:
1 1

1

3. Runge method:
0 0 0

1/2 1/2 0

0 0 1

57

7 FINITE DIFFERENCES FOR ODE INITIAL-VALUES PROBLEMS

4. Runge-Kutta fourth order (RK4):

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1/6 1/3 1/3 1/6

Exercise 5. Implement the Runge-Kutta method of order s = 4 for the above problem given in Example 7.23.
Afterwards, carry out the convergence analysis and verify whether the expected order is correct.

58

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

8 Finite elements for PDE boundary values problems

In this section, we concentrate on boundary value problems. We change now two things at the same time:

• Considering boundary value problems (BVP) rather than initial-value problems (IVP);

• Using finite elements (FE) rather than finite differences (FD) for discretization.

Of course the other two combinations (IVP solved by FE and BVP solved by FD) are also possible. In fact FD
for solving BVP have been very popular in the past and are still important because a quick implementation is
possible. On the other hand finite elements have advantages for more general geometries, unstructured grids,
complicated PDEs and PDE systems, and allow for a deep mathematical theory. Moreover, the finite element
method can work with less smoothness of the underlying functions. A good overview has been compiled in
[17].

8.1 Model problem: 1D Poisson

We consider the model problem (D)1:

−u′′ = f in Ω = (0, 1), (60)
u(0) = u(1) = 0. (61)

Please make yourself clear that this is nothing else than expressing Formulation 6.10 in 1D. Thus, we deal
with a second-order elliptic problem.

8.2 Construction of an exact solution (only possible for simple cases!)

In this section, we construct again an exact solution first. In 1D2, we can derive the explicit solution of (60).
First we have

u′(x̃) = −
∫ x̃

0

f(s)ds+ C1

where C1 is a positive constant. Further integration yields

u(x) =

∫ x

0

u′(x̃) dx̃ = −
∫ x

0

(∫ x̃

0

f(s) ds
)
dx̃+ C1x+ C2

with another integration constant C2. We have two unknown constants C1, C2 but also two given boundary
conditions which allows us to determine C1 and C2.

0 = u(0) = −
∫ x

0

(∫ x̃

0

f(s) ds
)
dx̃+ C1 · 0 + C2

yields C2 = 0. For C1, using u(1) = 0, we calculate:

C1 =

∫ 1

0

(∫ x̃

0

f(s) ds
)
dx̃.

Thus we obtain as final solution:

u(x) = −
∫ x

0

(∫ x̃

0

f(s) ds
)
dx̃+ x

(∫ 1

0

(∫ x̃

0

f(s) ds
)
dx̃

)
.

Thus, for a given right hand side f we obtain an explicit expression. For instance f = 1 yields:

u(x) =
1

2
(−x2 + x).

1 (D) stands for differential problem. (M) stands for minimization problem. (V) stands for variational problem.
2In higher dimensions, we still can construct analytical solutions for simple geometries, but comes easily challenging (impossible!)
for more complicated settings and equations.

59

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

It is trivial to double-check that this solution also satisfies the boundary conditions: u(0) = u(1) = 0. Fur-
thermore, we see by differentiation that the original equation is obtained:

u′(x) = −x+
1

2
⇒ −u′′(x) = 1.

Exercise 6. Let f = −1.

• Compute C1;

• Compute u(x);

• Check that u(x) satisfies the boundary conditions;

• Check that u(x) satisfies the PDE.

8.3 Equivalent formulations
We first discuss that the solution of (60) (D) is also the solution of a minimization problem (M) and a
variational problem (V). To formulate these (equivalent) problems, we first introduce the scalar product

(v, w) =

∫ 1

0

v(x)w(x) dx.

Furthermore we introduce the linear space

V := {v| v ∈ C[0, 1], v′ is piecewise continuous and bounded on [0, 1], v(0) = v(1) = 0}. (62)

We also introduce the linear functional F : V → R such that

F (v) =
1

2
(v′, v′)− (f, v).

We state

Definition 8.1. We deal with three (equivalent) problems:

(D) Find u ∈ C2 such that −u′′ = f with u(0) = u(1) = 0;

(M) Find u ∈ V such that F (u) ≤ F (v) for all v ∈ V ;

(V) Find u ∈ V such that (u′, v′) = (f, v) for all v ∈ V .

In physics, the quantity F (v) stands for the total potential energy of the underlying model. Moreover, the
first term in F (v) denotes the internal elastic energy and (f, v) the load potential. Therefore, formulation (M)
corresponds to the fundamental principle of minimal potential energy and the variational problem (V) to
the principle of virtual work (e.g., [9]). The proofs of their equivalence will be provided in the following.

Remark 8.2 (Euler-Lagrange equations). When (V) is derived from (M), we also say that (V) is the Euler-
Lagrange equation related to (M).

In the following we show that the three problems (D), (M), (V) are equivalent.

Proposition 8.3. It holds
(D)→ (V).

Proof. We multiply u′′ = f with an arbitrary function φ (a so-called test function) from the space V defined
in (62). Then we integrate over the interval Ω = (0, 1) yielding

−u′′ = f (63)

⇒ −
∫

Ω

u′′φdx =

∫
Ω

fφ dx (64)

⇒
∫

Ω

u′φ′ dx− u′(1)φ(1) + u′(0)φ(0) =

∫
Ω

fφ dx (65)

⇒
∫

Ω

u′φ′ dx =

∫
Ω

fφ dx ∀φ ∈ V. (66)

60

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

In the second last term, we used integration by parts.
The boundary terms vanish because φ ∈ V . This shows that∫

Ω

u′φ′ dx =

∫
Ω

fφ dx

is a solution of (V).

Proposition 8.4. It holds
(V)↔ (M).

Proof. We first assume that u is a solution to (V). Let φ ∈ V and set w = φ − u such that φ = u + w and
w ∈ V . We obtain

F (φ) = F (u+ w) =
1

2
(u′ + w′, u′ + w′)− (f, u+ w)

=
1

2
(u′, u′)− (f, u) + (u′, w′)− (f, w) +

1

2
(w′, w′) ≥ F (u)

We use now the fact that (V) holds true, namely

(u′, w′)− (f, w) = 0.

and also that (w′, w′) ≥ 0. Thus, we have shown that u is a solution to (M). We show now that (M)→ (V)
holds true as well. For any φ ∈ V and ε ∈ R we have

F (u) ≤ F (u+ εφ),

because u+ εφ ∈ V . We differentiate with respect to ε and show that (V) is a first order necessary condition
to (M) with a minimum at ε = 0. To do so, we define

g(ε) := F (u+ εφ) =
1

2
(u′, u′) + ε(u′, φ′) +

ε2

2
(φ′, φ′)− (f, u)− ε(f, φ).

Thus
g′(ε) = (u′, φ′) + ε(φ′, φ′)− (f, φ).

A minimum is obtained for ε = 0. Consequently,

g′(0) = 0.

In detail:
(u′, φ′)− (f, φ) = 0,

which is nothing else than the solution of (V).

Proposition 8.5. The solution u to (V) is unique.

Proof. Assume that u1 and u2 are solutions to (V) with

(u′1, φ
′) = (f, φ) ∀φ ∈ V,

(u′2, φ
′) = (f, φ) ∀φ ∈ V.

We subtract these solutions and obtain:
(u′1 − u′2, φ′) = 0.

We choose as test function φ′ = u′1 − u′2 and obtain

(u′1 − u′2, u′1 − u′2) = 0.

Thus:
u′1(x)− u′2(x) = (u1 − u2)′(x) = 0.

61

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

Since the difference of the derivatives is zero, this means that the difference of the functions themselves is
constant:

(u1 − u2)(x) = const

Using the boundary conditions u(0) = u(1) = 0, yields

(u1 − u2)(x) = 0.

Thus u1 = u2.

Remark 8.6. The last statements are related to the definiteness of the norm. It holds:

‖u‖2L2 =

∫
Ω

u2 dx.

Thus the results follow directly because
‖u‖ = 0 ⇔ u = 0.

Proposition 8.7. It holds
(V)→ (D).

Proof. We assume that u is a solution to (V), i.e.,

(u′, φ′) = (f, φ) ∀φ ∈ V.

If we assume sufficient regularity of u (in particular u ∈ C2), then u′′ exists and we can integrate backwards.
Moreover, we use that φ(0) = φ(1) = 0 since φ ∈ V . Then:

(−u′′ − f, φ) = 0 ∀φ ∈ V.

Since we assumed sufficient regularity for u′′ and f the difference is continuous. We can now apply the
fundamental principle (see Proposition 8.9):

w ∈ C(Ω) ⇒
∫

Ω

wφdx = 0 ⇒ w ≡ 0.

We proof this result later. Before, we obtain

(−u′′ − f, φ) = 0 ⇒ −u′′ − f = 0,

which yields the desired expression. Since we know that (D)→ (V) holds true, u has the assumed regularity
properties and we have shown the equivalence.

It remains to state and proof the fundamental lemma of calculus of variations. To this end, we introduce

Definition 8.8 (Continuous functions with compact support). Let Ω ⊂ Rn be an open domain.

• The set of continuous functions from Ω to R with compact support is denoted by Cc(Ω). Such functions
vanish on the boundary.

• The set of smooth functions (infinitely continuously differentiable) with compact support is denoted by
C∞c (Ω).

Proposition 8.9 (Fundamental lemma of calculus of variations). Let Ω = [a, b] be a compact interval and let
w ∈ C(Ω). Let φ ∈ C∞ with φ(a) = φ(b) = 0, i.e., φ ∈ C∞c (Ω). If for all φ it holds∫

Ω

w(x)φ(x) dx = 0,

then, w ≡ 0 in Ω.

62

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

Proof. We perform an indirect proof. We suppose that there exist a point x0 ∈ Ω with w(x0) 6= 0. Without
loss of generality, we can assume w(x0) > 0. Since w is continuous, there exists a small (open) neighborhood
ω ⊂ Ω with w(x) > 0 for all x ∈ ω; otherwise w ≡ 0 in Ω \ ω. Let φ now be a positive test function (recall
that φ can be arbitrary, specifically positive if we wish) in Ω and thus also in ω. Then:∫

Ω

w(x)φ(x) dx =

∫
ω

w(x)φ(x) dx.

But this is a contradiction to the hypothesis on w. Thus w(x) = 0 for all in x ∈ ω. Extending this result to
all open neighborhoods in Ω we arrive at the final result.

8.4 The weak form: defining a bilinear form and a linear form
We continue to consider the variational form in this section and provide more definitions and notation.
We recall the key idea:

• multiply the strong form (D) with a test function,

• integrate,

• apply integration by parts on second-order terms.

The last operation ‘weakens’ the derivative information because rather evaluating 2nd order derivatives, we
only need to evaluate a 1st order derivative on the trial function and another 1st order derivative on the test
function.
We recall the procedure how to obtain a weak form:

−u′′ = f (67)

⇒ −
∫

Ω

u′′φdx =

∫
Ω

fφ dx (68)

⇒
∫

Ω

u′φ′ dx−
∫
∂Ω

∂nuφ ds =

∫
Ω

fφ dx (69)

⇒
∫

Ω

u′φ′ dx =

∫
Ω

fφ dx. (70)

To summarize we have: ∫
Ω

u′φ′ dx =

∫
Ω

fφ dx (71)

A common short-hand notation in mathematics is to use parentheses for L2 scalar products:
∫

Ω
ab dx =: (a, b):

(u′, φ′) = (f, φ) (72)

A mathematically-correct statement is:

Formulation 8.10. Find u ∈ V such that

(u′, φ′) = (f, φ) ∀φ ∈ V. (73)

In the following, a very common notation is introduced. First, we recall concepts known from linear algebra:

Definition 8.11 (Linear form and bilinear form). If V is a linear space, l is a linear form on V if l : V → R
or in other words l(v) ∈ R for v ∈ V . Moreover, l is linear:

l(av + bw) = al(v) + bl(w) ∀a, b ∈ R, ∀v, w ∈ V.

63

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

A formulation is a bilinear form 3 on V × V if a : V × V → R and a(v, w) ∈ R for v, w ∈ V and a(v, w) is
linear in each argument, i.e., for α, β ∈ R and u, v, w ∈ V , it holds

a(u, αv + βw) = αa(u, v) + βa(u,w),

a(αu+ βv,w) = αa(u,w) + βa(v, w).

A bilinear form is said to be symmetric if

a(u, v) = a(v, u).

A symmetric bilinear form a(·, ·) on V × V defines a scalar product on V if

a(v, v) > 0 ∀v ∈ V, v 6= 0.

The associated norm is denoted by ‖ · ‖a and defined by

‖v‖a :=
√
a(v, v) for v ∈ V.

Definition 8.12 (Frobenius scalar product). For vector-valued functions in second-order problems, we need
to work with a scalar product defined for matrices because their gradients are matrices. Here the natural form
is the Frobenius scalar product, which is defined as:

< A,B >F= A : B =
∑
i

∑
j

aijbij

The Frobenius scalar product induces the Frobenius norm:

‖A‖F =
√
< A,B >.

Remark 8.13. For vector-valued PDEs (such as elasticity, Stokes or Navier-Stokes), we formulate in compact
form:

a(u, φ) = l(φ)

with some l(φ) and

a(u, φ) =

∫
Ω

∇u : ∇φdx

where ∇u : ∇φ is then evaluated in terms of the Frobenius scalar product.

Definition 8.14 (Bilinear and linear forms of the continuous Poisson problem). For the Poisson problem, we
can define:

a(u, φ) = (u′, φ′),

l(φ) = (f, φ).

We shall state the variational form of Poisson’s problem in terms of a(·, ·) and l(·):

Formulation 8.15 (Variational Poisson problem on the continuous level). Find u ∈ V such that

a(u, φ) = l(φ) ∀φ ∈ V, (74)

where a(·, ·) and l(·) are defined in Definition 8.14. The unknown function u is called the trial or (ansatz)
function whereas φ is the so-called test function.

3For nonlinear problems we deal with a semi-linear form, which is only linear in one argument.

64

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

8.5 Finite elements in 1D
In the following we want to concentrate how to compute a discrete solution. As in the previous chapter, this,
in principle, allows us to address even more complicated situations and also higher spatial dimensions. The
principle of the FEM is rather simple:

• Introduce a mesh Th :=
⋃
Ki (where Ki denote the single mesh elements) of the given domain Ω = (0, 1)

with mesh size (diameter/length) parameter h

• Define on each mesh element Ki := [xi, xi+1], i = 0, . . . , n polynomials for trial and test functions. These
polynomials must form a basis in a space Vh and they should reflect certain conditions on the mesh
edges;

• Use the variational (or weak) form of the given problem and derive a discrete version;

• Evaluate the arising integrals;

• Collect all contributions on all Ki leading to a linear equation system AU = B;

• Solve this linear equation system; the solution vector U = (u0, . . . , un)T contains the discrete solution at
the nodal points x0, . . . , xn;

• Verify the correctness of the solution U .

8.5.1 The mesh

Let us start with the mesh. We introduce nodal points and divide Ω = (0, 1) into

x0 = 0 < x1 < x2 < . . . < xn < xn+1 = 1.

In particular, we can work with a uniform mesh in which all nodal points have equidistant distance:

xj = jh, h =
1

n+ 1
, 0 ≤ j ≤ n+ 1, h = xj+1 − xj .

Remark 8.16. An important research topic is to organize the points xj in certain non-uniform ways in order
to reduce the discrete error.

8.5.2 Linear finite elements

In the following we denote Pk the space that contains all polynomials up to order k with coefficients in R:

Definition 8.17.

Pk := {
k∑
i=0

aix
i| ai ∈ R}.

In particular we will work with the space of linear polynomials

P1 := {a0 + a1x| a0, a1 ∈ R}.

A finite element is now a function localized to an element Ki ∈ Th and uniquely defined by the values in the
nodal points xi, xi+1.
We then define the space:

V
(1)
h = Vh := {v ∈ C[0, 1]| v|Ki ∈ P1,Ki := [xi, xi+1], 0 ≤ i ≤ n, v(0) = v(1) = 0}.

The boundary conditions are build into the space through v(0) = v(1) = 0. This is an important concept that
Dirichlet boundary conditions will not appear explicitly later, but are contained in the function spaces.
All functions inside Vh are so called shape functions and can be represented by so-called hat func-

tions. Hat functions are specifically linear functions on each element Ki. Attaching them yields a hat in the
geometrical sense.

65

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

For j = 1, . . . , n we define:

φj(x) =

0 if x 6∈ [xj−1, xj+1]

x−xj−1

xj−xj−1
if x ∈ [xj−1, xj]

xj+1−x
xj+1−xj if x ∈ [xj , xj+1]

(75)

with the property

φj(xi) =

1 i = j

0 i 6= j
. (76)

xi

φi

xi−1 xi+1

φi+1φi−1
1

Figure 8: Hat functions.

For a uniform step size h = xj − xj−1 = xj+1 − xj we obtain

φj(x) =

0 if x 6∈ [xj−1, xj+1]

x−xj−1

h if x ∈ [xj−1, xj]

xj+1−x
h if x ∈ [xj , xj+1]

and for its derivative:

φ′j(x) =

0 if x 6∈ [xj−1, xj+1]

+ 1
h if x ∈ [xj−1, xj]

− 1
h if x ∈ [xj , xj+1]

Lemma 8.18. The space Vh is a subspace of V := C[0, 1] and has dimension n (because we deal with n basis
functions). Thus the such constructed finite element method is a conforming method. Furthermore, for each
function vh ∈ Vh we have a unique representation:

vh(x) =

n∑
j=1

vh,jφj(x) ∀x ∈ [0, 1], vh,j ∈ R.

Proof. Sketch: The unique representation is clear, because in the nodal points it holds φj(xi) = δij , where δij
is the Kronecker symbol with δij = 1 for i = j and 0 otherwise.

The function vh(x) connects the discrete values vh,j ∈ R and in particular the values between two support
points xj and xj+1 can be evaluated.

66

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

xixi−1 xi+1

vh

Figure 9: The function vh ∈ Vh.

Remark 8.19. The finite element method introduced above is a Lagrange method, since the basis functions
φj are defined only through its values at the nodal points without using derivative information (which would
result in Hermite polynomials).

8.5.3 The process to construct the specific form of the shape functions

In the previous construction, we have hidden the process how to find the specific form of φj(x). For 1D it is
more or less clear and we would accept the φj(x) really has the form as it has in (75) . In Rn this task is a
bit of work. To understand this procedure, we explain the process in detail. Here we first address the defining
properties of a finite element (see also Section 8.5.6):

• Intervals [xi, xi+1];

• A linear polynomial φ(x) = a0 + a1x;

• Nodal values at xi and xi+1 (the so-called degrees of freedom).

Later only these properties are stated (see also the general literature in Section 1) and one has to construct
the specific φ(x) such as for example in (75). Thus, the main task consists in finding the unknown coefficients
a0 and a1 of the shape function. The key property is (76) (also valid in Rn in order to have a small support)
and therefore we obtain:

φj(xj) = a0 + a1xj = 1,

φj(xi) = a0 + a1xi = 0.

To determine a0 and a1 we have to solve a small linear equation system:(
1 xj
1 xi

)(
a0

a1

)
=

(
1

0

)
.

We obtain
a1 = − 1

xi − xj
and

a0 =
xi

xi − xj
.

Then:
φj(x) = a0 + a1x =

xi − x
xi − xj

.

At this stage we have now to distinguish whether xj := xi−1 or xj := xi+1 or |i − j| > 1 yielding the three
cases in (75).

67

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

Remark 8.20. Of course, for higher-order polynomials and higher-order problems in Rn, the matrix system
to determining the coefficients becomes larger. However, in all these state-of-the-art FEM software packages,
the shape functions are already implemented.

Remark 8.21. A very practical and detailed derivation of finite elements in different dimensions can be found
in [31].

8.5.4 The discrete weak form

We have set-up a mesh and local polynomial functions with a unique representation, all these developments
result in a ‘finite element’. Now, we use the variational formulation and derive the discrete counterpart:

Formulation 8.22. Find uh ∈ Vh such that

(u′h, φ
′
h) = (f, φh) ∀φh ∈ Vh. (77)

Or in the previously introduced compact form:

Formulation 8.23 (Variational Poisson problem on the discrete level). Find uh ∈ Vh such that

a(uh, φh) = l(φh) ∀φh ∈ Vh, (78)

where a(·, ·) and l(·) are defined in Definition 8.14 by adding h as subindex for u and φ.

Remark 8.24 (Galerkin method). The process going from V to Vh using the variational formulation is called
Galerkin method. Here, it is not necessary that the bilinear form is symmetric. As further information:
not only is Galerkin’s method a numerical procedure, but it is also used in analysis when establishing existence
of the continuous problem. Here, one starts with a finite dimensional subspace and constructs a sequence of
finite dimensional subspaces Vh ⊂ V (namely passing with h→ 0; that is to say: we add more and more basis
functions such that dim(Vh) → ∞). The idea of numerics is the same: finally we are interested in small h
such that we obtain a discrete solution with sufficient accuracy.

Remark 8.25 (Ritz method). If we discretize the minimization problem (M), the above process is called Ritz
method. In particular, the bilinear form of the variational problem is symmetric.

Remark 8.26 (Ritz-Galerkin method). For general bilinear forms (i.e., not necessarily symmetric) the dis-
cretization procedure is called Ritz-Galerkin method.

Remark 8.27 (Petrov-Galerkin method). In a Petrov-Galerkin method the trial and test spaces can be
different.

In order to proceed we can express uh ∈ Vh with the help of the basis functions φj in Vh := {φ1, . . . , φn},
thus:

uh =

n∑
j=1

ujφj(x), uj ∈ R.

Since (77) holds for all φi ∈ Vh for 1 ≤ i ≤ n, it holds in particular for each i:

(u′h, φ
′
i) = (f, φi) for 1 ≤ i ≤ n. (79)

We now insert the representation for uh in (79), yielding the Galerkin equations:

n∑
j=1

uj(φ
′
j , φ
′
i) = (f, φi) for 1 ≤ i ≤ n. (80)

We have now extracted the coefficient vector of uh and only the shape functions φj and φi (i.e., their
derivatives of course) remain in the integral.
This yields a linear equation system of the form

AU = B

68

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

where

U = (uj)1≤j≤n ∈ Rn, (81)

B =
(
(f, φi)

)
1≤i≤n ∈ Rn, (82)

A =
(

(φ′j , φ
′
i)
)

1≤j,i≤n
∈ Rn×n. (83)

Thus the final solution vector is U which contains the values uj at the nodal points xj of the mesh. Here we
remark that x0 and xn+1 are not solved in the above system and are determined by the boundary conditions
u(x0) = u(0) = 0 and u(xn+1) = u(1) = 0.

8.5.5 Evaluation of the integrals

It remains to determine the specific entries of the system matrix (also called stiffness matrix) A and the right
hand side vector B. Since the basis functions have only little support on two neighboring elements (in fact
that is one of the key features of the FEM) the resulting matrix A is sparse, i.e., it contains only a few number
of entries that are not equal to zero.
Let us now evaluate the integrals that form the entries aij of the matrix A = (aij)1≤i,j≤n. For the diagonal

elements we calculate:

aii =

∫
Ω

ϕ′i(x)ϕ′i(x) dx =

∫ xi+1

xi−1

ϕ′i(x)ϕ′i(x) dx (84)

=

∫ xi

xi−1

1

h2
dx+

∫ xi+1

xi

(
− 1

h

)2

dx (85)

=
h

h2
+

h

h2
(86)

=
2

h
. (87)

For the right off-diagonal we have:

ai,i+1 =

∫
Ω

ϕ′i+1(x)ϕ′i(x) dx =

∫ xi+1

xi

1

h
·
(
− 1

h

)
dx = − 1

h
. (88)

It is trivial to see that ai,i+1 = ai−1,i.
In compact form we summarize:

aij =

∫
Ω

φ′j(x)φ′i(x) dx =

− 1
xj+1−xj if j = i− 1

1
xj−xj−1

+ 1
xj+1−xj if j = i

− 1
xj−xj−1

if j = i+ 1

0 otherwise

. (89)

For a uniform mesh (as we assume in this section) we can simplify the previous calculation since we know that
h = hj = xj+1 − xj :

aij =

∫
Ω

φ′j(x)φ′i(x) dx =

− 1
h if j = i− 1

2
h if j = i

− 1
h if j = i+ 1

0 otherwise

. (90)

69

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

The resulting matrix A for the ‘inner’ points x1, . . . , xn reads then:

A = h−1

2 −1 0

−1 2 −1
. . .

. . .
. . .

−1 2 −1

0 −1 2

 ∈ Rn×n.

Remark 8.28. Since the boundary values at x0 = 0 and xn+1 = 1 are known to be u(0) = u(1) = 0, they are
not assembled in the matrix A. We could have considered all support points x0, x1, . . . , xn, xn+1 we would have
obtained:

A = h−1

1 −1 0

−1 2 −1
. . .

. . .
. . .

−1 2 −1

0 −1 1

 ∈ R(n+2)×(n+2).

Here the entries a00 = an+1,n+1 = 1 (and not 2) because at the boundary only the half of the two corresponding
test functions do exist. Furthermore, working with this matrix A in the solution process below, we have to
modify the entries a0,1 = a1,0 = an,n+1 = an+1,n from the value −1 to 0 such that uh,0 = uh,n+1 = 0 can
follow.

It remains to evaluate the integrals of the right hand side vector b. Here the main difficulty is that the given
right hand side f may be complicated. Of course it always holds for the entries of b:

bi =

∫
Ω

f(x)φi(x) dx for 1 ≤ i ≤ n.

The right hand side now depends explicitly on the values for f . Let us assume a constant f = 1 (thus the
original problem would be −u′′ = 1), then:

bi =

∫
Ω

1 · φi(x) dx = 1 ·
∫

Ω

φi(x) dx = 1 · h for 1 ≤ i ≤ n.

Namely
B = (h, . . . , h)T .

For non-uniform step sizes we obtain:

1

hi

∫
Ki

φi(x) dx, and
1

hi+1

∫
Ki+i

φi(x) dx

with hi = xi − xi−1, hi+1 = xi+1 − xi and Ki = [xi−1, xi] and Ki+1 = [xi, xi+1].

Exercise 7. Derive the system matrix A by assuming non-uniform step sizes hj = xj − xj+1.

Exercise 8. Derive the system matrix A for a P2 discretization, namely working with quadratic basis functions.
Sketch how the basis functions look like.

8.5.6 Definition of a finite element

We briefly summarize the key ingredients that define a finite element. A finite element is a triple (K,PK ,Σ)
where

• K is an element, i.e., a geometric object (in 1D an interval);

• Pk(K) is a finite dimensional linear space of polynomials defined on K;

• Σ, not introduced so far, is a set of degrees of freedom (DoF), e.g., the values of the polynomial at the
vertices of K.

These three ingredients yield a uniquely determined polynomial on an element K.

70

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

8.5.7 Properties of the system matrix A

We first notice:

Remark 8.29. The system matrix A has a factor 1
h whereas in the corresponding matrix A, using a finite

difference scheme, we have a factor 1
h2 . The reason is that we integrate the weak form using finite elements

and one h is hidden in the right hand side vector b. Division by h we yield the same system for finite elements
as for finite differences.

Next, we show that A is symmetric and positive definite. It holds

(φ′i, φ
′
j) = (φ′j , φ

′
i).

Using the representation

u(x) =

n∑
j=1

uj,hφj,h(x),

we obtain
n∑

i,j=1

ui(φ
′
i, φ
′
j)uj = (

n∑
i,j=1

uiφ
′
i,

n∑
i,j=1

ujφ
′
j) = (u′, u′) ≥ 0.

We have
(u′, u′) = 0

only if u′ ≡ 0 since u(0) = 0 only for u ≡ 0 or uj,h = 0 for j = 1, . . . , n. We recall that a symmetric matrix
B ∈ Rn×n is said to be positive definite if

ξ ·Bξ =

n∑
i,j=1

ξibijξj > 0 ∀ξ ∈ Rn, ξ 6= 0.

Finally, it holds:

Proposition 8.30. A symmetric positive matrix B is positive definite if and only if the eigenvalues of B are
strictly positive. Furthermore, a positive definite matrix is regular and consequently, the linear system to which
B is associated with has a unique solution.

Proof. Results from linear algebra.

8.5.8 Numerical test: 1D Poisson

8.5.8.1 Implementation in octave We design a numerical test implemented in octave [21].

Formulation 8.31. Let Ω = (0, 1)

Find u ∈ C2(Ω) such that

−u′′(x) = f in Ω

u(0) = 0,

u(1) = 0.

(91)

where f = −1. To discretize the problem, we work with linear finite elements. To this end, we introduce
the function space Vh that consists of piece-wise linear polynomials and also contains the Dirichlet boundary
conditions.
The variational form then reads: ∫ 1

0

u′(x)ϕ′(x) dx =

∫ 1

0

fϕ(x) dx.

71

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

The evaluation of these integrals has been performed in the previous sections of this chapter.
We now choose n = 4. Thus we have five support points

x0, x1, x2, x3, x4

and h = 1/4 = 0.25.

With these settings we obtain for the matrix A:

16 0 0 0 0
0 32 -16 0 0
0 -16 32 -16 0
0 0 -16 32 0
0 0 0 0 16

and for the right hand side vector b:

0
-1
-1
-1
0

We use the famous backslash solution operator (in fact an LU decomposition):

U = A\b

and obtain as solution U = (U0, U1, U2, U3, U4):

0.00000
-0.09375
-0.12500
-0.09375
0.00000

A plot of the discrete solution is provided in Figure 10.

72

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0 0.2 0.4 0.6 0.8 1

FD solution

Figure 10: Solution of the 1D Poisson problem with f = −1 using five support points with h = 0.25. We
observe that the approximation is rather coarse. A smaller h would yield more support points and
more solution values and therefore a more accurate solution.

8.5.8.2 Implementation in python The goal of the computation is to recover the exact solution with respect
to the chosen parameters and domain specifications:

u(x) = −1

2
(−x2 + x) on Ω.

It is trivial to check that this exact solution satisfies the PDE and also the boundary conditions.
As numerical results we obtain the solution curve displayed in Figure 8.5.8.2. Visually we observe excellent

agreement between the numerical and the exact solution.
To quantify this statement we could compute the error in certain norms. The most common for this setting

are the L2 norm (measuring the solution itself) and the H1 norm (measuring the gradients of the solution):

‖u− uh‖L2 → 0? for h→ 0, ‖u− uh‖H1 → 0? for h→ 0. (92)

These findings are shown in the next subsection.

73

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

Figure 11: Visual comparison between the exact and the manufactured solution. Please do not forget: the
‘picture norm’ (thus comparing two graphs as we do here) is not a rigorous mathematical justification
that a result is correct. It is rather a strong indication about the solution behavior and very helpful
to get an idea about the correctness. The mathematical justification would be to compare the two
solutions in a certain error measure (i.e., a norm) as we have done in Section 7.6.

8.5.8.3 Implementation in deal.II (C++) Thirdly, we adopt deal.II [4, 5] an open source C++ finite element
code to carry out this computation. Even that in such packages many things are hidden and performed in the
background, deal.II leaves enough room to see the important points:

• Creating a domain Ω and decomposition of this domain into elements;

• Setting up the vectors u, b and the matrix A with their correct length;

• Assembling (not yet solving!) the system Au = b. We compute locally on each mesh element the matrix
entries and right hand side entries on a master cell and insert the respective values at their global places
in the matrix A;

• In the assembly, the integrals are evaluated using numerical quadrature in order to allow for more
general expressions when for instance the material parameter a is not constant to 1 or when higher-order
polynomials need to be evaluated;

• Solution of the linear system Au = b (the implementation of the specific method is hidden though;

• Postprocessing of the solution: here writing the solution data Uj , 1 ≤ j ≤ n into a file that can be read
from a graphic visualization program such as gnuplot, paraview, visit.

74

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0 0.2 0.4 0.6 0.8 1

u
(x

)

x

h = 0.5, DoFs = 3
h = 0.25, DoFs = 5

h = 0.125, DoFs = 9
h = 0.0625, DoFs = 17

h = 0.03125, DoFs = 33
Min. u(x) = -0.125

Figure 12: Solution of the 1D Poisson problem with f = −1 using finite elements with various mesh sizes
h. DoFs is the abbreviation for degrees of freedom; here the number of support points xj . The
dimension of the discrete space is DoFs. For instance for h = 0.5, we have 3 DoFs and two basis
functions, thus dim(Vh) = 3. The numerical solutions are computed with an adaptation of step-3
in deal.II [4, 5]. Please notice that the picture norm is not a proof in the strict mathematical sense:
to show that the purple, and blue lines come closer and closer must be confirmed by error estimates
as presented for instance in [37] accompanied by numerical simulations in Section 8.9. Of course,
for this 1D Poisson problem, we easily observe a limit case, but for more complicated equations it
is often not visible whether the solutions do converge.

Level Elements DoFs
======================
1 2 3
2 4 5
3 8 9
4 16 17
5 32 33
======================

75

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

8.6 Algorithmic details
We provide some algorithmic details for implementing finite elements in a computer code. Of course, for
constant coefficients, a ‘nice’ domain Ω with uniform step lengths, we can immediately build the matrix, right
hand side vector and compute the solution. In practice, we are interested in more general formulations. Again,
we explain all details in 1D, and partially follow Suttmeier’s lecture [33]. Further remarks and details (in
particular for higher dimensions) can be found in the literature provided in Section 1.

8.6.1 Assembling integrals on each cell K

In practice, one does not proceed as in Section 8.5.5 since this only makes sense for very simple problems.
A more general procedure is based on an element-wise consideration, which is motivated by:

a(u, φ) =

∫
Ω

u′ φ′ dx =
∑
K∈Th

∫
K

u′ φ′ dx.

The basic procedure is:

Algorithm 8.32 (Basic assembling - robust, but partly inefficient). Let Ks, s = 0, . . . n be an element and let
i and j be the indices of the degrees of freedom (namely the basis functions). The basic algorithm to compute
all entries of the system matrix and right hand side vector is:

for all elements Ks with s = 0, . . . , n

for all DoFs i with i = 0, . . . , n+ 1

for all DoFs j with j = 0, . . . , n+ 1

aij+ =

∫
Ks

φ′i(x)φ′j(x) dx

Here + = means that entries with the same indices i, j are summed. For the right hand side, we have

for all elements Ks with s = 0, . . . , n

for all DoFs i with i = 0, . . . , n+ 1

bi+ =

∫
Ks

f(x)φi(x) dx.

Again + = means that only the bi with the same i are summed.

Remark 8.33. This algorithm is a bit inefficient since a lot of zeros are added. Knowing in advance the
polynomial degree of the shape functions allows to add an if-condition to assemble only non-zero entries.

8.6.2 Example in R5

We illustrate the previous algorithm for a concrete example. Let us compute 1D Poisson on four support
points xi, i = 0, 1, 2, 3, 4 that are equidistantly distributed yielding a uniform mesh size h = xj − xj−1. The
discrete space Vh is given by:

Vh = {φ0, φ1, φ2, φ3, φ4}, dim(Vh) = 5.

The number of cells is #K = 4.

76

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

x2

φ2

x1 x3

φ3φ1
1

x0
K0 K1 K2 K3

x4

φ0 φ4

Figure 13: Basis functions φi, elements Ks and nodes xs used in Section 8.6.2.

It holds furthermore:
U ∈ R5, A ∈ R5×5, b ∈ R5.

We start with s = 0, namely K0:

as=0
00 = a00 =

∫
K0

φ′0φ
′
0 =

1

h
, as=0

01 = a01 =

∫
K0

φ′0φ
′
1 = − 1

h
,

as=0
02 = a02 =

∫
K0

φ′0φ
′
2 = 0, as=0

03 = a03 =

∫
K0

φ′0φ
′
3 = 0, as=0

04 = a04 =

∫
K0

φ′0φ
′
4 = 0.

• Similarly, we evaluate a1j , a2j , a3j , a4j , j = 0, . . . 4.

• Next, we increment s = 1 and work on cell K1. Here we again evaluate all aij and sum them to the
previously obtained values on K0. Therefore the + = in the above algorithm.

• We also see that we add a lot of zeros when |i− j| > 1. For this reason, a good algorithm first design the
sparsity pattern and determines the entries of A that are non-zero. This is clear due to the construction
of the hat functions and that they only overlap on neighboring elements.

After having assembled the values on all four elements Ks, s = 1, 2, 3, 4, we obtain the following system
matrix:

A =

∑
s a

s
00

∑
s a

s
01

∑
s a

s
02

∑
s a

s
03

∑
s a

s
04∑

s a
s
10

∑
s a

s
11

∑
s a

s
12

∑
s a

s
13

∑
s a

s
14∑

s a
s
20

∑
s a

s
21

∑
s a

s
22

∑
s a

s
23

∑
s a

s
24∑

s a
s
30

∑
s a

s
31

∑
s a

s
32

∑
s a

s
33

∑
s a

s
34∑

s a
s
40

∑
s a

s
41

∑
s a

s
42

∑
s a

s
43

∑
s a

s
44

 =
1

h

1 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1

To fix the homogeneous Dirichlet conditions, we can manipulate directly the matrix A or work with a ‘constraint
matrix’. We eliminate the entries of the rows and columns of the off-diagonals corresponding to the boundary
indices; here i = 0 and i = 4. Then:

A =
1

h

1 0 0 0 0

0 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 0

0 0 0 0 1

.

77

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

8.6.3 Numerical quadrature

As previously stated, the arising integrals may easily become difficult such that a direct integration is not
possible anymore:

• Non-constant right hand sides f(x) and non-constant coefficients α(x);

• Higher-order shape functions;

• Non-uniform step sizes, more general domains.

In modern FEM programs, Algorithm 8.32 is complemented by an alterative evaluation of the integrals using
numerical quadrature. The general formula reads:∫

Ω

g(x) ≈
nq∑
l=0

ωlg(ql)

with quadrature weights ωl and quadrature points ql. The number of quadrature points is nq + 1.

Remark 8.34. The support points xi and ql do not need to be necessarily the same. For Gauss quadrature,
they are indeed different. For lowest-order interpolatory quadrature rules (box, Trapez) they correspond though.

8.6.3.1 Lowest-order quadrature rules A numerical quadrature rule is defined as4:

Definition 8.35 (Quadrature rule). Let f ∈ C[a, b]. A numerical quadrature formula to approximate the
integral I(f) :=

∫ b
a
f(x) dx is given by

In(f) :=

n∑
i=0

αif(xi)

with n+ 1 support points x0, . . . , xn and n+ 1 quadrature weights α0, . . . , αn.

The simplest quadrature rules are:

Definition 8.36 (Box rule). The box rule is the simplest quadrature rule. In the interval [a, b] the function
f(x) is simply approximated with a constant polynomial p(x) = f(a), i.e.,

I0(f) = (b− a)f(a),

This is the left-sided box rule. A corresponding version by taking the right boundary point is

I0(f) = (b− a)f(b).

Definition 8.37 (Midpoint rule). The function is interpolated in the middle of the interval with a constant
polynomial:

I0(f) = (b− a)f

(
a+ b

2

)
.

Definition 8.38 (Trapezoidal rule). The trapezoidal rule is obtained by integrating a linear polynomial through
(a, f(a)) and (b, f(b)) in order to approximate the function f(x):

I1(f) =
b− a

2
(f(a) + f(b)).

Remark 8.39. For more details on quadrature rules we refer to further literature such as for example [29].
Specifically, quadrature rules of optimal order are based on Gauss quadrature in which not only the number
of support points are important, but also their (optimal) location. In state-of-the-art finite element software
packages, Gauss quadrature is used to evaluate integrals.

4The definitions and notation of the quadrature rules are copied and translated from [29].

78

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

Remark 8.40. Concerning the order of the quadrature rule (namely up to which order polynomials are in-
tegrated in an exact way), numerical quadrature rules show similarities to finite differences schemes. For
instance, the trapozoidal rules in FD and numerical quadrature have the same name and the same order. The
box rules on the other hand correspond to backward and forward difference quotients yielding the backward and
forward Euler schemes.

Remark 8.41. It is important though that the quadrature rules are in accordance with the polynomials degree
of the finite element scheme. If the quadrature rules do not have sufficient order, the convergence is influenced
up to non-solvability of the linear equation system.

Exercise 9. Evaluate ∫ 3

−3

(1− x2)2 dx

using numerical quadrature (box-rule or trapezoidal rule) Which order is necessary to integrate in an exact
way?

Exercise 10. Evaluate the entries of the stiffness matrix A using the trapezoidal rule (be careful, the task is
nearly trivial).

Exercise 11. Let Ω = (0, 1). Implement a finite element scheme for solving

−∇ · (∇u) = 1 in Ω, (93)
u = 0 on ∂Ω (94)

in octave or C++ or python. Then, change the boundary conditions to

u = 1 on ∂Ω

Check your numerical solution by constructing an analytical solution (satisfying the PDE and the boundary
conditions) and evaluate

|uh(x0)− u(x0)|,

where x0 = 0.4 and uh indicates the numerical FE solution and u the analytical solution.

Exercise 12. Implement a finite element scheme for solving the PDE:

−εu′′(x) + u′(x) = 1, in Ω = (0, 1),

u(0) = u(1) = 0,

where ε is a small but positive parameter, e.g., take ε = 1, 10−2, 10−4. What do you observe in the numerical
results with respect to ε?

Exercise 13. Let Ω = (0, 1)2. Implement a finite element scheme for solving

−∇ · (∇u) = 1 in Ω, (95)
u = 0 on ∂Ω (96)

in octave or C++ or python.

8.6.3.2 Trapezoidal rule applied to the Poisson problem We continue the above example by choosing the
trapezoidal rule, which in addition, should integrate the arising integrals for the Poisson problem exactly:∫

Ks

g(x) ≈ hs
nq∑
l=0

ωlg(ql)

where hs is the length of interval/element Ks, nq = 1 and ωl = 0.5. This brings us to:∫
Ks

g(x) ≈ hs
g(q0) + g(q1)

2
.

79

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

Applied to our matrix entries, we have on an element Ks:

aii =

∫
Ks

φ′i(x)φ′i(x) dx ≈ hs
2

(
φ′i(q0)φ′i(q0) + φ′i(q1)φ′i(q1)

)
.

For the right hand side, we for the case f = 1 we can use for instance the mid-point rule:

1

hi

∫
Ki

φi(x) dx ≈ 1

hi
hiφi

(
xi + xi−1

2

)
= φi

(
xi + xi−1

2

)
.

Remark 8.42. If f = f(x) with an dependency on x, we should use a quadrature formula that integrates the
function f(x)φi(x) as accurate as possible.

Remark 8.43. It is important to notice that the order of the quadrature formula must be sufficiently high
since otherwise the quadrature error dominates the convergence behavior of the FEM scheme.

8.6.3.3 FE loops We have now all ingredients to extend Algorithm 8.32:

Algorithm 8.44 (Assembling using the trapezoidal rule). Let Ks, s = 0, . . . n be an element and let i and j be
the indices of the degrees of freedom (namely the basis functions). The basic algorithm to compute all entries
of the system matrix A and right hand side vector b is:

for all elements Ks with s = 0, . . . , n

for all DoFs i with i = 0, . . . , n+ 1

for all DoFs j with j = 0, . . . , n+ 1

for all quad points l with l = 0, . . . , nq

aij+ =
hs
2
φ′i(ql)φ

′
j(ql)

where nq = 1. Here + = means that entries with the same indices are summed. This is necessary because on
all cells Ks we assemble again aij.

for all elements Ks with s = 0, . . . , n

for all DoFs i with i = 0, . . . , n+ 1

for all quad points l with l = 0, . . . , nq

bi+ =
hs
2
f(ql)φi(ql)

Remark 8.45. In practice it is relatively easy to reduce the computational cost when a lot of zeros are
computed. We know due to the choice of the finite element, which DoFs are active on a specific element and
can assemble only these shape functions. For linear elements, we could easily add an if condition that only
these aij are assembled when |i− j| ≤ 1. We finally remark that these loops will definitely work, but there is a
second aspect that needs to be considered in practice which is explained in Section 8.6.4.

80

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

8.6.4 Details on the evaluation on the master element

In practice, all integrals are transformed onto a master element (or so-called reference element) and
evaluated there. This has the advantage that

• we only need to evaluate once all basis functions;

• numerical integration formulae are only required on the master element;

• independence of the coordinate system. For instance quadrilateral elements in 2D change their form
when the coordinate system is rotated [28].

The price to pay is to compute at each step a deformation gradient and a determinant, which is however easier
than evaluating all the integrals.
We consider the (physical) element K(hi)

i = [xi, xi+1], i = 0, . . . n and the variable x ∈ K
(hi)
i with and

hi = xi+1−xi. Without loss of generality, we work in the following with the first element K(h0)
0 = [x0, x1] and

h = h0 = x1 − x0 as shown in Figure 14. The generalization to s elements is briefly discussed in Section 8.6.5.

Figure 14: The mesh element K(h0)
0 .

The element K(hi)
i is transformed to the master element (i.e., the unit interval with mesh size h = 1)

K(1) := [0, 1] with the local variable ξ ∈ [0, 1] as shown in Figure 15.

Figure 15: The master element K(1).

For the transformations, we work with the substitution rule (see Section 3.13). Here in 1D, and in higher
dimensions with the analogon. We define the mapping

Th : K(1) → K
(h0)
0

ξ 7→ Th(ξ) = x = x0 + ξ · (x1 − x0) = x0 + ξh.

While function values can be identified in both coordinate systems, i.e.,

f(x) = f̂(ξ), f̂ defined in K(1),

derivatives will be complemented by further terms due to the chain rule that we need to employ. Differentiation
in the physical coordinates yields

d

dx
: 1 = (x1 − x0)

dξ

dx
⇒ dx = (x1 − x0) · dξ.

The volume (here in 1D: length) change can be represented by the determinant of the Jacobian of the trans-
formation:

J := x1 − x0 = h.

These transformations follow exactly the way as they are known in continuum mechanics. Thus for higher
dimensions we refer exemplarily to [20], where transformations between different domains can be constructed.

81

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

We now construct the inverse mapping

T−1
h : K

(h0)
0 → K(1)

x 7→ T−1
h (x) = ξ =

x− x0

x1 − x0
=
x− x0

h
,

with the derivative
∂xT

−1
h (x) = ξx =

dξ

dx
=

1

x1 − x0
.

A basis function ϕhi on K(h0)
0 reads:

ϕhi (x) := ϕ1
i (T
−1
h (x)) = ϕ1

i (ξ)

and for the derivative we obtain with the chain rule:

∂xϕ
h
i (x) = ∂ξϕ

1
i (ξ) · ∂xT−1

h (x) = ∂ξϕ
1
i (ξ) · ξx

with T−1
h (x) = ξ.

Example 8.46. We provide two examples. Firstly:∫
Kh

f(x)ϕhi (x) dx
Sub.
=

∫
K(1)

f(Th(ξ)) · ϕ1
i (ξ) · J · dξ, (97)

and secondly, ∫
Kh

∂xϕ
h
i (x) · ∂xϕhj (x) dx =

∫
K(1)

(
∂ξϕ

1
i (ξ)

)
· ξx ·

(
∂ξϕ

1
j (ξ)

)
· ξx · J dξ. (98)

We can now apply numerical integration using again the trapezoidal rule and obtain for the two previous
integrals: ∫

Th

f(x)ϕhi (x) dx
(97)
≈

q∑
k=1

ωkf(Fh(ξk))ϕ1
i (ξk) · J

and for the second example:∫
Th

∂xϕ
h
j (x)∂xϕ

h
i (x) dx ≈

q∑
k=1

ωk

(
∂ξϕ

1
j (ξk) · ξx

)
·
(
∂ξϕ

1
i (ξk) · ξx

)
· J.

Remark 8.47. These final evaluations can again be realized by using Algorithm 8.44, but are now performed
on the unit cell K(1).

8.6.5 Generalization to s elements

We briefly setup the notation to evaluate the integrals for s elements:

• Let n be the index of the end point xn = b (b is the nodal point of the right boundary). Then, n− 1 is
the number of elements (intervals in 1d), and n+1 is the number of the nodal points (degrees of freedom
- DoFs) and the number shape functions, respectively (see also Figure 13);

• K(hs)
s = [xs, xs+1], s = 0, . . . n− 1.

• hs = xs+1 − xs;

• Ts : K(1) → K
(hs)
s : ξ 7→ Ts(ξ) = xs + ξ(xs+1 − xs) = xs + ξhs;

• T−1
s : K

(hs)
s → K(1) : x 7→ T−1

s (x) = x−xs
hs

;

• ∇T−1
s (x) = ∂xT

−1
s (x) = 1

hs
(in 1D);

• ∇Ts(ξ) = ∂xTs(ξ) = (xs + ξhs)
′ = hs (in 1D);

• Js := det(∇Ts(ξ)) = (xs + ξhs)
′ = hs (in 1D).

82

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

8.6.6 Example: Section 8.6.2 continued using Sections 8.6.4 and 8.6.5

We continue Example 8.6.2 and build the system matrix A by using the master element. In the following, we
evaluate the Laplacians in weak form:

aij =

∫
Ks

φ′i(x) · φ′j(x) dx =

∫
K(1)

φ′i(ξ) ∂xT
−1
s (x) · φ′j(ξ) ∂xT−1

s (x) Js dξ

=

∫
K(1)

φ′i(ξ)
1

hs
· φ′j(ξ)

1

hs
hs dξ

=

∫
K(1)

φ′i(ξ) · φ′j(ξ)
1

hs
dξ.

We now compute once! the required integrals on the unit element (i.e., the master element) K(1). Here,
ξ0 = 0 and ξ1 = 1 with h(1) = ξ1 − ξ0 = 1 resulting in two shape functions:

φ0(ξ) =
ξ1 − ξ
h(1)

, φ1(ξ) =
ξ − ξ0
h(1)

.

The derivatives are given by:

φ′0(ξ) =
−1

h(1)
= −1, φ′1(ξ) =

1

h(1)
= 1.

1

ξ1 = 1

φ0(ξ) φ1(ξ)

ξ0 = 0
K(1)

h(1)

Figure 16: The master element K(1) including nodal points and mesh size parameter h(1).

With these calculations, we compute all combinations on the master element required to evaluate the Lapla-
cian in 1d:

a
(1)
00 =

∫
K(1)

φ′0(ξ) · φ′0(ξ) dξ =

∫
K(1)

(−1)2 dξ = 1,

a
(1)
01 =

∫
K(1)

φ′0(ξ) · φ′1(ξ) dξ =

∫
K(1)

(−1) · 1 dξ = −1,

a
(1)
10 =

∫
K(1)

φ′1(ξ) · φ′0(ξ) dξ =

∫
K(1)

1 · (−1) dξ = −1,

a
(1)
11 =

∫
K(1)

φ′1(ξ) · φ′1(ξ) dξ =

∫
K(1)

1 · 1 dξ = 1.

It is clear what happens on each element Ks using Algorithm 8.32:

83

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

as00 =

∫
K(1)

φ′0(ξ) · φ′0(ξ)
1

hs
dξ =

1

hs

∫
K(1)

(−1)2 dξ =
1

hs
,

as01 =

∫
K(1)

φ′0(ξ) · φ′1(ξ)
1

hs
dξ =

1

hs

∫
K(1)

(−1) · 1 dξ =
−1

hs
,

as02 =

∫
K(1)

φ′0(ξ) · φ′2(ξ)
1

hs
dξ =

1

hs

∫
K(1)

(−1) · 0 dξ = 0,

as03 =

∫
K(1)

φ′0(ξ) · φ′3(ξ)
1

hs
dξ =

1

hs

∫
K(1)

(−1) · 0 dξ = 0,

as04 =

∫
K(1)

φ′0(ξ) · φ′4(ξ)
1

hs
dξ =

1

hs

∫
K(1)

(−1) · 0 dξ = 0.

Next, we increase i→ i+ 1 resulting in i = 1 and compute:

as10, as11, as12, as13, as14.

We proceed until i = 4. This procedure is done for all elements Ks with s = 0, 1, 2, 3. As stated in Algorithm
8.32, the procedure is however inefficient since a lot of zeros are assembled. Knowing the structure of the
matrix (i.e., the sparsity pattern) allows us upfront only to assemble the entries with non-zero entries.
Anyhow, the system matrix is composed by (the same as in Section 8.6.2):

A =

∑
s a

s
00

∑
s a

s
01

∑
s a

s
02

∑
s a

s
03

∑
s a

s
04∑

s a
s
10

∑
s a

s
11

∑
s a

s
12

∑
s a

s
13

∑
s a

s
14∑

s a
s
20

∑
s a

s
21

∑
s a

s
22

∑
s a

s
23

∑
s a

s
24∑

s a
s
30

∑
s a

s
31

∑
s a

s
32

∑
s a

s
33

∑
s a

s
34∑

s a
s
40

∑
s a

s
41

∑
s a

s
42

∑
s a

s
43

∑
s a

s
44

=

1
h0

−1
h0

0 0 0
−1
h0

1
h0

+ 1
h1

−1
h1

0 0

0 −1
h1

1
h1

+ 1
h2

−1
h2

0

0 0 −1
h2

1
h2

+ 1
h3

−1
h3

0 0 0 −1
h3

1
h3

.

This matrix is the same as if we had evaluated all shape functions on the physical elements with a possibly
non-uniform step size hs, s = 0, 1, 2, 3.

Remark 8.48. Good practical descriptions for higher dimensions can be found in [22][Chapter 12] and [31].

84

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

8.7 Quadratic finite elements: P2 elements

8.7.1 Algorithmic aspects

We explain the idea how to construct higher-order FEM in this section. Specifically, we concentrate on P2

elements, which are quadratic on each element Ks. First we define the discrete space:

Vh = {v ∈ C[0, 1]| v|Kj ∈ P2}

The space Vh is composed by the basis functions:

Vh = {φ0, . . . , φn+1, φ 1
2
, . . . , φn+ 1

2
}.

The dimension of this space is dim(Vh) = 2n+ 1. Here, we followed the strategy that we use the elements Ks

as in the linear case and add the mid-points in order to construct unique parabolic functions on each Ks. The
mid-points represent degrees of freedom as the two edge points. For instance on each Kj = [xj , xj+1] we have
as well xj+ 1

2
= xj + h

2 , where h = xj+1 − xj . From this construction it is clear (not proven though!) that
quadratic FEM have a higher accuracy than linear FEM.

xi

1

xi+1xi+1
2

φi φi+1φi+1
2

Figure 17: Quadratic basis functions

The specific construction of shape functions can be done as shown in 8.5.3 or using directly Lagrange basis
polynomials (see lectures on introduction of numerical methods).

Definition 8.49 (P2 shape functions). On the master element K(1), we have

φ0(ξ) = 1− 3ξ + 2ξ2,

φ 1
2
(ξ) = 4ξ − 4ξ2,

φ1(ξ) = −ξ + 2ξ2.

These basis functions fulfill the property:

φi(ξj) =

1 i = j

0 i 6= j

for i, j = 0, 1
2 , 1. On the master element, a function has therefore the prepresentation:

u(ξ) =

1∑
j=0

ujφj(ξ) + u 1
2
φ 1

2
(ξ).

This definition allows us to construct a global function from Vh:

Proposition 8.50. The space Vh is a subspace of V . Each function from Vh has a unique representation and
is defined by its nodal points:

uh(x) =

n+1∑
j=0

ujφj(x) +

n∑
j=0

uj+ 1
2
φ 1

2
(x).

Remark 8.51. The assembling of A, u and b is done in a similar fashion as shown in detail for linear finite
elements.

85

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

8.7.2 Numerical test: 1D Poisson using quadratic FEM

We continue Section 8.5.8.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0 0.2 0.4 0.6 0.8 1

u
(x

)

x

h = 0.5, DoFs = 5
h = 0.25, DoFs = 9

h = 0.125, DoFs = 17
h = 0.0625, DoFs = 33

h = 0.03125, DoFs = 65
Min. u(x) = -0.125

Figure 18: Solution of the 1D Poisson problem with f = −1 using quadratic finite elements with various mesh
sizes h. DoFs is the abbreviation for degrees of freedom; here the number of support points xj . The
dimension of the discrete space is DoFs. For instance for h = 0.5, we have 2 mesh elements, we
have 5 DoFs and three basis functions, thus dim(Vh) = 5. The numerical solutions are computed
with an adaptation of step-3 in deal.II [4, 5]. Please notice that the picture norm is not a proof
in the strict mathematical sense: to show that the purple, and blue lines come closer and closer
must be confirmed by error estimates as presented for instance in [37] accompanied by numerical
simulations in Section 8.9. Of course, for this 1D Poisson problem, we easily observe a limit case,
but for more complicated equations it is often not visible whether the solutions do converge.

Remark 8.52. Be careful when plotting the solution using higher-order FEM. Sometimes, the output data is
only written into the nodal values values defining the physical elements. In this case, a quadratic function is
visually the same as a linear function. Plotting in all degrees of freedom would on the other hand shows also
visually that higher-order FEM are employed.

Level Elements DoFs
======================
1 2 5
2 4 9
3 8 17
4 16 33
5 32 65
======================

86

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

8.7.3 Influence of numerical quadrature

We discuss one simple example for a situation where the system matrix will be singular. Since r′ ≥ m we have
convergence of the procedure. Where r′ means the degree of the quadrature rule and m is the degree of the
FEM polynomials.
We assume the one-dimensional Poisson problem, take quadratic finite elements and use the middle-point

rule as integration formula. So we solve

−u′′ = f, u(0) = (1) = 0

and take quadratic basic functions in the interval [0, 1] with equidistant step size h = xi − xi−1. There is an
additional point required, so we take the middle point of the cells Ti,

xi−1/2 :=
1

2
(xi−1 − xi)

The construction of the quadratic function v satisfies

v(x) =

N∑
i=0

viψi(x) +

N∑
i=1

vi−1/2ψi−1/2(x)

with the following properties

i) ψi(xk) = δik, ψi(xk−1/2) = 0

ii) ψi−1/2(xk) = 0, ψi−1/2(xk−1/2) = δik

Now, we get three quadratic basic functions

ψi(x) =

(x−xi−1)(x−xi−1/2)

(xi−xi−1)(xi−xi−1/2) , x ∈ Ti
(x−xi+1)(x−xi+1/2)

(xi−xi+1)(xi−xi+1/2) , x ∈ Ti+1

0, otherwise

and

ψi−1/2(x) =

(x−xi−1)(x−xi)

(xi−1/2−xi)(xi−1/2−xi+1) , x ∈ Ti

0, otherwise

Next task is constructing the derivatives and give the variational formulation of the one-dimensional Laplace
problem. Then solving integrals with middle-point rule,∫ b

a

f(x) dx ≈ (b− a) f

(
a+ b

2

)
+

1

24
f ′′(ξ)(b− a)3 (99)

One know that the middle-point rule has degree 1. Using this quadrature formula for quadratic elements fails
and the resulting systemmatrix A will have some zeros, so it is singular. For a local element we obtain

∂xψi−1(x) =
2

h2
i

(2x− xi−1/2 − xi)

∂xψi−1/2(x) =
2

h2
i

(xi + xi−1 − 2x)

∂xψi(x) =
2

h2
i

(2x− xi−1/2 − xi−1)

87

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

and the following integrals

A11 =

∫ xi

xi−1

(∂xψi−1)2 dx

A22 =

∫ xi

xi−1

(∂xψi−1/2)2 dx ≈ hi(∂xψi−1/2(xi−1/2))2 = 0

A33 =

∫ xi

xi−1

(∂xψi)
2 dx

A12 = A21 =

∫ xi

xi−1

∂xψi−1 · ∂xψi−1/2 dx ≈ hi
[
(∂xψi−1 · ∂xψi−1/2)(xi−1/2)

]
= 0

A13 = A31 =

∫ xi

xi−1

∂xψi−1 · ∂xψi dx

A23 = A32 =

∫ xi

xi−1

∂xψi−1/2 · ∂xψi dx ≈ hi
[
(∂xψi−1/2 · ∂xψi)(xi−1/2)

]
= 0

At last we write the results in our matrix,

A =

A11 0 A13

0 0 0

A31 0 A33

 (100)

8.8 Solving the linear equation system

8.8.1 Overview

The previous choices of basis functions φh ∈ Vh (or better the space Vh itself) have been constructed in such
a way that some special properties for the matrix are obtained:

• In order to obtain an accurate representation of the solution uh we need to work with a great number of
basis functions φh, i.e., the space Vh is large, i.e, dim(Vh) = n is large!

• On the other hand A should be sparse in order to allow for a fast solution.

• The condition number of the matrix should be not too bad because a bad condition number results in
a large number of iterations when using iterative solution methods for solving Au = b. The condition
number χ(A) of a matrix A is defined as

χ(A) =
λmax
λmin

,

where λmax = maxj λj and λmin = minj λj are the maximal and minimal eigenvalues of the matrix A.

Remark 8.53. The wishes No. 2 and 3 are again fulfilled by using finite elements rather than other basis
functions.

Remark 8.54. As other remarks before, the numerical solution of coupled, nonlinear, partial differential
equations, which are robust and efficient is an active research topic.

For a moderate number of unknowns a so-called direct solver (LU decomposition, Cholesky) is a good choice
to solve AU = B. Such methods are always available in most software packages such as Matlab, octave,
python, etc:

U = sp.sparse.linalg.spsolve(A,B) // in octave
U = A\B // in octave / Matlab

For big systems, iterative solvers are the methods of choice because they require less memory and less
computational cost than direct solvers. We provide a brief introduction in the following section.

88

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

8.8.2 Basic iterative solvers

A large class of schemes is based on so-called fixed point methods:

f(x) = x

We provide in the following a brief introduction that is based on [29]. First, we have

Definition 8.55. Let A ∈ Rn×n, b ∈ Rn and C ∈ Rn×n. For an initial guess x0 ∈ Rn we iterate for
k = 1, 2, . . .:

xk = xk−1 + C(b−Axk−1).

Please be careful that k does not denote the power, but the current iteration index. Furthermore, we introduce:

B := I − CA and c := Cb.

Then:
xk = Bxk−1 + c.

Thanks to the construction of
g(x) = Bx+ c = x+ C(b−Ax)

it is trivial to see that in the limit k →∞, it holds

g(x) = x

with the solution
Ax = b

Remark 8.56. Thanks to Banach’s fixed point theorem (see again [29]), we can investigate under which
conditions the above scheme will converge. Recall our discussions about the stability of the schemes for solving
ODEs in which we found that |B| < 1 should hold. Please also recall the corresponding numerical tests of
Section 13.2 (blow-up, zig-zag solution and converged solution). Here the situation is very similar and we must
ensure that

‖g(x)− g(y)‖ ≤ ‖B‖ ‖x− y‖.

A big problem (which is also true for the ODE cases) is that different norms may predict different results. For
instance it may happen that

‖B‖2 < 1 but ‖B‖∞ > 1.

For this reason, one often works with the spectral norm spr(B). More details can be found for instance in [29].

We concentrate now on the algorithmic aspects. The two fundamental requirements for the matrix C (defined
above) are:

• It should hold C ≈ A−1 and therefore ‖I − CA‖ � 1;

• It should be simple to construct C.

Of course, we easily see that these two requirements are conflicting statements. As always in numerics we need
to find a trade-off that is satisfying for the developer and the computer.

Definition 8.57 (Richardson iteration). The simplest choice of C is the identity matrix, i.e.,

C = I

Then, we obtain the Richardson iteration

xk = xk−1 + ω(b−Axk−1)

with a relaxation parameter ω > 0.

89

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

Further schemes require more work and we need to decompose the matrix A first:

A = L+D + U.

Here, L is a lower-triangular matrix, D a diagional matrix, and U an upper-triangular matrix. In more detail:

A =

0 . . . 0

a21
. . .

...
. . .

. . .

an1 . . . an,n−1 0

︸ ︷︷ ︸

=:L

+

a11 . . . 0

. . .
. . .

0 . . . ann

︸ ︷︷ ︸

=:D

+

0 a12 . . . a1n

. . .
. . .

...
. . . an−1,n

0 . . . 0

︸ ︷︷ ︸

=:U

.

With this, we can now define two very important schemes:

Definition 8.58 (Jacobi method). To solve Ax = b with A = L+D +R let x0 ∈ Rn be an initial guess. We
iterate for k = 1, 2, . . .

xk = xk−1 +D−1(b−Axk−1)

or in other words J := −D−1(L+R):
xk = Jxk−1 +D−1b.

Definition 8.59 (Gauß-Seidel method). To solve Ax = b with A = L+D+R let x0 ∈ Rn be an initial guess.
We iterate for k = 1, 2, . . .

xk = xk−1 + (D + L)−1(b−Axk−1)

or in other words H := −(D + L)−1R:

xk = Hxk−1 + (D + L)−1b.

To implement these two schemes, we provide the presentation in index-notation:

Theorem 8.60 (Index-notation of the Jacobi- and Gauß-Seidel methods). One step of the Jacobi method and
Gauß-Seidel method, respectively, can be carried out in n2 +O(n) operations. For each step, in index-notation
for each entry it holds:

xki =
1

aii

bi − n∑
j=1,j 6=i

aijx
k−1
j

 , i = 1, . . . , n,

i.e., (for the Gauss-Seidel method):

xki =
1

aii

bi −∑
j<i

aijx
k
j −

∑
j>i

aijx
k−1
j

 , i = 1, . . . , n.

An alternative class of methods is based on so-called descent or gradient methods, which further improve
the previously introduced methods. So far, we have:

xk+1 = xk + dk, k = 1, 2, 3, . . .

where dk denotes the direction in which we go at each step. For instance:

dk = D−1(b−Axk), dk = (D + L)−1(b−Axk)

for the Jacobi and Gauss-Seidel methods, respectively. To improve these kind of iterations, we have two
possiblities:

• Introducing a relaxation (or so-called damping) parameter ωk > 0 (possibly adapted at each step) such
that

xk+1 = xk + ωkdk,

90

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

and/or to improve the search direction dk such that we reduce the error as best as possible. We restrict our
attention to positive definite matrices as they appear in the discretization of elliptic PDEs studied previously
in this section. A key point is another view on the problem by regarding it as a minimization problem for which
Ax = b is the first-order necessary condition and consequently the sought solution. Imagine for simplicity that
we want to minimize f(x) = 1

2ax
2− bx. The first-order necessary condition is nothing else than the derivative

f ′(x) = ax− b. We find a possible minimum via f ′(x) = 0, namely

ax− b = 0 ⇒ x = a−1b, if a 6= 0.

That is exactly the same how we would solve a linear matrix system Ax = b. By regarding it as a minimum
problem we understand better the purpose of our derivations: How does minimizing a function f(x) work in
terms of an iteration? Well, we try to minimize f at each step k:

f(x0) > f(x1) > . . . > f(xk)

This means that the direction dk (to determine xk+1 = xk + ωkdk) should be a descent direction. This idea
can be applied to solving linear equation systems. We first define the quadratic form

Q(y) =
1

2
(Ay, y)2 − (b, y)2,

where (·, ·) is the Euclidian scalar product. Then, we can define

Algorithm 8.61 (Descent method - basic idea). Let A ∈ Rn×n be positive definite and x0, b ∈ Rn. Then for
k = 0, 1, 2, . . .

• Compute dk;

• Determine ωk as minimum of ωk = argminQ(xk + ωkdk);

• Update xk+1 = xk + ωkdk.

For instance dk can be determined via the Jacobi or Gauss-Seidel methods.

Another possibility is the gradient method in which we use the gradient to obtain search directions dk. This
brings us to the gradient method:

Algorithm 8.62 (Gradient descent). Let A ∈ Rn×n positive definite and the right hand side b ∈ Rn. Let the
initial guess be x0 ∈ R and the initial search direction d0 = b−Ax0. Then k = 0, 1, 2, . . .

• Compute the vector rk = Adk;

• Compute the relaxation

ωk =
‖dk‖22

(rk, dk)2

• Update the solution vector xk+1 = xk + ωkdk.

• Update the search direction vector dk+1 = dk − ωkrk.

One can show that the gradient method converges to the solution of the linear equation system Ax = b (see for
instance [29]).

Exercise 14. Implement the descent method, Jacobi and Gauss-Seidel approaches for solving

A =

 2 −1 0

−1 2 −1

0 −1 2

, b =

 2

−3

4

, x =

 1

0

2

.
As initial guess take x0 = 0 and compute for each method 10 steps.

Remark 8.63. Other important methods that we have not studied in these lecture notes are the conjugate
gradient method (CG), preconditioned methods, Krylov subspace methods (such as CG, GMRES - generalized
minimal residual method) and multigrid methods.

91

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

8.8.3 Conjugate gradients (a Krylov space method)

This section is copy and paste from [29][Section 7.8] and translation from German into English. Gradient
descent may converge slowly in most cases because search directions are in general dk 6⊥ dk+2.

8.8.3.1 Formulation of the CG scheme In order to enhance the performance of gradient descent, the conju-
gate gradient (CG) scheme was developed. Here, the search directions {d0, . . . , dk−1} are pairwise orthogonal.
The measure of orthogonality is achievend by using the A scalar product:

(Adr, ds) = 0 ∀r 6= s

At step k, we seek the approximation xk = x0 +
∑k−1
i=0 αid

i as the minimum of all α = (α0, . . . , αk−1) with
respect to Q(xk):

min
α∈Rk

Q

x0 +

k−1∑
i=0

αid
i

 = min
α∈Rk

1

2

Ax0 +

k−1∑
i=0

αiAd
i, x0 +

k−1∑
i=0

αid
i

−
b, x0 +

k−1∑
i=0

αid
i

The stationary point is given by

0
!
=

∂

∂αj
Q(xk) =

Ax0 +

k−1∑
i=0

αiAd
i, dj

 − (b, dj) = −
(
b−Axk, dj

)
, j = 0, . . . , k − 1.

Therefore, the new residual b − Axk is perpendicular to all search directions dj for j = 0, . . . , k − 1. The
resulting linear equation system

(b−Axk, dj) = 0 ∀j = 0, . . . , k − 1 (101)

has the feature of Galerkin orthogonality, which we know as property of FEM schemes.
While constructing the CG method, new search directions should be linearly independent of the current dj .

Otherwise, the space would not become larger and consequently, the approximation cannot be improved.

Definition 8.64 (Krylov space). We choose an initial approximation x0 ∈ Rn with d0 := b−Ax0 the Krylov
space Kk(d0, A) such that

Kk(d0, A) := span{d0, Ad0, . . . , Ak−1d0}.
Here, Ak means the k-th power of A.

It holds:

Lemma 8.65. Let Akd0 ∈ Kk. Then, the solution x ∈ Rn of Ax = b is an element of the k-th Krylov space
Kk(d0, A).

Proof. Let Kk be given and xk ∈ x0 +Kk the best approximation, which fulfills the Galerkin equation (101)
Let rk := b−Axk. Since

rk = b−Axk = b−Ax0︸ ︷︷ ︸
=d0

+A (x0 − xk)︸ ︷︷ ︸
∈Kk

∈ d0 +AKk

it holds rk ∈ Kk+1. Supposing that Kk+1 ⊂ Kk, we obtain rk ∈ Kk. The Galerkin equation yields rk ⊥ Kk,
from which we obtain rk = 0 and Axk = b.

If the CG scheme aborts since it cannot find new search directions, the solution is found. Let us assume
that the A-orthogonal search directions {d0, d1, . . . , dk−1} have been found, then we can compute the next CG
approximation using the basis representation xk = x0 +

∑
αid

i and employing the Galerkin equation:b−Ax0 −
k−1∑
i=0

αiAd
i, dj

 = 0 ⇒ (b − Ax0, dj) = αj(Ad
j , dj) ⇒ αj =

(d0, dj)

(Adj , dj)

The A-orthogonal basis {d0, . . . , dk−1} of the Krylov space Kk(d0, A) can be computed with the Gram-
Schmidt procedure. However, this procedure has a high computational cost; see e.g., [29]. A better procedure
is a two-step recursion formula, which is efficient and stable:

92

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

Lemma 8.66 (Two-step recursion formula). Let A ∈ Rn×n symmetric positive definite and x0 ∈ Rn and
d0 := b−Ax0. Then, for k = 1, 2, . . . , the iteration

rk := b−Axk, βk−1 := − (rk, Adk−1)

(dk−1, Adk−1)
, dk := rk − βk−1d

k−1

constructs an A-orthogonal basis with (Adr, ds) = 0 for r 6= s. Here xk in step k defines the new Galerkin
solution (b−Axk, dj) = 0 for j = 0, . . . , k − 1.

Proof. See [29].

We collect now all ingredients to construct the CG scheme. Let x0 be an initial guess and d0 := b − Ax0

the resulting defect. Suppose that Kk := span{d0, . . . , dk−1} and xk ∈ x0 + Kk and rk = b − Axk have been
computed. Then, we can compute the next iterate dk according to Lemma 8.66:

βk−1 = − (rk, Adk−1)

(dk−1, Adk−1)
, dk = rk − βk−1d

k−1. (102)

For the new coefficient αk in xk+1 = x0 +
∑k
i=0 αid

i holds with testing in the Galerkin equation (101) with
dk:b−Ax0︸ ︷︷ ︸

=d0

−
k∑
i=0

αiAd
i, dk

 = (b − Ax0, dk) − αk(Adk, dk) = (b − Ax0 + A(x0 − xk)︸ ︷︷ ︸
∈Kk

, dk) − αk(Adk, dk).

That is

αk =
(rk, dk)

(Adk, dk)
, xk+1 = xk + αkd

k. (103)

This allows to compute the new defect rk+1:

rk+1 = b−Axk+1 = b−Axk − αkAdk = rk − αkAdk (104)

We summarize (102 − 104) and formulate the classical CG scheme:

Algorithm 8.67. Let A ∈ Rn×n symmetric positive definite and x0 ∈ Rn and r0 = d0 = b − Ax0 be given.
Iterate for k = 0, 1, . . . :

1. αk = (rk,dk)
(Adk,dk)

2. xk+1 = xk + αkd
k

3. rk+1 = rk − αkAdk

4. βk = (rk+1,Adk)
(dk,Adk)

5. dk+1 = rk+1 − βkdk

Without round-off errors, the CG scheme yields after (at most) n steps the solution of a n-dimensional
problem and is in this sense a direct method rather than an iterative scheme. However, in practice for huge
n, the CG scheme is usually stopped earlier, yiedling an approximate solution.

Proposition 8.68 (CG as a direct method). Let x0 ∈ Rn be any initial guess. Assuming no round-off errors,
the CG scheme terminates after (at most) n steps with xn = x. At each step, we have:

Q(xk) = min
α∈R

Q(xk−1 + αdk−1) = min
y∈x0+Kk

Q(y)

i.e.,
‖b−Axk‖A−1 = min

y∈x0+Kk
‖b−Ay‖A−1

with the norm
‖x‖A−1 = (A−1x, x)

1
2
2 .

93

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

Proof. That the CG scheme is a direct scheme follows from Lemma 8.65.
The iterate is given by

Q(xk) = min
y∈x0+Kk

Q(y),

with is equivalent to (101). The ansatz

xk = x0 +

k−1∑
k=0

αkd
k−1 = x0 + yk−1︸︷︷︸

∈Kt−1

+αt−1d
k−1

yields
(b−Axk, dj) = (b−Ayk−1, dj)− αt−1(Adk−1, dj) = 0 ∀j = 0, . . . , t− 1

that is
(b−Ayk−1, dj) = 0 ∀j = 0, . . . , t− 2,

and therefore yk−1 = xk−1 and
Q(xk) = min

α∈R
Q(xk−1 + αdk−1).

Finally, employing symmetry A = AT , we obtain:

‖b−Ay‖2A−1 = (A−1[b−Ay], b−Ay)2 = (Ay, y)2 − (A−1b, Ay)2 − (y, b)2

= (Ay, y)2 − 2(b, y)2,

i.e., the relationship ‖b−Ay‖2A−1 = 2Q(y).

Remark 8.69 (The CG scheme as iterative scheme). As previosously mentioned, in pratice the CG scheme
is (always) used as iterative method rather than a direct method. Due to round-off errors the search directions
are never 100% orthogonal.

8.8.3.2 Convergence analysis of the CG scheme We now turn our attention to the convergence analysis,
which is a nontrivial task. The key is the following characterization of one iteration xk = x0 +Kk by

xk = x0 + pk−1(A)d0,

where pk−1 ∈ Pk−1 is a polynomial in A:

pk−1(A) =

k−1∑
i=0

αiA
i

The characterization as minimization of Proposition 8.68 can be written as:

‖b−Axk‖A−1 = min
y∈x0+Kk

‖b−Ay‖A−1 = min
q∈Pk−1

‖b−Ax0 −Aq(A)d0‖A−1 .

When we employ the ‖ · ‖A norm, we obtain with d0 = b−Ax0 = A(x− x0)

‖b−Axk‖A−1 = ‖x− xk‖A = min
q∈Pk−1

‖(x− x0)− q(A)A(x− x0)‖A,

that is
‖x− xk‖A = min

q∈Pk−1

‖[I − q(A)A](x− x0)‖A.

In the sense of the best approximation property, we can formulate this task as:

p ∈ Pk−1 : ‖[I − p(A)A](x− x0)‖A = min
q∈Pk−1

‖[I + q(A)A](x− x0)‖A. (105)

The characterization as best approximation is key in the convergence analysis of the CG scheme. Let q(A)A ∈
Pk(A). We seek a polynomial q ∈ Pk with q(0) = 1, such that

‖xk − x‖A ≤ min
q∈Pk, q(0)=1

‖q(A)‖A‖x− x0‖A. (106)

The convergence of the CG method is related to the fact whether we can construct a polynomial q ∈ Pk
with p(0) = 1 such that the A norm is as small as possible. First, we have:

94

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

Lemma 8.70 (Bounds for matrix polynomials). Let A ∈ Rn×n symmetric positive definite with the eigenvalues
0 < λ1 ≤ · · · ≤ λn, and p ∈ Pk a polynomials with p(0) = 1:

‖p(A)‖A ≤M, M := min
p∈Pk, p(0)=1

sup
λ∈[λ1,λn]

|p(λ)|.

Proof. See [29].

Employing the previous result and the error estimate (106), we can now derive a convergence result for the
CG scheme.

Proposition 8.71 (Convergence of the CG scheme). Let A ∈ Rn×n be symmetric positive definite. Let b ∈ Rn
a right hand side vector and let x0 ∈ Rn be an initial guess. Then:

‖xk − x‖A ≤ 2

(
1− 1/

√
κ

1 + 1/
√
κ

)k
‖x0 − x‖A, k ≥ 0,

with the spectral condition κ = cond2(A) of the matrix A.

Remark 8.72. We see immediately that a large condition number κ� 1 yields

1− 1/
√
κ

1 + 1/
√
κ
→ 1

and deteriorates significantly the convergence rate of the CG scheme. This is the key reason why preconditioners
of the form P−1 ≈ A−1 are introduced that re-scale the system; see Section 8.8.4:

P−1A︸ ︷︷ ︸
≈I

x = P−1b.

Computations to substantiate these findings are provided in Section 8.9.5.

Proof. Of Prop. 8.71.
From the previous lemma and the estimate (106) it follows

‖xk − x‖A ≤M‖x0 − x‖A

with
M = min

q∈Pk, q(0)=1
max

λ∈[λ1,λn]
|q(λ)|.

We have to find a sharp estimate of the size of M . That is to say, we seek a polynomial q ∈ Pk which takes
at the origin the value 1, i.e., q(0) = 1 and which simultaneously has values near 0 in the maximum norm in
the interval [λ1, λn]. To this end, we work with the Tschebyscheff approximation (see e.g., [29] and references
therein for the original references). We seek a best approximation p ∈ Pk of the zero function on [λ1, λn]. Such
a polynomial should have the property p(0) = 1. For this reason, the trivial solution p = 0 is not valid. A
Tschebyscheff polynomial reads:

Tk = cos
(
k arccos(x)

)
and has the property:

2−k−1 max
[−1,1]

|Tk(x)| = min
α0,...,αk−1

max
[−1,1]

|xk +

k−1∑
i=0

αix
k|.

We choose now the transformation:
x 7→ λn + λ1 − 2t

λn − λ1

and obtain with

p(t) = Tk

(
λn + λ1 − 2t

λn − λ1

)
Tk

(
λn + λ1

λn − λ1

)−1

95

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

a polynomial of degree k, which is minimal on [λ1, λn] and can be normalized by

p(0) = 1.

It holds:

sup
t∈[λ1,λn]

|p(t)| = Tk

(
λn + λ1

λn − λ1

)−1

= Tk

(
κ+ 1

κ− 1

)−1

(107)

with the spectral condition:

κ :=
λn
λ1
.

We now employ the Tschebyscheff polynomials outside of [−1, 1]:

Tn(x) =
1

2

[
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

]
For x = κ+1

κ−1 , it holds:

κ+ 1

κ− 1
+

√(
κ+ 1

κ− 1

)2

− 1 =
κ+ 2

√
κ+ 1

κ− 1
=

√
κ+ 1√
κ− 1

and therefore
κ+ 1

κ− 1
−

√(
κ+ 1

κ− 1

)2

− 1 =

√
κ− 1√
κ+ 1

.

Using this relationship, we can estimate (107):

Tk

(
κ+ 1

κ− 1

)
=

1

2

[(√κ+ 1√
κ− 1

)k
+

(√
κ− 1√
κ+ 1

)k]
≥ 1

2

(√
κ+ 1√
κ− 1

)k
It follows that

sup
t∈[λ1,λn]

Tk

(
κ+ 1

κ− 1

)−1

≤ 2

(√
κ− 1√
κ+ 1

)k
= 2

1− 1√
κ

1 + 1√
κ

k

.

This finishes the proof.

8.8.4 Preconditioning

This section is copy and paste from [29][Section 7.8.1] and translation from German into English.
The rate of convergence of iteratice schemees depends on the condition number of the system matrix. For

instance, we recall that for second-order operators (such as Laplace) we have a dependence on the mesh size
O(h−2) = O(N) (in 2D) (see Section 11 for the relation between h and N). For the CG scheme it holds:

ρCG =
1− 1√

κ

1 + 1√
κ

= 1− 2√
κ

+O

(
1

κ

)
.

Preconditioning reformulates the original system with the goal of obtaining a moderate condition number for
the modified system. Let P ∈ Pn×n be a matrix with

P = KKT .

Then:
Ax = b ⇔ K−1A(KT)−1︸ ︷︷ ︸

=:Ã

KTx︸ ︷︷ ︸
=:x̃

= K−1b︸ ︷︷ ︸
=:b̃

,

which is
Ãx̃ = b̃.

96

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

In the case of
cond2(Ã)� cond2(A)

and if the application of K−1 is cheap, then the consideration of a preconditioned system Ãx̃ = b̃ yields a
much faster solution of the iterative scheme. The condition P = KKT is necessary such that the matrix Ã
keeps its symmetry.
The preconditioned CG scheme (PCG) can be formulated as:

Algorithm 8.73. Let A ∈ Rn×n symmetric positive definite and P = KKT a symmetric preconditioner.
Choosing an initial guess x0 ∈ Rn yields:

1. r0 = b−Ax0

2. Pp0 = r0

3. d0 = p0

4. For k = 0, 1, . . .

a) αk = (rk,dk)
(Adk,dk)

b) xk+1 = xk + αkd
k

c) rk+1 = rk − αkAdk

d) Ppk+1 = rk+1

e) βk = (rk+1,pk+1)
(rk,gk)

f) dk+1 = pk+1 + βkd
k

At each step, we have as additional cost the application of the preconditioner P . We recall that P allows
the decomposition into K and KT even if they are not explicitely used.
We seek P such that

P ≈ A−1.

On the other hand
P ≈ I,

such that the construction of P is not too costly. Obviously, these are two conflicting requirements. Typical
preconditioners are:

• Jacobi preconditioning
We choose P ≈ D−1, where D is the diagonal part of A. It holds

D = D
1
2 (D

1
2)T ,

which means that for Dii > 0, this preconditioner is admissible. For the preconditioned matrix, it holds

Ã = D−
1
2AD−

1
2 ⇒ ãii = 1

• SSOR preconditioning

The SSOR scheme is a symmetric variant of the SOR method (successive over-relaxation) and is based
on the decomposition:

P = (D + ωL)D−1(D + ωR) = (D
1
2 + ωLD−

1
2)︸ ︷︷ ︸

K

(D
1
2 + ωD−

1
2R)︸ ︷︷ ︸

=KT

.

For instance, for the Poisson problem, we can find an optimal ω (which is a non-trivial task) such that

cond2(Ã) =
√

cond2(A)

97

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

can be shown. Here, the convergence improves significantly. The number of necessary steps to achieve a
given error reduction by a factor of ε improves to

tCG(ε) =
log(ε)

log(1− κ− 1
2)
≈ − log(ε)√

κ
, t̃CG(ε) =

log(ε)

log(1− κ− 1
4)
≈ log(ε)

4
√
κ
.

Rather than having 100 steps, we only need 10 steps for instance, in case an optimal ω can be found.

8.9 Numerical tests: computational convergence analysis and solver behavior
We finish this chapter with several numerical tests in 1D, 2D and 3D.

8.9.1 2D Poisson

Figure 19: The graphical solution (left) and the corresponding mesh (right).

We compute Poisson in 2D on Ω = (0, 1)2 and homogeneous Dirichlet conditions on ∂Ω. The force is f = 1.
We use a quadrilateral mesh using Q1 elements (in an isoparametric FEM framework). The number of mesh
elements is 256 and the number of DoFs is 289. We need 26 CG iterations (see Section 8.8.3 for the development
of the CG scheme), without preconditioning, for the linear solver to converge.

Figure 20: Q1 (bilinear) and Q2 (biquadratic) elements on a quadrilateral in 2D.

98

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

8.9.2 Numerical test: 3D

Number of elements: 4096
Number of DoFs: 4913
Number of iterations: 25 CG steps without preconditioning.

Figure 21: The graphical solution (left) and the corresponding mesh (right).

8.9.3 Checking programming code and convergence analysis for linear and quadratic FEM

We present a general algorithm and present afterwards 2D results.

Algorithm 8.74. Given a PDE problem. E.g. −∆u = f in Ω and u = 0 on the boundary ∂Ω.

1. Construct by hand a solution u that fulfills the boundary conditions.

2. Insert u into the PDE to determine f .

3. Use that f in the finite element simulation to compute numerically uh.

4. Compare u− uh in relevant norms (e.g., L2, H1).

5. Check whether the desired h powers can be obtained for small h.

We demonstrate the previous algorithm for a 2D case in Ω = (0, π)2:

−∆u(x, y) = f in Ω,

u(x, y) = 0 on ∂Ω,

and we constuct u(x, y) = sin(x) sin(y), which fulfills the boundary conditions (trivial to check! But please do
it!). Next, we compute the right hand side f :

−∆u = −(∂xxu+ ∂yyu) = 2sin(x)sin(y) = f(x, y).

99

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

8.9.3.1 2D Poisson: Linear FEM We then use f in the above program from Section 8.9.1 and evaluate the
L2 and H1 norms using linear FEM. The results are:

Level Elements DoFs h L2 err H1 err
===
2 16 25 1.11072 0.0955104 0.510388
3 64 81 0.55536 0.0238811 0.252645
4 256 289 0.27768 0.00597095 0.126015
5 1024 1089 0.13884 0.00149279 0.0629697
6 4096 4225 0.06942 0.0003732 0.0314801
7 16384 16641 0.03471 9.33001e-05 0.0157395
8 65536 66049 0.017355 2.3325e-05 0.00786965
9 262144 263169 0.00867751 5.83126e-06 0.00393482
10 1048576 1050625 0.00433875 1.45782e-06 0.00196741
11 4194304 4198401 0.00216938 3.64448e-07 0.000983703
===

In this table we observe that we have quadratic convergence in the L2 norm and linear convergence in the
H1 norm. For a precise (heuristic) computation, we also refer to Chapter 11 in which a formula for computing
the convergence orders α is derived.

8.9.3.2 2D Poisson: Quadratic FEM We use again f in the above program from Section 8.9.1 and evaluate
the L2 and H1 norms using quadratic FEM. The results are:

Level Elements DoFs h L2 err H1 err
===
2 16 81 1.11072 0.00505661 0.0511714
3 64 289 0.55536 0.000643595 0.0127748
4 256 1089 0.27768 8.07932e-05 0.00319225
5 1024 4225 0.13884 1.01098e-05 0.000797969
6 4096 16641 0.06942 1.26405e-06 0.000199486
7 16384 66049 0.03471 1.58017e-07 4.98712e-05
8 65536 263169 0.017355 1.97524e-08 1.24678e-05
9 262144 1050625 0.00867751 2.46907e-09 3.11694e-06
10 1048576 4198401 0.00433875 3.08687e-10 7.79235e-07
11 4194304 16785409 0.00216938 6.14696e-11 1.94809e-07
===

In this table we observe that we have cubic convergence O(h3) in the L2 norm and quadratic convergence
O(h2) in the H1 norm. This confirms the theory; see for instance [6]. For a precise (heuristic) computation,
we also refer to Chapter 11 in which a formula for computing the convergence orders α is derived.

100

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

We next plot the DoFs versus the errors in Figure 22 in order to highlight the convergence orders. For the
relationship between h and DoFs versus the errors in different dimensions, we refer again to Chapter 11.

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

E
rr

o
r

DoFs

Lin. FEM, L
2
 err.

Lin. FEM, H
1
 err.

Quad. FEM, L
2
 err.

Quad. FEM, H
1
 err.
O(h)

O(h
2
)

O(h
3
)

Figure 22: Plotting the DoFs versus the various errors for the 2D Poisson test using linear and quadratic FEM.
We confirm numerically the theory: we observe ‖u−uh‖L2 = O(hr+1) and ‖u−uh‖H1 = O(hr) for
r = 1, 2, where r is the FEM degree.

8.9.4 Convergence analysis for 1D Poisson using linear FEM

We continue Section 8.5.8. As manufactured solution we use

u(x) =
1

2
(−x2 + x),

on Ω = (0, 1) with u(0) = u(1) = 0, which we derived in Section 8.2. In the middle point, we have u(0.5) =
−0.125 (in theory and simulations). In the following table, we plot the L2 and H1 error norms, i.e., ‖u−uh‖X
with X = L2 and X = H1, respectively.

Level Elements DoFs h L2 err H1 err
===
1 2 3 0.5 0.0228218 0.146131
2 4 5 0.25 0.00570544 0.072394
3 8 9 0.125 0.00142636 0.0361126
4 16 17 0.0625 0.00035659 0.0180457
5 32 33 0.03125 8.91476e-05 0.00902154
6 64 65 0.015625 2.22869e-05 0.0045106
7 128 129 0.0078125 5.57172e-06 0.00225528
8 256 257 0.00390625 1.39293e-06 0.00112764
9 512 513 0.00195312 3.48233e-07 0.000563819
10 1024 1025 0.000976562 8.70582e-08 0.000281909
===

101

8 FINITE ELEMENTS FOR PDE BOUNDARY VALUES PROBLEMS

8.9.5 Iterative solver behavior

We consider the Poisson problem in 2D and 3D on the unit square and with force f = 1 and homogeneous
Dirichlet conditions. We use as solvers:

• CG

• PCG with SSOR preconditioning and ω = 1.2

• GMRES

• GMRES with SSOR preconditioning and ω = 1.2

• BiCGStab

• BiCGStab with SSOR preconditioning and ω = 1.2

The tolerance is chosen as TOL = 1.0e − 12. We also run on different mesh levels in order to show the
dependency on n.

Dimension Elements DoFs CG PCG GMRES GMRES prec. BiCGStab BiCGStab prec.
==
2 256 289 23 19 23 18 16 12
2 1024 1089 47 33 83 35 33 21
2 4096 4225 94 60 420 78 66 44
--
3 4096 4913 25 19 25 21 16 11
3 32768 35937 51 32 77 38 40 23
3 262144 274625 98 57 307 83 69 46
==

Three main messages:

• GMRES performs worst.

• PCG performs better than pure CG, but less significant than one would wish.

• BiCGStab performs best - a bit surprising.

102

9 COMBINING FD AND FE: NUMERICAL DISCRETIZATION OF THE HEAT EQUATION

9 Combining FD and FE: Numerical discretization of the heat
equation

In order to further apply our numerical concepts developed in the previous sections we consider the heat
equation and perform a numerical discretization. The heat equation is a time-dependent PDE problem and
requires discretization in space and time. Often in the literature, temporal discretization is based on FD
whereas spatial discretization is based on the FEM.
The Rothe method, also known as as horizontal method of lines, is a strategy to discretize a PDE in time t

and space (x, y, z). In particular the PDE is first discretized in time with a finite difference scheme (thus we
first need the methodology developed in Chapter 7). In the second step, the problem is discretized in space
with the finite element method developed in Chapter 8.

9.1 Problem
Compute the heat distribution in a room. Let us first develop a model. We assume that we work on a
macroscopic level and can assume continuum mechanics [13, 20]. We work with first principle laws: namely
conservation of mass, momentum, angular momentum and energy. This would yield four different equations
but actually we will have much less since certain assumptions can be made.
Furthermore, we need to gather initial and boundary conditions:

• What is the temperature in the room at the beginning?

• What is the temperature at the walls?

To illustrate the concepts we work in 1D (one spatial dimension) in the following.

9.2 Mathematical problem statement

Let Ω be an open, bounded subset of Rd, d = 1 and I := (0, T] where T > 0 is the end time value. The IBVP
(initial boundary-value problem) reads:

Formulation 9.1. Find u := u(x, t) : Ω× I → R such that

ρ∂tu−∇ · (α∇u) = f in Ω× I,
u = a on ∂Ω× [0, T],

u(0) = g in Ω× t = 0,

where f : Ω×I → R and g : Ω→ R and α ∈ R and ρ are material parameters, and a ≥ is a Dirichlet boundary
condition. More precisely, g is the initial temperature and a is the wall temperature, and f is some heat source.

9.3 Temporal discretization
We first discretize in time. Here we use finite differences and more specifically we introduce the so-called
One-Step-θ scheme, which allows for a compact notation for three major finite difference schemes: forward
Euler (θ = 0), backward Euler (θ = 1), and Crank-Nicolson (θ = 0.5) well known from numerical methods for
ODEs.

Definition 9.2 (Choice of θ). By the choice of θ, we obtain the following time-stepping schemes:

• θ = 0: 1st order explicit Euler time stepping;

• θ = 0.5: 2nd order Crank-Nicolson (trapezoidal rule) time stepping;

• θ = 0.5 + kn: 2nd order shifted Crank-Nicolson which is shifted by the time step size kn = tn − tn−1

towards the implicit side;

• θ = 1: 1st order implicit Euler time stepping.

103

9 COMBINING FD AND FE: NUMERICAL DISCRETIZATION OF THE HEAT EQUATION

Remark 9.3. We notice that for problems with large time steps (k ≥ 0.5), we need to normalize/non-
dimensionalize the equations in order to get the characteristic time step size that can be used for the shifted
variant. Otherwise, you have θ > 1, which is senseless. As alternative, one can use the Rannacher time-
stepping by adding backward Euler steps on a regular basis [26].

To have good stability properties (namely A-stability) of the time-stepping scheme is important for temporal
discretization of partial differential equations. Often (as here for the heat equation) we deal with second-order
operators in space, such PDE-problems are generically (very) stiff with the order O(h−2), where h is the spatial
discretization parameter.
After these preliminary considerations, let us now discretize in time the above problem. We first create a

time grid of the time domain I = [0, T] with NT intervals and a time step size k = T
NT

:

∂tu−∇ · (α∇u) = f

⇒ un − un−1

k
− θ∇ · (α∇un)− (1− θ)∇ · (α∇un−1) = θfn + (1− θ)fn−1

⇒ un − kθ∇ · (α∇un) = un−1 + k(1− θ)∇ · (α∇un−1) + kθfn + k(1− θ)fn−1

where un := u(tn) and un−1 := u(tn−1) and fn := f(tn) and fn−1 := f(tn−1).

9.3.1 Spatial discretization

We take the temporally discretized problem and use a Galerkin finite element scheme to discretize in space.
That is we multiply with a test function and integrate. We then obtain: Find uh ∈ {a + Vh} such that for
n = 1, 2, . . . NT :

(unh, ϕh)− kθ(α∇unh,∇ϕh) = (un−1, ϕh) + k(1− θ)(α∇un−1,∇ϕh) + kθ(fn, ϕh) + k(1− θ)(fn−1, ϕh)

for all ϕh ∈ Vh.

Definition 9.4 (Specification of the problem data). For simplicity let us assume that there is no heat source
f = 0 and the material coefficients are specified by α = 1 and ρ = 1.

Furthermore, let us work with the explicit Euler scheme θ = 0. Then we obtain:

(unh, ϕh) = (un−1
h , ϕh)− k(∇un−1

h ,∇ϕh)

The structure of this equation, namely

yn = yn−1 + kf(tn−1, yn−1),

is the same as we know from ODEs. This means that we seek at each time tn a finite element solution unh on
the spatial domain Ω. With the help of the basis functions ϕh,j we can represent the spatial solution:

unh(x) :=

Nx∑
j=1

uh,jϕh,j , uh,j ∈ R.

Then:

Nx∑
j=1

unh,j(ϕh,j , ϕh,i) = (un−1, ϕh,i)− k(∇un−1
h ,∇ϕh,i)

which results in a linear equation system: MU = B. Here

(Mij)
Nx
i,j=1 := (ϕh,j , ϕh,i),

(Uj)
Nx
j=1 := (uh,1, . . . , uh,N)

(Bi)
Nx
i=1 := (un−1

h , ϕh,i)− k(∇un−1
h ,∇ϕh,i).

104

9 COMBINING FD AND FE: NUMERICAL DISCRETIZATION OF THE HEAT EQUATION

Furthermore the old time step solution can be written as well in matrix form:

(un−1, ϕh,i) =

Nx∑
j=1

un−1
h,j (ϕh,j , ϕh,i)︸ ︷︷ ︸

=:M

and similarly for the Laplacian term:

(∇un−1,∇ϕh,i) =

Nx∑
j=1

un−1
h,j (∇ϕh,j ,∇ϕh,i)︸ ︷︷ ︸

=:K

.

The mass matrix M (also known as the Gramian matrix) is always the same for fixed h and can be explicitely
computed.

Proposition 9.5. Formally we arrive at: Given un−1
h , find unh, such that

Munh = Mun−1
h − kKun−1

h ⇒ unh = un−1
h − kM−1Kun−1

h .

for n = 1, . . . , NT .

Remark 9.6. We emphasize that the forward Euler scheme is not recommended to be used as time stepping
scheme for solving PDEs. The reason is that the stiffness matrix is of order 1

h2 and one is in general interested
in h → 0. Thus the coefficients become very large for h → 0 resulting in a stiff system. For stiff systems, as
we learned before, one should better use implicit schemes, otherwise the time step size k has to be chosen too
small in order to obtain stable numerical results; see the numerical analysis in Section 9.4.

9.3.2 Evaluation of the integrals (1D in space)

We need to evaluate the integrals for the stiffness matrix K:

K = (Kij)
Nx
ij=1 =

∫
Ω

ϕ′h,j(x)ϕ′h,i(x) dx =

∫ xj+1

xj−1

ϕ′h,j(x)ϕ′h,i(x) dx

resulting in

A = h−1

2 −1 0

−1 2 −1
. . .

. . .
. . .

−1 2 −1

0 −1 2

Be careful and do not forget the material parameter α in case it is not α = 1.
For the mass matrix M we obtain:

M = (Mij)
Nx
ij=1 =

∫
Ω

ϕh,j(x)ϕh,i(x) dx =

∫ xj+1

xj−1

ϕh,j(x)ϕh,i(x) dx.

Specifically on the diagonal, we calculate:

Mii =

∫
Ω

ϕh,i(x)ϕh,i(x) dx =

∫ xi

xi−1

(x− xi−1

h

)2

dx+

∫ xi+1

xi

(xi+1 − x
h

)2

dx

=
1

h2

∫ xi

xi−1

(x− xi−1)2 dx+
1

h2

∫ xi+1

xi

(xi+1 − x)2 dx =
h

3
+
h

3

=
2h

3
.

105

9 COMBINING FD AND FE: NUMERICAL DISCRETIZATION OF THE HEAT EQUATION

For the right off-diagonal, we have

mi,i+1 =

∫
Ω

ϕh,i+1(x)ϕh,i(x) dx =

∫ xi+1

xi

x− xi
h
· xi+1 − x

h
dx =

∫ xi+1

xi

x− xi
h
· xi − x+ h

h
dx

= . . .

= −h
3

+
h2

2h
=
h

6
.

It is trivial to see that mi,i+1 = mi−1,i. Summarizing all entries results in

M =
h

6

4 1 0

1 4 1
. . .

. . .
. . .

1 4 1

0 1 4

.

9.3.3 Final algorithms

We first setup a sequence of discrete (time) points:

0 = t0 < t1 < . . . < tN = T.

Furthermore we set
In = [tn−1, tn], kn = tn − tn−1, k := max

1≤n≤N
kn.

Forward (explicit) Euler:

Algorithm 9.7. Given the initial condition g, solve for n = 1, 2, 3, . . . , NT

Munh = Mun−1
h − kKun−1

h ⇒ unh = un−1
h − kM−1Kun−1

h ,

where unh, u
n−1
h ∈ RNx .

Algorithm 9.8. The backward (implicit) Euler scheme reads:

Munh + kKunh = Mun−1
h

An example of a pseudo C++ code is

final_loop()
{
// Initalization of model parameters, material parameters, and so forth
set_runtime_parameters();

// Make a mesh - decompose the domain into elements
create_mesh();

apply_initial_conditions();

// Timestep loop
do

{
std::cout << "Timestep " << timestep_number << " (" << time_stepping_scheme

<< ")" << ": " << time << " (" << timestep << ")"
<< "\n==="
<< std::endl;

106

9 COMBINING FD AND FE: NUMERICAL DISCRETIZATION OF THE HEAT EQUATION

std::cout << std::endl;

// Solve for next time step: Assign previous time step solution u^{n-1}
old_timestep_solution = solution;

// Assemble FEM matrix A and right hand side f
assemble_system ();

// Solve the linear equation system Ax=b
solve ();

// Update time
time += timestep;

// Write solution into a file or similar
output_results (timestep_number);

// Increment n->n+1
++timestep_number;

}
while (timestep_number <= max_no_timesteps);

}

Exercise 15. Let Ω = (0, 1). Implement a finite element scheme for solving

∂tu−∇ · (∇u) = 1 in Ω, (108)
u = 0 on ∂Ω, (109)

u(0) = 0 in Ω× {t = 0}. (110)

in octave or C++ or python.

Exercise 16. Let Ω be an open, bounded subset of Rd, d = 1 and I := (0, T] where T > 0 is the end time
value. The IBVP (initial boundary-value problem) reads: Find u := u(x, t) : Ω× I → R such that

ρ∂tu−∇ · (α∇u) = f in Ω× I, (111)
u = a on ∂Ω× [0, T], (112)

u(0) = g in Ω× t = 0, (113)

where f : Ω × I → R and g : Ω → R and α ∈ R and ρ > 0 are material parameters, and a ≥ 0 is a Dirichlet
boundary condition. More precisely, g is the initial temperature and a is the wall temperature, and f is some
heat source.

1. Using finite differences in time and finite elements in space, implement the heat equation in octave or
python (Hint: Try to implement a general One-Step-θ scheme with θ ∈ [0, 1] for temporal discretization
and linear finite elements for spatial discretization).

2. Set Ω = (−10, 10), f = 0, α = 1, ρ = 1, a = 0, T = 1, and

g = u(0) = max(0, 1− x2).

and carry out simulations for θ = 0, 0.5, 1. What do you observe? Why do you make these observations?

3. Justify (either mathematically or physically) the correctness of your findings.

4. Why do you observe difficulties using θ < 0.5. What is the reason and how can this difficulty be overcome?

107

9 COMBINING FD AND FE: NUMERICAL DISCRETIZATION OF THE HEAT EQUATION

5. Detecting the order of the temporal scheme: Choose a sufficiently fine spatial discretization (by choosing
make the spatial discretization parameter h be sufficiently small) and compute with different time step
sizes δt the value of the point u(x0, T) := u(x = 0;T = 1). Compute the error

|uδtl(x = 0;T = 1)− uδtfine(x = 0;T = 1)|, l = l0, l0/2, l0/4, . . .

How does the error behave with respect to different θ?

9.4 Numerical analysis: stability analysis
The heat equation is a good example of a stiff problem (for the definition we refer back to Section 7.2) and
therefore, implicit methods are preferred in order to avoid very, very small time steps in order to obtain
stability. We substantiate this claim in the current section.
The model problem is

∂tu−∆u = 0 in Ω× I
u = 0 on ∂Ω× I,

u(0) = u0 in Ω× {0}.

Spatial discretization yields:

(∂tuh, φh) + (∇uh,∇φh) = 0,

(u0
h, φh) = (u0, φh).

Backward Euler time discretization yields:

(unh, φh) + k(∇unh,∇φh) = (un−1
h , φh)

It holds

Proposition 9.9. A basic stability estimate for the above problem is:

‖unh‖ ≤ ‖u0
h‖ ≤ ‖u0‖ (114)

Proof. For the stability estimate we proceed as earlier and make a special choice for a test function: φh := unh.
We then obtain:

‖unh‖2L2 + k|∇unh|2H1 = (un−1
h , unh) ≤ 1

2
‖un−1

h ‖2L2 +
1

2
‖unh‖2L2

which yields:

1

2
‖unh‖2L2 −

1

2
‖un−1

h ‖2L2 + k|∇unh|2H1 ≤ 0, ∀n = 1, . . . , N.

Of course it further holds:
1

2
‖unh‖2L2 −

1

2
‖un−1

h ‖2L2 ≤ 0, ∀n = 1, . . . , N,

⇔ 1

2
‖unh‖2L2 ≤

1

2
‖un−1

h ‖2L2

Taking the square root and applying the result back to n = 0 yields

1

2
‖unh‖L2 ≤ 1

2
‖u0

h‖L2

It remains to show the second estimate:
‖u0

h‖ ≤ ‖u0‖
In the initial condition we choose the test function ϕ := u0

h and obtain:

(u0
h, u

0
h) = (u0, u0

h) ≤ 1

2
‖u0‖+

1

2
‖u0

h‖

which shows the assertion.

108

9 COMBINING FD AND FE: NUMERICAL DISCRETIZATION OF THE HEAT EQUATION

9.4.1 Stability analysis for backward Euler

A more detailed stability analysis that brings in the spatial discretization properties is based on the matrix
notation and is as follows. We recapitulate and start from (see Section 9.3.3):

Munh + kKunh = Mun−1
h

Then:

Munh + kKunh = Mun−1
h

⇒ unh + kM−1Kunh = un−1
h

⇒ (I + kM−1K)unh = un−1
h

Compare to the ODE notation:
(1 + z)yn = yn−1

Thus, the role of z = kλ is taken by kM−1K thus λ ∼M−1K. We know for the condition numbers

κ(M) = O(1), κ(K) = O(h−2), h→ 0.

We proceed similar to ODEs, and obtain

unh = (I + kM−1K)−1un−1
h

The goal is now to show that
(I + kM−1K)−1 ≤ 1.

To this end, let µj , j = 1, . . . ,M = dim(Vh) be the eigenvalues of the matrix M−1K ranging from the smallest
eigenvalue µ1 ∼ O(1) to the largest eigenvalue µM ∼ O(h−2); for a proof, we refer the reader to [22][Section
7.7]. Then:

|(I + kM−1K)−1| = max
j

1

1 + kµj
=

1

1 + kµM
.

To have a stable scheme, we must have:
1

1 + kµM
< 1.

We clearly have then again from (114):

‖unh‖ ≤ ‖un−1
h ‖ ⇒ ‖unh‖ ≤ ‖u0

h‖

Furthermore, we see that the largest eigenvalue µM will increase as O(h−2) when h tends to zero. Using the
backward Euler or Crank-Nicolson scheme, this will be not a problem and both schemes are unconditionally
stable.

9.4.2 Stability analysis for explicit Euler

Here, the stability condition reads:
unh = (I − kM−1K)un−1

h

yielding
|(I − kM−1K)−1| = |max

j
(1− kµj)| = |1− kµM |.

As before µM = O(h−2). To establish a stability estimate of the form ‖unh‖ ≤ ‖u
n−1
h ‖, it is required that

|1− kµM | ≤ 1.

Resolving this estimate, we obtain

kµM ≤ 2 ⇔ k ≤ 2

µM
= O(h2),

109

9 COMBINING FD AND FE: NUMERICAL DISCRETIZATION OF THE HEAT EQUATION

thus
k ≤ Ch2, C > 0. (115)

Here, we only have conditional stability in time, namely the time step size k depends on the spatial
discretization parameter h. Recall that in terms of accuarcy and discretization errors we want to work with
small h, then the time step size has to be extremely small in order to have a stable scheme. In practice this
is in most cases not attrative at all and for this reason the forward Euler scheme does not play a role despite
that the actual solution is cheaper than solving an implicit scheme.

Exercise 17. Derive stability estimates for the Crank-Nicolson scheme.

9.4.3 Numerical tests

The series of numerical tests in this section has three goals:

• to show some figures to get an impression about simulation results;

• to show computationally that the stability results are indeed satisfied or violated;

• to show computationally satisfaction of the (discrete) maximum principle.

We consider the heat equation

∂tu−∆u = 0, in Ω× I
u = 0 on ∂Ω× I,

u(x, 0) = sin(x) sin(y) in Ω× {0}.

We compute 5 time steps, i.e., T = 5s, with time step size k = 1s. The computational domain is Ω = (0, π)2.
We use a One-step-theta scheme with θ = 0 (forward Euler) and θ = 1 (backward Euler).
The graphical results are displayed in the Figures 23 - 26. Due to stability reasons and violation of the

condition k ≤ ch2, the forward Euler scheme is unstable (Figures 25 - 26). By reducing the time step size to
k = 0.01s (the critical time step value could have been computed - the value k = 0.01s has been found by
trial and error simply), we obtain stable results for the forward Euler scheme. These findings are displayed
in Figure 27. However, to reach T = 5s, we need to compute 500 time steps, which is finally more expensive,
despite being an explicit scheme, than the implicit Euler method.

Figure 23: Heat equation with θ = 1 (backward Euler) at T = 0, 1, 2, 5. The solution is stable and satisfies
the parabolic maximum principle. The color scale is adapted at each time to the minimum and
maximum values of the solution.

110

9 COMBINING FD AND FE: NUMERICAL DISCRETIZATION OF THE HEAT EQUATION

Figure 24: Heat equation with θ = 1 (backward Euler) at T = 0, 1, 2, 5. The solution is stable and satisfies the
parabolic maximum principle. The color scale is fixed between 0 and 1.

Figure 25: Heat equation with θ = 0 (forward Euler) at T = 0, 1, 2, 5. The solution is unstable, showing non-
physical oscillations, because the time step restriction (115) is violated. The color scale is adapted
at each time to the minimum and maximum values of the solution.

Figure 26: Heat equation with θ = 0 (forward Euler) at T = 0, 1, 2, 5. The solution is unstable, showing
non-physical oscillations, because the time step restriction (115) is violated. The color scale is fixed
between 0 and 1.

111

9 COMBINING FD AND FE: NUMERICAL DISCRETIZATION OF THE HEAT EQUATION

Figure 27: Heat equation with θ = 0 at T = 0, 1, 2, 5 and time step size k = 0.01s. Here the results are stable
since the time step size k has been chosen sufficiently small to satisfy the stability estimate (115).
Of course, to obtain results at the same times T as before, we now need to compute more solutions,
i.e., N = 500, rather than 5 as in the other tests. The color scale is adapted at each time to the
minimum and maximum values of the solution.

112

10 TOWARDS NONLINEAR PROBLEMS

10 Towards nonlinear problems

In this final section, we want to give a brief idea how to tackle nonlinear problems. A lot of interesting situations
are nonlinear and a basic course in numerics should teach (at least to give a flavor) how to tackle such problems.
On the other hand, nonlinear solvers have been already required by solving IVP using implicit (backward Euler,
Crank-Nicolson) time stepping schemes. Thus, there are several reasons to introduce nonlinear techniques in
this class. Partially we also refer to Bronshtein et al. [7][Chapter 19.1.1] in which a useful summary of
numerical iterative methods is given.

10.1 Preface
Let us first recall some examples of nonlinear differential equations (in fact exclusively PDEs):

1. Nonlinear solid mechanics: either geometrically nonlinear or through the stress-strain law; e.g., [9, 20];

2. Fluid mechanics: Navier-Stokes equations, e.g., [34];

3. Non-Newtonian fluid flow (e.g., p-Stokes), e.g., [19];

4. Fluid-structure interaction (nonlinear coupled PDE systems), e.g., [36];

5. Multiphase flow in porous media (nonlinear coupled PDE systems), e.g., [8];

6. In general every situation in which different physical phenomena interact;

7. Numerical optimization, e.g., [1, 24].

To tackle such problems, a nonlinear solver is indispensable, but for coupled PDEs systems, further decisions
have to be made. But we only list them without providing (unfortunately) any further details in these lecture
notes. These are:

• A robust and efficient nonlinear solver (a brief introduction with some details is provided in Section
10.5);

• A robust and efficient linear solver;

• For PDE systems: the way of coupling: partitioned (sequentially) or monolithic

• Combination of different coordinate systems: for instance when solids (described in Lagrangian coordi-
nates) interact with fluid dynamics (described in Eulerian coordinates)

10.2 Linearization techniques
We discuss linearization techniques in the following subsections. The idea is to provide algorithmic frameworks
that serve for the implementation. Concerning Newton’s method for general problems there is not that much
theory; see e.g., [11]. In general one can say that in many problems the theoretical assumptions are not met,
but nevertheless Newton’s method works well in practice.
Our list is as follows:

• Fixed-point iteration;

• Linearization via time-lagging;

• Extrapolation in time

• Newton’s method.

113

10 TOWARDS NONLINEAR PROBLEMS

10.3 Fixed-point iteration
In ODE computations, applying a fixed-point theorem, namely the Banach fixed point theorem, is called a
Picard iteration. The basic idea is to introduce an iteration using an index k and to linearize the nonlinear
terms by taking these terms from the previous iteration k − 1.
This is best illustrated in terms of an example. Let

−∆u+ u2 = f

The variational formulation reads:

(∇u,∇φ) + (u2, φ) = (f, φ) ∀φ ∈ V.

An iterative scheme is constructed as follows:

Algorithm 10.1 (Fixed-point iterative scheme). For k = 1, 2, 3, . . . we seek uk+1 ∈ V such that

(∇uk,∇φ) + (ukuk−1, φ) = (f, φ) ∀φ ∈ V,

until a stopping criterion is fulfilled (choice one out of four):

• Error criterion:

‖uk − uk−1‖ < TOL, (absolute)

‖uk − uk−1‖ < TOL‖uk‖, (relative)

• Residual criterion:

‖(∇uk,∇φi) + ([u2]k, φi)− (f, φi)‖ < TOL, (absolute)

‖(∇uk,∇φi) + ([u2]k, φi)− (f, φi)‖ < TOL‖(f, φi)‖, (relative)

for all i = 1, . . . , dim(Vh).

Remark 10.2. For time-dependent PDEs, a common linearization can be

(u2, φ)→ (uun−1, φ)

where un−1 := u(tn−1) is the previous time step solution. In this case, no additional fixed-point iteration needs
to be constructed.

10.4 Linearization via time-lagging (example: NSE)
For time-dependent PDEs, a common linearization can be

(u2, φ)→ (uun−1, φ)

where un−1 := u(tn−1) is the previous time step solution. In this case, no additional fixed-point iteration
needs to be constructed.
Let us know briefly explain this idea to Navier-Stokes to point an important property. Setting N(v) :=

v · ∇v −∇ · (∇v +∇vT), we write

∂tv +N(v) +∇p = f, ∇ · v = 0

be given.

114

10 TOWARDS NONLINEAR PROBLEMS

10.4.1 Stokes linearization

Using the Stokes linearization (for small Reynolds numbers), the nonlinearity can be treated fully explicitely:

v + k∇p = vn−1 − kN(vn−1)kθf + k(1− θ)fn−1, ∇ · v = 0.

This simplifies the problem as it is now linear and in each step, the symmetric and positive Stokes-operator
must be inverted.

10.4.2 Oseen linearization

For higher Reynold’s numbers, the so-called Oseen linearization can be consulted:

v + kθÑ(v) + k∇p = vn−1 − k(1− θ)Ñ(vn−1)kθf + k(1− θ)fn−1, ∇ · v = 0,

where
Ñ(v) = ṽ · ∇v,

where, for instance a constant extrapolation ṽ = vn−1 or linear extrapolation ṽ = 2vn−1 − vn−2 can be
employed; see also the next section. Here, at each step, a (linear) nonsymmetric diffusion-transport operator
must be inverted.

10.5 Newton’s method in R - the Newton-Raphson method

Let f ∈ C1[a, b] with at least one point f(x) = 0, and x0 ∈ [a, b] be a so-called initial guess. The task is to
find x ∈ R such that

f(x) = 0.

In most cases it is impossible to calculate x explicitly. Rather we construct a sequence of iterates (xk)k∈R and
hopefully reach at some point

|f(xk)| < TOL, where TOL is small, e.g., TOL = 10−10.

What is true for all Newton derivations in the literature is that one has to start with a Taylor expansion. In
our lecture we do this as follows. Let us assume that we are at xk and can evaluate f(xk). Now we want to
compute this next iterate xk+1 with the unknown value f(xk+1). Taylor gives us:

f(xk+1) = f(xk) + f ′(xk)(xk+1 − xk) + o(xk+1 − xk)2

We assume that f(xk+1) = 0 (or very close to zero f(xk+1) ≈ 0). Then, xk+1 is the sought root and neglecting
the higher-order terms we obtain:

0 = f(xk) + f ′(xk)(xk+1 − xk).

Thus:
xk+1 = xk −

f(xk)

f ′(xk)
, k = 0, 1, 2, (116)

This iteration is possible as long as f ′(xk) 6= 0.

Remark 10.3. We see that Newton’s method can be written as

xk+1 = xk + dk, k = 0, 1, 2, . . . ,

where the search direction is
dk = − f(xk)

f ′(xk)
.

The iteration (116) terminates if a stopping criterion

|xk+1 − xk|
|xk|

< TOL, or |xk+1 − xk| < TOL, (117)

or
|f(xk+1)| < TOL (118)

is fulfilled. All these TOL do not need to be the same, but sufficiently small and larger than machine precision.

115

10 TOWARDS NONLINEAR PROBLEMS

f
x1 x0

Figure 28: Geometrical interpretation of Newton’s method.

Remark 10.4. Newton’s method belongs to fix-point iteration schemes with the iteraction function:

F (x) := x− f(x)

f ′(x)
. (119)

For a fixed point x̂ = F (x̂) it holds: f(x̂) = 0.

The main results is given by:

Theorem 10.5 (Newton’s method). The function f ∈ C2[a, b] has a root x̂ in the interval [a, b] and

m := min
a≤x≤b

|f ′(x)| > 0, M := max
a≤x≤b

|f ′′(x)|.

Let ρ > 0 such that

q :=
M

2m
ρ < 1, Kρ(x̂) := {x ∈ R : |x− x̂| ≤ ρ} ⊂ [a, b].

Then, for any starting point x0 ∈ Kρ(x̂), the sequence of iterations xk ∈ Kρ(x̂) converges to the root x̂.
Furthermore, we have the a priori estimate

|xk − x̂| ≤
2m

M
q2k , k ∈ N,

and a posteriori estimate

|xk − x̂| ≤
1

m
|f(xk)| ≤ M

2m
|xk − xk+1|2, k ∈ N.

Often, Newton’s method is formulated in terms of a defect-correction scheme.

Definition 10.6 (Defect). Let x̃ ∈ R an approximation of the solution f(x) = y. The defect (or similarly the
residual) is defined as

d(x̃) = y − f(x̃).

Definition 10.7 (Newton’s method as defect-correction scheme).

f ′(xk)δx = dk, dk := y − f(xk),

xk+1 = xk + δx, k = 0, 1, 2,

116

10 TOWARDS NONLINEAR PROBLEMS

The iteration is finished with the same stopping criterion as for the classical scheme. To compute the update
δx we need to invert f ′(xk):

δx = (f ′(xk))−1dk.

This step seems trivial but is the most critical one if we deal with problems in Rn with n > 1 or in function
spaces. Because here, the derivative becomes a matrix. Therefore, the problem results in solving a linear
equation system of the type Aδx = b and computing the inverse matrix A−1 is an expensive operation. �

Remark 10.8. This previous forms of Newton’s method are already very close to the schemes that are used in
research. One simply extends from R1 to higher dimensional cases such as nonlinear PDEs or optimization.
The ’only’ aspects that are however big research topics are the choice of

• good initial Newton guesses;

• globalization techniques.

Two very good books on these topics, including further materials as well, are [11, 24].

10.5.1 Newton’s method: overview. Going from R to Rn

Overview:

• Newton-Raphson (1D), find x ∈ R via iterating k = 0, 1, 2, . . . such that xk ≈ x via:

Find δx ∈ R : f ′(xk)δx = −f(xk),

Update: xk+1 = xk + δx.

• Newton in Rn, find x ∈ Rn via iterating k = 0, 1, 2, . . . such that xk ≈ x via:

Find δx ∈ Rn : F ′(xk)δx = −F (xk),

Update: xk+1 = xk + δx.

Here we need to solve a linear equation system to compute the update δx ∈ Rn.

10.5.2 A basic algorithm for a residual-based Newton method

In this type of methods, the main criterion is a decrease of the residual in each step:

Algorithm 10.9 (Residual-based Newton’s method). Given an initial guess x0. Iterate for k = 0, 1, 2, . . .
such that

Find δx ∈ Rn : F ′(xk)δxk = −F (xk),

Update: xk+1 = xk + λkδxk,

with λk ∈ (0, 1] (see the next sections how λk can be determined). A full Newton step corresponds to λk = 1.
The criterion for convergence is the contraction of the residuals measured in terms of a discrete vector norm:

‖F (xk+1)‖ < ‖F (xk)‖.

In order to save some computational cost, close to the solution x∗, intermediate simplified Newton steps can
be used. In the case of λk = 1 we observe

θk =
‖F (xk+1)‖
‖F (xk)‖

< 1.

If θk < θmax, e.g., θmax = 0.1, then the old Jacobian F ′(xk) is kept and used again in the next step k + 1.
Otherwise, if θk > θmax, the Jacobian will be assembled. Finally the stopping criterion is one of the following
(relative preferred!):

‖F (xk+1)‖ ≤ TOLN (absolute)
‖F (xk+1)‖ ≤ TOLN‖F (x0)‖ (relative)

If fulfilled, set x∗ := xk+1 and the (approximate) root x∗ of the problem F (x) = 0 is found.

117

10 TOWARDS NONLINEAR PROBLEMS

Exercise 18. Let f : R→ R with f(x) =
√
x2 + 1.

1. Compute the minimum of f(x).

2. That is to solve f ′(x) = 0.

3. Write down Newton’s method.

4. Perform some steps (per hand) for different initial guesses x0 = 0.5 and x0 = 2 respectively.

5. Implement Newton’s method and compute the solution x̂ to a tolerance TOL = 1e− 10.

Exercise 19. Let L : R3 → R with

L(x, y, λ) = f(x)− λc(x) = −x− 0.5y2 − λ(1− x2 − y2)

be given.

1. Find the minimum of L. What needs to be done?

2. Formulate Newton’s method (formally; without implementation) for the previous minimization problem.

10.5.3 Example of the basic Newton method

We illustrate the basic Newton schemes with the help a numerical example in which we want to solve

x2 = 2 in R

We reformulate this equation as root-finding problem:

f(x) = 0.

where
f(x) = x2 − 2.

For Newton’s method we need to compute the first derivative, which is trivial here,

f ′(x) = 2x

but can become a real challenge for complicated problems. To start Newton’s method (or any iterative scheme),
we need an initial guess (similar to ODE-IVP). Let us choose x0 = 3. Then we obtain as results:

Iter x f(x)
==============================
0 3.000000e+00 7.000000e+00
1 1.833333e+00 1.361111e+00
2 1.462121e+00 1.377984e-01
3 1.414998e+00 2.220557e-03
4 1.414214e+00 6.156754e-07
5 1.414214e+00 4.751755e-14
==============================

We see that Newton’s method converges very fast, i.e., quadratically, which means that the correct number
digits doubles at each iteration step.

118

10 TOWARDS NONLINEAR PROBLEMS

10.5.4 Example using a Newton defect-correction scheme including line search

In this second example, we present Newton’s method as defect correction scheme as introduced in Definition
10.7 and implemented in octave in Section 13.6. Additionally we introduce a line search parameter ω ∈ [0, 1].
If the initial Newton guess is not good enough we can enlarge the convergence radius of Newton’s method by
choosing ω < 1. Of course for the given problem here, Newton’s method will always converge, because the
underlying function is convex. Despite the fact that ω is not really necessary in this example, we can highlight
another feature very well. In the optimal case (as seen above in the results), Newton’s method will converge
quadratically. Any adaptation will deteriorate the performance. Thus, let us choose ω = 0.9. Then we obtain
as result only linear convergence:

Iter x f(x)
==============================
0 3.000000e+00 7.000000e+00
1 1.950000e+00 1.802500e+00
2 1.534038e+00 3.532740e-01
3 1.430408e+00 4.606670e-02
4 1.415915e+00 4.816699e-03
5 1.414385e+00 4.840133e-04
6 1.414231e+00 4.842504e-05
7 1.414215e+00 4.842742e-06
8 1.414214e+00 4.842766e-07
9 1.414214e+00 4.842768e-08
10 1.414214e+00 4.842768e-09
11 1.414214e+00 4.842771e-10
12 1.414214e+00 4.842748e-11
==============================

And if we choose ω = 0.5 we only obtain (perfect) linear convergence:

Iter x f(x)
==============================
0 3.000000e+00 7.000000e+00
1 2.416667e+00 3.840278e+00
2 2.019397e+00 2.077962e+00
3 1.762146e+00 1.105159e+00
4 1.605355e+00 5.771631e-01
5 1.515474e+00 2.966601e-01
...
32 1.414214e+00 2.286786e-09
33 1.414214e+00 1.143393e-09
34 1.414214e+00 5.716965e-10
35 1.414214e+00 2.858482e-10
36 1.414214e+00 1.429239e-10
37 1.414214e+00 7.146195e-11
==============================

In summary, using a full Newton method we only need 5 iterations until a tolerance of TOLN = 10−10 is
reached. Having linear convergence with a good convergence factor still 12 iterations are necessary. And a
linear scheme does need 37 iterations. This shows nicely the big advantage of Newton’s method (i.e., quadratic
convergence) in comparison to linear or super-linear convergence.

Exercise 20. Develop a Newton scheme in R2 to find the root of the problem:

f : R2 → R2, f(x, y) =
(

2xay2, 2(x2 + κ)ay
)T
,

where κ = 0.01 and a = 5.

119

10 TOWARDS NONLINEAR PROBLEMS

1. Justify first that integration of f yields F (x, y) = (x2 + κ)ay2. What is the relation between f and F?

2. Compute the root of f by hand. Derive the derivative f ′ and study its properties.

3. Finally, design the requested Newton algorithm. As initial guess, take (x0, y0) = (4,−5).

4. What do you observe with respect to the number of Newton iterations?

5. How could we reduce the number of Newton steps?

10.6 Solving IVPs with implicit schemes
In Section 7.4.2, we introduced implicit schemes to solve ODEs. In specific cases, one can explicitely arrange
the terms in such a way that an implicit schemes is obtained. This was the procedure for the ODE model
problem in Section 13.2. However, such an explicit representation is not always possible. Rather we have
to solve a nonlinear problem inside the time-stepping process. This nonlinear problem will be formulated in
terms of a Newton scheme.
We recall:

y′(t) = f(t, y(t))

which reads after backward Euler discretization:

yn − yn−1

kn
= f(tn, yn(tn)).

After re-arranging some terms we obtain the root-finding problem:

g(yn) := yn − yn−1 − knf(tn, yn(tn)) = 0.

Taylor expansion yields (where the Newton iteration index is denoted by ‘l’):

0 = g(yln) + g′(yln)(yl+1
n − yln) + o((yl+1

n − yln)2),

where the Newton matrix (the Jacobian) is given by

g′(yln) := I − knf ′y(tn, y
l
n).

The derivative f ′y is with respect to the unknown yn.
In defect correction notation, we have

Algorithm 10.10. Given a starting value, e.g., y0
n we have for l = 1, 2, 3, . . .:

g′(yln)δy = −g(yln), (120)

yl+1
n = yln + δy (121)

Stop if ‖g(yl+1
n)‖ < TOLN with e.g., TOLN = 10−8.

The difficulty here is to understand the mechanism of the two different indices n and l. As before, we want
to compute for a new time point tn+1 a solution yn+1. However, in most cases yn+1 cannot be constructed
explicitely as done for example in Section 6.1. Rather we need to approximate yn+1 by another numerical
scheme. Here Newton’s method is one efficient possibility, in which we start with a rough approximation for
yn+1, which is denoted as initial Newton guess y0

n+1 ≈ yn+1. In order to improve this initial guess, we start a
Newton iteration labeled by l and (hope!) to find better approximations

y1
n+1, y

2
n+1, ...

for the sought value yn+1. Mathematically speaking, we hope that

|yln+1 − yn+1| → 0, for l→∞.

120

10 TOWARDS NONLINEAR PROBLEMS

To make this procedure clear:

• we are interested in the true value y(tn+1), which is however in most cases not possible to be computed
in an explicit way.

• Thus, we use a finite difference scheme (e.g., backward Euler) to approximate y(tn+1) by yn+1.

• However, in many cases this finite difference scheme (precisely speaking: implicit schemes) is still not
enough to obtain directly yn+1. Therefore, we need a second scheme (here Newton) to approximate yn+1

by yln+1.

Remark 10.11. To avoid two numerical schemes is one reason, why explicit schemes are nevertheless very
popular in practice. Here the second scheme can be omitted.

Remark 10.12. On the other hand, this example is characteristic for many numerical algorithms: very
often, we have several algorithms that interact with each other. One important question is how to order these
algorithms such that the overall numerical scheme is robust and efficient.

121

10 TOWARDS NONLINEAR PROBLEMS

122

11 COMPUTATIONAL CONVERGENCE ANALYSIS

11 Computational convergence analysis

We provide some tools to perform a computational convergence analysis. In these notes we faced two situations
of ‘convergence’:

• Discretization error: Convergence of the discrete solution uh towards the (unknown) exact solution
u;

• Iteration error: Convergence of an iterative scheme to approximate the discrete solution uh through a
sequence of approximate solutions u(k)

h , k = 1, 2,

In the following we further illustrate the terminologies ‘first order convergence’, ‘convergene of order two’,
’quadratic convergence’, ’linear convergence’, etc.

11.1 Discretization error
Before we go into detail, we discuss the relationship between the degrees of freedom (DoFs) N and the mesh
size parameter h. In most cases the discretization error is measured in terms of h and all a priori and a
posteriori error estimates are stated in a form

‖u− uh‖ = O(hα), α > 0.

In some situations it is however better to create convergence plots in terms of DoFs vs. the error. One example
is when adaptive schemes are employed with different h. Then it would be not clear to which h the convergence
plot should be drawn. But simply counting the total numbers of DoFs is not a problem though.

11.1.1 Relationship between h and N (DoFs)

The relationship of h and N depends on the basis functions (linear, quadratic), whether a Lagrange method
(only nodal points) or Hermite-type method (with derivative information) is employed. Moreover, the dimen-
sion of the problem plays a role.
We illustrate the relationship for a Lagrange method with linear basis functions in 1D,2D,3D:

Proposition 11.1. Let d be the dimension of the problem: d = 1, 2, 3. It holds

N =
(1

h
+ 1
)d

where h is the mesh size parameter (lengh of an element or diameter in higher dimensions for instance), and
N the number of DoFs.

Proof. Sketch. No strict mathematical proof. We initialize as follows:

• 1D: 2 values per line;

• 2D: 4 values per quadrilaterals;

• 3D: 8 values per hexahedra.

Of course, for triangles or primsms, we have different values in 2D and 3D. We work on the unit cell with
h = 1. All other h can be realized by just normalizing h. By simple counting the nodal values, we have in 1D

h N
=======
1 2
1/2 3
1/4 5
1/8 9
1/16 17
1/32 33
...
=======

123

11 COMPUTATIONAL CONVERGENCE ANALYSIS

We have in 2D

h N
=======
1 4
1/2 9
1/4 25
1/8 36
1/16 49
1/32 64
...
=======

We have in 3D

h N
=======
1 8
1/2 27
1/4 64
...
=======

11.1.2 Discretization error

With the previous considerations, we have now a relationship between h and N that we can use to display the
discretization error.

Proposition 11.2. In the approximate limit it holds:

N ∼
(1

h

)d
yielding

h ∼ 1
d
√
N

These relationships allow us to replace h in error estimates by N .

Proposition 11.3 (Linear and quadratice convergence in 1D). When we say a scheme has a linear or quadratic
convergence in 1D, (i.e., d = 1) respectively, we mean:

O(h) = O
(1

N

)
or

O(h2) = O
(1

N2

)
In a linear scheme, the error will be divided by a factor of 2 when the mesh size h is divided by 2 and having
quadratic convergence the error will decrease by a factor of 4. For an illustration, we refer the reader to Section
7.6.

Proposition 11.4 (Linear and quadratice convergence in 2D). When we say a scheme has a linear or quadratic
convergence in 2D, (i.e., d = 2) respectively, we mean:

O(h) = O
(1√

N

)
or

O(h2) = O
(1

N

)

124

11 COMPUTATIONAL CONVERGENCE ANALYSIS

11.1.3 Computationally-obtained convergence order: example for the spatial mesh parameter h

We explain how to determine the convergence order via

α =
1

log(2)
log
(∣∣∣ P (h)− P (h/2)

P (h/2)− P (h/4)

∣∣∣). (122)

We take the table from Section 8.9.3:

Level DoFs h L2 err H1 err
===
2 16 1.11072 0.0948434 0.510265
3 64 0.55536 0.0238378 0.252641
4 256 0.27768 0.00596821 0.126015
5 1024 0.13884 0.00149261 0.0629697
6 4096 0.06942 0.000373189 0.0314801
7 16384 0.03471 9.32994e-05 0.0157395
8 65536 0.017355 2.3325e-05 0.00786965
9 262144 0.00867751 5.83126e-06 0.00393482
10 1048576 0.00433875 1.45781e-06 0.00196741
11 4194304 0.00216938 3.64451e-07 0.000983703
===

In this table we observe that we have quadratic convergence in the L2 norm and linear convergence in the
H1 norm.

11.2 Iteration error
Iterative schemes are used to approximate the discrete solution uh. This has a priori nothing to do with the
discretization error. The main interest is how fast can we get a good approximation of the discrete solution
uh. One example is given in Section 10.6 in which Newton’s method is used to compute the discrete solutions
of the backward Euler scheme.
To speak about convergence, we compare two subsequent iterations:

Proposition 11.5. Let us assume that we have an iterative scheme to compute a root z. The iteration
converges with order p when

‖xk − z‖ ≤ c ‖xk−1 − z‖p, k = 1, 2, 3, . . .

with p ≥ 1 and c = const. In more detail:

• Linear convergence: c ∈ (0, 1) and p = 1;

• Superlinear convergence: c := ck → 0, (k →∞) and p = 1;

• Quadratic convergence c ∈ R and p = 2.

Cupic and higher convergence are defined as quadratic convergence with the respectice p.

Remark 11.6 (Other characterizations of superlinear and quadratic convergence). Other (but equivalent)
formulations for superlinear and quadratic convergence, respectively, in the case z 6= xk for all k, are:

lim
k→∞

‖xk − z‖
‖xk−1 − z‖

= 0,

lim sup
k→∞

‖xk − z‖
‖xk−1 − z‖2

<∞.

Corollary 11.7 (Rule of thumb). A rule of thumb for quadratic convergence is: the number of correct digits
doubles at each step. From our previous section, we have the example:

125

11 COMPUTATIONAL CONVERGENCE ANALYSIS

Iter x f(x)
==============================
0 3.000000e+00 7.000000e+00
1 1.833333e+00 1.361111e+00
2 1.462121e+00 1.377984e-01
3 1.414998e+00 2.220557e-03
4 1.414214e+00 6.156754e-07
5 1.414214e+00 4.751755e-14
==============================

126

12 CONCLUDING SUMMARY

12 Concluding summary

12.1 Summary
The purpose of these notes has been on an introduction to numerical modeling, or more generally-speaking,
an introduction to scientific computing. Here we restricted our focus to differential equations. The three key
aspects of scientific computing are:

• Mathematical modeling of a given problem and its classification;

• Development and analysis of numerical algorithms;

• Implementation and debugging of programming code;

and they are linked by a fourth aspect:

• Interpretation of the obtained results and justification of their correctness.

We illustrated all these four steps in terms of ODEs and PDEs. The choice of differential equations has been
made because they cover a wide range of possible applications in various fields such as continuum mechanics,
fluid mechanics, solid mechanics, as well as engineering, physics, chemistry, biology, economics, and financial
mathematics. Most of the algorithmic developments have been complemented with programming code in
octave/MATLAB and python such that the concepts can be immediately used by the reader.

12.2 The principles of work, study and research tasks
The intention of this section is provide some help for the work on the student projects done in groups by two.
The basic principle is:

WhatHowWhy?

• What are we doing (Problem statement)?

• How are we doing this (How are we going to solve that specific problem)?

• Why is the solution of this problem really important?

This can be further refined as:

WhatHowWhatHowWhy?

• What are we doing (Problem statement)?

• How are we doing this (How are we going to solve that specific problem)?

• What are our findings (results)?

• How are we going to interpret these results? (Is the code correct? Do the results correspond to my
physical and mathematical intuition? If I have doubts, how can I verify the correctness of my numerical
model and code?)

• Why is the solution of this problem really important?

Example 12.1. Let us take as an example the little numerical projects for this class and identify the above
steps:

• What are we doing (Problem statement)?
Answer: We are solving an ODE or PDE. Let us say an ODE for the following points.

127

12 CONCLUDING SUMMARY

• How are we doing this (How are we going to solve that specific problem)?
Answer: We apply for example the forward Euler scheme. But the ‘How’ might include more. Often we
do not understand a given problem in its full complexity. (Actually this arises quite often!) In order to
tackle the final problem, we should start with a simplification. For example, we make a nonlinear problem
linear. Or a 2D problem is reduced to 1D. And so forth. To be able to make simplifications and to find
examples to ‘illustrate’ a problem in some other way is in many cases the key to really understand this
problem.

• What are our findings (results)?
Answer: Take an initial value and end time value. Choose a step size and compute. Display your
solution as a plot for example or compute the error to an exact solution if available (see Section 6.1).

• How are we going to interpret these results? (Is the code correct? Do the results correspond to my
physical and mathematical intuition? If I have doubts, how can I verify the correctness of my numerical
model and code?)
Answer: For forward Euler and too big step sizes we obtain oscillations in the solution. It is now
important to distinguish if these oscillations are on purpose (maybe we had some sinus-oscillation as
initial condition) or a numerical artefact. Our stability brings us to the conclusion that in this case, we
really had a numerical artefact that needs to be avoided. Specifically our step size k was too big and we
learned in Thomas’ lecture that the forward Euler scheme is unstable if the step sizes are too big.

• Why is the solution of this problem really important?
Answer 1: Because Thomas gave this exercise to pass this class!
Answer 2: In research or industry or private sector or your own company: Who is interested in the
solution of your results? Why did you tackle this task? What can you solve now what nobody before
could solve? Or why did your new algorithm provide new insight into already known problems? These
are some questions that should answer the Why.

12.3 Hints for presenting results in a presentation/talk
We collect some hints to make good presentations using, for instance, beamer latex or PowerPoint:

1. Rule of thumb: one minute per slide. For a 20 minutes presentation a good mean value is to have 20
slides.

2. A big risk of beamer/Power-Point presentations is that we rush over the slides. You are the expert and
know everything! But your audience is not. Give the audience time to read the slide!

3. Taylor your talk to the audience!

4. Put a title on each slide!

5. In plots and figures: make lines, the legend, and axes big enough such that people from the back can
still read your plots. A good no go, bad example are my figures 6 and 7 in which the legend is by far
too small. Do not do that! A good example is Figure 28.

6. Tables with numbers: if you create columns of numbers do not put all of them. If you have many, you
may mark the most important in a different color to highlight them. For instance, I used dots ... in
Section 10.5.4 to neglect Newton iterates, which are of less importance and do not contribute to a further
understanding.

7. Structure your talk clearly: what is the goal, how did you solve it, what are your results, what is your
interpretation? See Section 12.2.

8. Do not glue to your slides. Despite you have everything there, try to explain things in a free speech.

9. Less is more:

a) Do not put too much text on each slide!

128

12 CONCLUDING SUMMARY

b) Do not write full sentences, but use bullet points!

c) Do not use too fancy graphics charts, plots, etc, where everything is moving, etc.

d) Do not try to pack everything you have learned into one presentation. Everybody believes that you
know many, many things. The idea of a presentation is to present in a clear way a piece of your
work!

10. As always: the first sentence is the most difficult one: practice for yourself some nice welcome words to
get smoothly started.

11. Practice your final presentation ahead of time either alone, with friends or colleagues.

12. Just be authentic during the presentation.

13. If you easily become nervous avoid coffee before the presentation.

129

12 CONCLUDING SUMMARY

130

13 PROGRAMMING CODES

13 Programming codes

13.1 Short comments on MATLAB / octave
The package MATLAB is widely used for scientific computations. MATLAB is a trademark of TheMathsWorks
Inc., 24 Prime Park Way, Natick, MA 01760. The website is www.mathworks.com. The open source sister
language with similar commands is Octave (in detail GNU Octave) with the website www.octave.org. We
use the latter one in these notes.
For both languages, an excellent introduction can be found in the textbook by Quarteroni et al. [25].

13.2 Code of Example 7.6 in Octave
We first define the three numerical schemes. These are defined in terms of octave-functions and which must
be in the same directory where you later call these functions and run octave. Thus, the content of the next
three functions is written into files with the names:

euler_forward_2.m euler_backward_model_problem.m trapezoidal_model_problem.m

Inside these m-files we have the following statements. Forward Euler:

function [x,y] = euler_forward_2(f,xinit,yinit,xfinal,n)
% Forward Euler scheme
% Author: Thomas Wick, CMAP, Ecole Polytechnique, 2016

h = (xfinal - xinit)/n;

x = [xinit zeros(1,n)];
y = [yinit zeros(1,n)];

for k = 1:n
x(k+1) = x(k)+h;

y(k+1) = y(k) + h*f(x(k),y(k));
end
end

Backward Euler (here the right hand side is also unknown). For simplicity we explicitly manipulate the scheme
for this specific ODE. In the general case, the right hand side is solved in terms of a nonlinear solver.

function [x,y] = euler_backward_model_problem(xinit,yinit,xfinal,n,a)
% Backward Euler scheme
% Author: Thomas Wick, CMAP, Ecole Polytechnique, 2016

% Calculuate step size
h = (xfinal - xinit)/n;

% Initialize x and y as column vectors
x = [xinit zeros(1,n)];
y = [yinit zeros(1,n)];

% Implement method
for k = 1:n

x(k+1) = x(k)+h;
y(k+1) = 1./(1.0-h.*a) .*y(k);

end
end

And finally the trapezoidal rule (Crank-Nicolson):

131

www.mathworks.com
www.octave.org

13 PROGRAMMING CODES

function [x,y] = trapezoidal_model_problem(xinit,yinit,xfinal,n,a)
% Trapezoidal / Crank-Nicolson
% Author: Thomas Wick, CMAP, Ecole Polytechnique, 2016

% Calculuate step size
h = (xfinal - xinit)/n;

% Initialize x and y as column vectors
x = [xinit zeros(1,n)];
y = [yinit zeros(1,n)];

% Implement method
for k = 1:n

x(k+1) = x(k)+h;
y(k+1) = 1./(1 - 0.5.*h.*a) .*(1 + 0.5.*h.*a).*y(k);

end
end

In order to have a re-usable code in which we can easily change further aspects, we do not work in the command
line but define an octave-script; here with the name

step_1.m

that contains initialization and function calls, visualization, and error estimation:

% Script file: step_1.m
% Author: Thomas Wick, CMAP, Ecole Polytechnique, 2016

% We solve three test scenarios
% Test 1: coeff_a = 0.25 as in the lecture notes.
% Test 2: coeff_a = -0.1
% Test 3: coeff_a = -10.0 to demonstrate
% numerical instabilities using explizit schemes

% Define mathematical model, i.e., ODE
% coeff_a = g - m
coeff_a = 0.25;
f=@(t,y) coeff_a.*y;

% Initialization
t0 = 2011;
tN = 2014;
num_steps = 16;
y0 = 2;

% Implement exact solution, which is
% available in this example
g=@(t) y0 .* exp(coeff_a .* (t-t0));
te=[2011:0.01:2014];
ye=[g(te)];

% Call forward and backward Euler methods
[t1,y1] = euler_forward_2(f,t0,y0,tN,num_steps);
[t2,y2] = euler_backward_model_problem(t0,y0,tN,num_steps,coeff_a);
[t3,y3] = trapezoidal_model_problem(t0,y0,tN,num_steps,coeff_a);

132

13 PROGRAMMING CODES

% Plot solution
plot (te,ye,t1,y1,t2,y2,t3,y3)
xlabel(’t’)
ylabel(’y’)

legend(’Exact’,’FE’,’BE’,’CN’)
axis([2011 2014 0 6])

% Estimate relative discretization error
errorFE=[’FE err.: ’ num2str((ye(end)-y1(end))/ye(end))]
errorBE=[’BE err.: ’ num2str((ye(end)-y2(end))/ye(end))]
errorCN=[’CN err.: ’ num2str((ye(end)-y3(end))/ye(end))]

% Estimate absolute discretization error
errorABS_FE=[’FE err.: ’ num2str((ye(end)-y1(end)))]
errorABS_BE=[’BE err.: ’ num2str((ye(end)-y2(end)))]
errorABS_CN=[’CN err.: ’ num2str((ye(end)-y3(end)))]

Exercise 21. Implement the backward Euler scheme and trapezoidal rule in a more general way that avoids
the explicit manipulation with the right hand side f(t, y) = ay(t). Hint: A possibility is (assuming that the
function f is smooth enough) to formulate the above schemes as fixed-point equations and then either use a
fixed-point method or Newton’s (see Section 10.6) method to solve them. Apply these ideas to Example 4.

13.3 Short comments on Python
Python is a programming language that currently enjoys a lot of popularity in scientific computing. A website
to get started and further information is https://www.python.org/about/gettingstarted/.

13.4 Code of Example 8.5.8 in python
The programming code is based on python version 2.7. In order to perform scientific computing with python
some additional packages might have to be installed first (on some computers they are pre-installed though):

• numpy

• scipy

• matplotlib

The full code to obtain the previous results is:

#!/usr/bin/env python
-*- coding: utf-8 -*-

Thomas Wick
Ecole Polytechnique
MAP 502
Winter 2016/2017

Execution of *.py files
Possiblity 1: in terminal
terminal> python3 file.py # here file.py = poisson.py

Possiblity 2: executing in an python environment
such as spyder.

This program has been tested with python
version 2.7 on a SUSE linux system version 13.2

133

https://www.python.org/about/gettingstarted/

13 PROGRAMMING CODES

Problem statement
Numerical solution using finite
elements of the Poisson problem:
#
Find u such that
#
-d/dx (k d/dx) u = f in (0,1)
u(0) = u(1) = 0
#
with f=-1

##
Load packages (need to be installed first if
not yet done - but is not difficult)
import numpy as np
import matplotlib.pyplot as plt # for plot functons
plt.switch_backend(’tkAgg’) # necessary for OS SUSE 13.1 version,
otherwise, the plt.show() function will not display any window

import scipy as sp
from scipy import sparse
from scipy.sparse import linalg

import scipy.linalg # for the linear solution with Cholesky

##
Setup of discretization and material parameters
N = 200 # Number of points in the discretization
x = np.linspace(0,1,N) # Initialize nodal points of the mesh

Spatial discretization parameter (step length) : h_i=x_{i+1}-x_i
hx = np.zeros(len(x))
hx[:len(x)-1]=x[1:]-x[:len(x)-1]

h = max(hx) # Maximal element diameter

Sanity check
#print h

Material parameter
k= 1.0 * np.ones(len(x))

###
Construct and plot exact solution and right hand side f

Nddl = N-2
xddl = x.copy()
xddl = xddl[1:len(x)-1]

Initialize and construct exact solution

134

13 PROGRAMMING CODES

uexact = np.zeros(len(x))
uexact[1:len(x)-1] = 0.5 * (xddl * xddl - xddl)

Construct right hand side vector
f = (-1) * np.ones(len(x)-2)

###
Build system matrix and right hand side
Kjj = k[:N-2]/hx[:N-2] + k[1:N-1]/hx[1:N-1] # the diagonal of Kh
Kjjp = - k[1:N-2]/hx[1:N-2] # the two off-diagionals of Kh

System matrix (also commenly known as stiffness matrix)
First argument: the entries
Second argument: in which diagonals shall the entries be sorted
Ah =sp.sparse.diags([Kjjp,Kjj,Kjjp],[-1,0,1],shape=(Nddl,Nddl))

Right hand side vector
Fh= (hx[:N-2] + hx[1:N-1]) * 0.5 * f

###
Solve system: Ah uh = Fh => uh = Ah^{-1}Fh
utilde = sp.sparse.linalg.spsolve(Ah,Fh)

Add boundary conditions to uh
The first and last entry are known to be zero.
Therefore, we include them explicitely:
uh = np.zeros(len(uexact))
uh[1:len(x)-1]=utilde

###
Plot solution
plt.clf()
plt.plot(x,uexact,’r’, label=’Exact solution u’)
plt.plot(x,uh,’b+’,label=’Discrete FE solution u_h’)
plt.legend(loc=’best’)
plt.xlim([-0.1,1.1])
plt.ylim([-0.15,0.01])
plt.show()

Exercise 22. In order to obtain more quantitative results, the following extensions of the above code could be
done:

• Computational error analysis (which error norm?) to study the error between the exact and numerical
solution on a sequence of refined meshes;

• Implementing high-order finite elements and carrying out again error analysis.

13.5 Code for a straightforward implementation of Newton’s method (Example
10.5.3)

The programming code for standard Newton’s method is as follows:

135

13 PROGRAMMING CODES

% Script file: step_2.m
% Author: Thomas Wick, CMAP, Ecole Polytechnique, 2016
% We seek a root of a nonlinear problem

format long

% Define nonlinear function of which
% we want to find the root
f = @(x) x^2 - 2;

% Define derivative of the nonlinear function
df = @(x) 2*x;

% We need an initial guess
x = 3;

% Define function
y = f(x);

% Set iteration counter
it_counter = 0;
printf(’%i %e %e\n’,it_counter,x,y);

% Set stopping tolerance
TOL = 1e-10;

% Perform Newton loop
while abs(y) > TOL

dy = df(x);
x = x - y/dy;
y = f(x);
it_counter = it_counter + 1;
printf(’%i %e %e\n’,it_counter,x,y);

end

13.6 Code for a Newton defect-correction scheme including line search (Example
10.5.4)

As second implementation we present Newton’s method as defect correction scheme as introduced in Definition
10.7. Additionally we introduce a line search parameter ω ∈ [0, 1]. If the initial Newton guess is not good
enough we can enlarge the convergence radius of Newton’s method by choosing ω < 1. The octave code reads:

% Script file: step_3.m
% Author: Thomas Wick, CMAP, Ecole Polytechnique, 2016
% We seek a root of a nonlinear problem

format long

% Define nonlinear function of which
% we want to find the root
f = @(x) x^2 - 2;

% Define derivative of the nonlinear function
df = @(x) 2*x;

136

13 PROGRAMMING CODES

% We need an initial guess
x = 3;

% Define function
y = f(x);

% Set iteration counter
it_counter = 0;
printf(’%i %e %e\n’,it_counter,x,y);

% Set stopping tolerance
TOL = 1e-10;

% Line search parameter
% omega \in [0,1]
% where omega = 1 corresponds to full Newton
omega = 1.0;

% Newtons method as defect correction
% and line search parameter omega
while abs(y) > TOL

dy = df(x);
% Defect step
dx = - y/dy;
% Correction step

x = x + omega * dx;
y = f(x);
it_counter = it_counter + 1;
printf(’%i %e %e\n’,it_counter,x,y);

end

137

13 PROGRAMMING CODES

138

References

References

[1] G. Allaire, Analyse numerique et optimisation, Editions de l’Ecole Polytechnique, 2005.

[2] , An Introduction to Mathematical Modelling and Numerical Simulation, Oxford University Press,
2007.

[3] G. Allaire and F. Alouges, Analyse variationnelle des équations aux dérivées partielles. MAP 431:
Lecture notes at Ecole Polytechnique, 2016.

[4] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier,
J.-P. Pelteret, B. Turcksin, and D. Wells, The deal.II library, version 8.5, Journal of Numerical
Mathematics, (2017).

[5] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II – a general purpose object oriented finite
element library, ACM Trans. Math. Softw., 33 (2007), pp. 24/1–24/27.

[6] D. Braess, Finite Elemente, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, vierte, überarbeitete
und erweiterte ed., 2007.

[7] I. Bronshtein, K. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics, Springer-
Verlag Berlin Heidelberg, 5th edition ed., 2007.

[8] G. Chavent and J. Jaffré, Mathematical models and finite elements for reservoir simulation: single
phase, multiphase and multicomponent flows through porous media, vol. 17, Elsevier, 1986.

[9] P. G. Ciarlet, Mathematical Elasticity. Volume 1: Three Dimensional Elasticity, North-Holland, 1984.

[10] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam [u.a.], 2.
pr. ed., 1987.

[11] P. Deuflhard, Newton Methods for Nonlinear Problems, vol. 35 of Springer Series in Computational
Mathematics, Springer Berlin Heidelberg, 2011.

[12] P. Deuflhard and F. Bornemann, Scientific computing with ordinary differential equations, Texts in
applied mathematics, Springer, New York, 2002.

[13] C. Eck, H. Garcke, and P. Knabner, Mathematische Modellierung, Springer, 2008.

[14] L. C. Evans, Partial differential equations, American Mathematical Society, 2010.

[15] C. Goll, T. Wick, and W. Wollner, DOpElib: Differential equations and optimization environment;
A goal oriented software library for solving pdes and optimization problems with pdes, Archive of Numerical
Software, 5 (2017), pp. 1–14.

[16] P. Grisvard, Elliptic Problems in Nonsmooth Domains, vol. 24, Pitman Advanced Publishing Program,
Boston, 1985.

[17] C. Großmann, H.-G. Roos, and M. Stynes, Numerical Treatment of Partial Differential Equations,
Springer, 2007.

[18] M. Hanke-Bourgeois, Grundlagen der numerischen Mathematik und des Wissenschaftlichen Rechnens,
Vieweg-Teubner Verlag, 2009.

[19] A. Hirn, Finite Element Approximation of Problems in Non-Newtionian Fluid Mechanics, PhD thesis,
University of Heidelberg, 2012.

[20] G. Holzapfel, Nonlinear Solid Mechanics: A continuum approach for engineering, John Wiley and
Sons, LTD, 2000.

139

References

[21] S. H. John W. Eaton, David Bateman and R. Wehbring, GNU Octave version 3.8.1 manual: a
high-level interactive language for numerical computations, CreateSpace Independent Publishing Platform,
2014. ISBN 1441413006.

[22] C. Johnson, Numerical solution of partial differential equations by the finite element method, Cambridge
University Press, Campridge, 1987.

[23] K. Koenigsberger, Analysis 2, Springer Lehrbuch, Springer, Berlin – Heidelberg – New York, 5. au-
flage ed., 2004.

[24] J. Nocedal and S. J. Wright, Numerical optimization, Springer Ser. Oper. Res. Financial Engrg.,
2006.

[25] A. Quarteroni, F. Saleri, and P. Gervasio, Scientific computing with MATLAB and Octave, Texts
in computational science and engineering, Springer, 2014.

[26] R. Rannacher, Finite element solution of diffusion problems with irregular data, Numer. Math., 43
(1984), pp. 309–327.

[27] R. Rannacher, Analysis 2. Vorlesungsskriptum, 2010.

[28] , Numerik partieller Differentialgleichungen, Heidelberg University Publishing, 2017.

[29] T. Richter and T. Wick, Einfuehrung in die numerische Mathematik - Begriffe, Konzepte und zahlre-
iche Anwendungsbeispiele, Springer, 2017.

[30] M. Schäfer and S. Turek, Flow Simulation with High-Performance Computer II, vol. 52 of Notes on
Numerical Fluid Mechanics, Vieweg, Braunschweig Wiesbaden, 1996, ch. Benchmark Computations of
laminar flow around a cylinder.

[31] H. R. Schwarz, Methode der finiten Elemente, Teubner Studienbuecher Mathematik, 1989.

[32] G. Strang, Computational Science and Engineering, Wellesley-Cambridge Press, 2007.

[33] F. T. Suttmeier and T. Wick, Numerische Methoden für partielle Differentialgleichungen (in german).
Notes (Vorlesungsmitschrift) at University of Siegen, 2006.

[34] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Provi-
dence, Rhode Island, 2001.

[35] D. Werner, Funktionalanalysis, Springer, 2004.

[36] T. Wick, Modeling, discretization, optimization, and simulation of fluid-structure interaction.
Lecture notes at Heidelberg University, TU Munich, and JKU Linz available on https://www-
m17.ma.tum.de/Lehrstuhl/LehreSoSe15NMFSIEn, 2015.

[37] , Numerical methods for partial differential equations. Institute for Applied Mathematics, Leibniz
Universitaet Hannover, Germany, 2018.

140

Index

A-stability, 50
Ansatz function, 64
Assembling in FEM, 76
Assembling integrals, 76

Big O, 17
Bilinear form, 64

Norm, 64
Scalar product, 64

Boundary value problem, 30, 59
Bounded operator, 17
Box rule, 78
BVP, 30, 59

Change of variables, 18, 19
Compact support, 62
Computational convergence analysis, 98
Conditional stability, 110
Consistency, 48, 51
Continuous mapping, 17
Convergence, 51
Cross product, 15

damping parameter, 90
Defect, 116
Deformation gradient, 19
Degrees of freedom, 82
descent method, 91
Differential equation

Classification, 39
General definition, 38
Linear vs. nonlinear, 39

Differential equations, 26
Differential problem, 60
Differentiation under the integral sign, 32
Diffusion, 30
Discretization error, 26
Divergence, 14
Divergence theorem, 19
DoFs, 82

Eigenvalues, 15
Elasticity, 33
Elliptic operator, 35
Elliptic PDE, 35
Errors in numerical mathematics, 26
Euler

Backward, 47
Implicit, 47

Euler method, 46
Euler-Lagrange equations, 60
Explicit schemes, 46

FD, 45
FE, 59
FEM

2D simulations, 98
3D simulations, 99
Computational convergence analysis, 99
Quadratic, 85

Finite differences, 45
Finite element

Definition, 70
Finite elements, 59, 65

Computational convergence analysis, 99
Construction of manufactured solution, 59
Construction of right hand side, 99
Error analysis, 99
Error analysis in simulations, 99
Manufactured solution, 99
Conforming, 66
Evaluation of integrals, 69
Linear, 65
Mesh, 65
Python code, 133
Weak form, 68

Fixed point methods, 89
Fixed-point iteration, 114
Fluid flow equations, 34
Forward Euler method, 46
Frobenius scalar product, 64
Fundamental lemma of calculus of variations, 62

Galerkin equations, 68
Galerkin method, 68
Galerkin orthogonalty, 92
Gauß-Seidel method, 90
Gradient, 14
Gradient descent, 91
Growth of a species, 29

Hat function, 65
Heat equation, 35, 36, 103
Higher-order FEM, 85
Hyperbolic PDE, 35

IBVP, 103, 107
Implicit schemes, 47
Initial value problem, 29
Integration by parts, 20, 61
Iterative solution, 89
IVP, 29, 45

Jacobi method, 90
Jacobian, 14

141

Index

Krylov space, 92

Landau symbols, 17
Laplace equation, 30, 36
Linear form, 63
Linear functional, 17
Linear operator, 16
Little o, 17

Mass matrix, 105
Master element, 81, 83
Mathematical modeling, 25
MATLAB, 131
Maximum norm, 16
Midpoint rule, 78
Minimization problem, 60
Multiindex notation, 14

Nabla operator, 14
Navier-Stokes equations, 34
Newton linearization, 115
Newton’s method, 113, 115

Defect-correction, 116
Octave code, 135
overview, 117
Root finding problem, 135

Nonlinear problems, 113
Norm, 16
Normal vector, 13
Normed space, 16
Numerical analysis

Heat equation, 108
ODE, 48

Numerical integration, 78
Numerical methods, 25
Numerical modeling, 25

Challenges, 43
Philosophy, 44

Numerical quadrature, 78
Numerical simulations, 25

Octave, 131
Octave code, 131
ODE, 26, 45

Model problem, 34
One-step schemes, 46
One-Step-Theta scheme, 103
One-step-theta scheme, 103
Ordinary differential equation, 26

Parabolic PDE, 35
Partial differential equation, 26
Partial integration, 20
PDE, 26, 59

Elliptic, 35

Hyperbolic, 35
Parabolic, 35

Petrov-Galerkin method, 68
Philosophy of numerical modeling, 44
Picard iteration, 114
Poisson

1D simulations, 71, 86
2D simulations, 98
3D simulations, 99

Poisson equation, 35, 36
Poisson problem, 30
Population, 29
Principal invariants of a matrix, 15
Principle of minimum potential energy, 60
Principle of virtual work, 43, 60
Python, 133

Quadratic FEM, 85
Quadratur, 78
Quadrature weights, 78

Reference element, 81, 83
relaxation parameter, 90
Reynolds’ transport theorem, 32
Ritz method, 68
Ritz-Galerkin method, 68
Rotation, 15
Runge-Kutta methods, 56

Scalar product, 64
Scientific computing, 25

Challenges, 43
Search direction, 91
Second order differential operator, 35
Semi-norm, 16
Separation of variables, 29
Shape functions, 65
Shape functions, 68
Smooth functions, 62
Software, 25
Solid mechanics equation, 33
Stability, 48, 49
stability analysis, 108
Stiff PDEs, 104
stiff problem, 108
Stiffness, 45
Stiffness matrix, 105
Substitution rule, 18

Taylor expansion, 51
Test function, 60, 64
Total potential energy, 60
Trace, 14
Transformation of integrals, 18
Trapezoidal rule, 78

142

Index

Trial function, 64

Unconditionally stable, 109

Variational problem, 60
Vector space, 15
Volume ratio, 19

Wave equation, 35, 37
Well-posedness, 28

143

	1 Main literature
	2 Basics in calculus and linear algebra (summer readings)
	2.1 Literature for the summer readings
	2.2 Mathematical symbols
	2.3 Arithmetic
	2.4 Differential and integral calculus
	2.5 Linear algebra

	3 Notation (summer readings)
	3.1 Domains
	3.2 Independent variables
	3.3 Function, vector and tensor notation
	3.4 Partial derivatives
	3.5 Multiindex notation
	3.6 Gradient, divergence, trace, Laplace, rotation
	3.7 Invariants of a matrix
	3.8 Vector spaces
	3.9 Normed spaces
	3.10 Linear mappings
	3.11 Little o and big O - the Landau symbols
	3.12 Taylor expansion
	3.13 Transformation of integrals: substitution rule / change of variables
	3.14 Gauss-Green theorem / Divergence theorem
	3.15 Integration by parts and Green's formulae

	4 Quiz (finishing the summer readings)
	4.1 Questions

	5 Motivation of numerical modeling
	5.1 Scientific computing: Why numerical simulations?
	5.2 Differential equations and guiding questions
	5.3 Errors
	5.4 Concepts in numerical mathematics
	5.5 Well-posedness
	5.6 Which topics these notes do not cover

	6 An extended introduction to differential equations
	6.1 Examples and applications of differential equations
	6.2 One important ODE
	6.3 Three important PDEs
	6.4 The general definition of a differential equation
	6.5 Boundary and initial conditions
	6.5.1 Types of boundary conditions
	6.5.2 Common traps and errors
	6.5.3 Example: Dependence of the numerical solution on the boundaries

	6.6 Weak/variational solutions versus classical solutions
	6.7 The challenge of numerical modeling
	6.8 Philosophy of numerical modeling

	7 Finite differences for ODE initial-values problems
	7.1 Problem statement of an IVP (initial value problem)
	7.2 Stiff problems
	7.3 Well-posedness of solutions
	7.4 One-step schemes
	7.4.1 The Euler method
	7.4.2 Implicit schemes

	7.5 Numerical analysis
	7.5.1 The model problem
	7.5.2 Splitting into stability and consistency
	7.5.3 Stability
	7.5.4 Consistency / local discretization error - convergence order
	7.5.5 Convergence

	7.6 Detailed numerical tests
	7.6.1 Problem statement and discussion of results
	7.6.2 Treatment of the instability of the forward Euler method

	7.7 Runge-Kutta methods

	8 Finite elements for PDE boundary values problems
	8.1 Model problem: 1D Poisson
	8.2 Construction of an exact solution (only possible for simple cases!)
	8.3 Equivalent formulations
	8.4 The weak form: defining a bilinear form and a linear form
	8.5 Finite elements in 1D
	8.5.1 The mesh
	8.5.2 Linear finite elements
	8.5.3 The process to construct the specific form of the shape functions
	8.5.4 The discrete weak form
	8.5.5 Evaluation of the integrals
	8.5.6 Definition of a finite element
	8.5.7 Properties of the system matrix A
	8.5.8 Numerical test: 1D Poisson

	8.6 Algorithmic details
	8.6.1 Assembling integrals on each cell K
	8.6.2 Example in R5
	8.6.3 Numerical quadrature
	8.6.4 Details on the evaluation on the master element
	8.6.5 Generalization to s elements
	8.6.6 Example: Section 8.6.2 continued using Sections 8.6.4 and 8.6.5

	8.7 Quadratic finite elements: P2 elements
	8.7.1 Algorithmic aspects
	8.7.2 Numerical test: 1D Poisson using quadratic FEM
	8.7.3 Influence of numerical quadrature

	8.8 Solving the linear equation system
	8.8.1 Overview
	8.8.2 Basic iterative solvers
	8.8.3 Conjugate gradients (a Krylov space method)
	8.8.4 Preconditioning

	8.9 Numerical tests: computational convergence analysis and solver behavior
	8.9.1 2D Poisson
	8.9.2 Numerical test: 3D
	8.9.3 Checking programming code and convergence analysis for linear and quadratic FEM
	8.9.4 Convergence analysis for 1D Poisson using linear FEM
	8.9.5 Iterative solver behavior

	9 Combining FD and FE: Numerical discretization of the heat equation
	9.1 Problem
	9.2 Mathematical problem statement
	9.3 Temporal discretization
	9.3.1 Spatial discretization
	9.3.2 Evaluation of the integrals (1D in space)
	9.3.3 Final algorithms

	9.4 Numerical analysis: stability analysis
	9.4.1 Stability analysis for backward Euler
	9.4.2 Stability analysis for explicit Euler
	9.4.3 Numerical tests

	10 Towards nonlinear problems
	10.1 Preface
	10.2 Linearization techniques
	10.3 Fixed-point iteration
	10.4 Linearization via time-lagging (example: NSE)
	10.4.1 Stokes linearization
	10.4.2 Oseen linearization

	10.5 Newton's method in R - the Newton-Raphson method
	10.5.1 Newton's method: overview. Going from R to Rn
	10.5.2 A basic algorithm for a residual-based Newton method
	10.5.3 Example of the basic Newton method
	10.5.4 Example using a Newton defect-correction scheme including line search

	10.6 Solving IVPs with implicit schemes

	11 Computational convergence analysis
	11.1 Discretization error
	11.1.1 Relationship between h and N (DoFs)
	11.1.2 Discretization error
	11.1.3 Computationally-obtained convergence order: example for the spatial mesh parameter h

	11.2 Iteration error

	12 Concluding summary
	12.1 Summary
	12.2 The principles of work, study and research tasks
	12.3 Hints for presenting results in a presentation/talk

	13 Programming codes
	13.1 Short comments on MATLAB / octave
	13.2 Code of Example 7.6 in Octave
	13.3 Short comments on Python
	13.4 Code of Example 8.5.8 in python
	13.5 Code for a straightforward implementation of Newton's method (Example 10.5.3)
	13.6 Code for a Newton defect-correction scheme including line search (Example 10.5.4)

	Bibliography
	Index

