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Foreword

I am very grateful to the organizers of this winter schools; namely Thomas Richter,
Boris Vexler, Dominik Meidner, and Rolf Rannacher, for the opportunity to hold
this lecture on fluid-structure interaction (FSI) problems at IWR Heidelberg. Still,
fluid-structure interaction is one of the most challenging problems that extend into all
parts of applied mathematics: modeling and theory, numerical techniques, large-scale
high performance computations, sensitivity analysis and optimization. These notes
represent a mixture of state-of-the-art research; as well as teaching material of basic
techniques that have been well known for a long time now.

Beyond classical fluid-structure modeling; namely coupling incompressible Navier-
Stokes equations and three-dimensional elasticity, we make excursions to two related
(in the first view: simplified) problems: coupling of Darcy flow with elasticity and cou-
pling flow lubrication approximations to Poisson’s problem. Not only does this show
the applicability of FSI-techniques in related fields but it does also demonstrate how
physics and applications lead to different modeling aspects while possibly neglecting
characteristic features of standard FSI.

In order to access, understand, and work with the content of these notes, I suggest
as academical requirements classes for numerical methods for ordinary and partial
differential equations (ODEs and PDEs). Furthermore, PDE analysis, Sobolev spaces,
functional analysis, and concepts in continuum mechanics would be very helpful.

I wish to express my special gratitude to Thomas Richter with whom I have had
many discussions on fluid-structure interaction in the last years. Moreover, I have had
the pleasure to work and discuss with so many fantastic scientists that contributed
indirectly to these notes through joint publications or simply through discussions:
they are all listed acknowledgment section.

Before we start let me ask a question and ask for your help: Have you ever written
a long text, a thesis or a book? If yes, you remember very well that the first draft(s)
have never been your final manuscript and often - in particular after some days - you
find again and again errors and spelling mistakes. I promise that I carefully wrote
these notes and had more than one look for proof-reading; but since active research
is involved, parts of the text are under current development and subject to changes.
Please be patient and forgiving with me if you find errors and let me know them such
that I can improve future versions of these notes. Thanks a lot!

Thomas Wick1 2 3

(Linz, Austin, Heidelberg/Warsaw, Siegen)

1Many thanks to my FSI (French-Société-International)-ladies for their patience with me.
2In addition, I am very grateful to Ulrich Langer for the opportunity to work on these notes during
my RICAM-time.

3thomas.wick@ricam.oeaw.ac.at
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Updates Nov 17, 2014

After lecturing at IWR Heidelberg, I made the following updates motivated by own
observations and recommendations by several participants (many, many thanks!!):

• Figure 6;

• More details to illustrate structural damping; e.g., in Figure 10;

• More explanation of variational-monolithic coupling;

• Classification of physics in the fully coupled problems: Problem 5.19 and 5.62

• Many more details in Section 5.6 - almost new section compared to the old
version of the script;

• New Section 6.6 with a hopefully simple example how we discretize and linearize.

Thomas Wick
(Nov 17, 2014, Linz)
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1 A Brief Motivation for FSI-Research and Challenges

1.1 Real-world observations, their impact, and principal questions

Fluid-structure interaction (FSI)4 remains one of the most challenging topics to date,
although many publications have appeared with specific emphasize on applications,
coupling algorithms, and theory. Classical examples are found in industrial processes,
mechanical engineering, aero-elasticity, and biomechanics. Specifically, fluid-structure
interactions (FSI) are important to describe flows around elastic structures as for in-
stance in the flutter analysis of airplanes, parachute FSI, or blood flow in the cardiovas-
cular system, possibly with hyperelastic structure models, and heart valve dynamics,
see, for example [20, 49–51, 87, 165, 179, 184, 195, 196, 206, 215, 225] (of course, these
references are by far not sufficient - if I would list all, we would arrive at > 1000).
However, fluid-structure interaction is implicitly contained in many other fields as for
example in porous media flow (here fluid-structure interaction is needed on the mi-
croscopic level where solid pores interact with the flow; through homogenization, the
so-called Biot equations are obtained [35–37, 177]).
Revisiting current research in fluid-structure interaction and closely related fields

indicate that nothing else than

Health and Energy

constitute the big picture of possible applications. Of course both topics are of
highest relevance in our human society in order to prepare for future decades and
centuries!5
Let us start with two examples I have been involved in 6. The first topic is health

(specifically the heart) 7:

Figure 1: Long axis heart valve. Provided by Jeremi Mizerski [178] (and in collabora-
tion with Rolf Rannacher; my PhD thesis [248]) .

4In these notes, I use both notations: ‘structure’ and ‘solid’.
5Another urgent topic is climate research, for instance.
6There are so many interesting topics in FSI research, please forgive me at this point that I only
mention two topics I have been working on.

7Simulation of the heart is a very difficult topic and I am not claiming that I completely solved this.
I rather restricted my focus on the development of adaptive finite element methods.
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The second ‘big picture’ is energy recovery: this includes both conventional resources
as well as novel techniques such as geothermal energy8.

Figure 2: Numerical simulation of reservoir flow with high permeability zones (in
red) in subsurface modeling: porous media flow applications in which FSI-
techniques are required for microscale modeling as well as coupling of mul-
tiphysics equations (in collaboration with Mary F. Wheeler, Andro Mikelić
and Gurpreet Singh [176, 257]).

Ideally, the three basic questions we have to ask are:

• What are we doing? (What is the example or application?)

• How are we doing this? (Modeling, solution theory, numerical discretization,
simulation, optimization, uncertainty analysis, comparison with experimental
data, verification and validation)

• Why are we doing this? (Is there a link to our real-world? What is the impact?)

The circle of research that we are entering is highlighted in Figure 3.

8Wind energy recovery is also a hot topic in computational fluid-structure interaction.
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“The third pillar of science: scientific computing” (1)
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Thomas Wick (Heidelberg) Adaptive Finite Elements and Optimization 4
Figure 3: ‘The third pillar of science: scientific computing/computational engineering

and sciences’. Forward modeling and validation.
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Having sufficient trust into our forward model, we can go one step further and think
about optimization (i.e., inverse modeling): parameter estimation, optimal control,
inverse problems, optimal experimental design.

• Why should we do this?

Well, having the forward model (the state equation) is one part, but often (except in
academic examples and simplified situations), material parameters or the geometry are
not known, for instance. Or, we are given some output but do not know the state that
caused this output (inverse problems). Or, we want to control the PDE into a certain
solution/state (optimal control). As sketch of the abstract optimization process is
provided in Figure 4.“The third pillar of science: scientific computing” (2)

T
P

I
O

M AI T
I Z

O N

Problem

Target functional

Discretization

Simulation

Adaptivity

Formulation ofData

Experiments

Model (validated)

Analysis

of results

optimization

Thomas Wick (Heidelberg) Adaptive Finite Elements and Optimization 13
Figure 4: ‘The third pillar of science: scientific computing/computational engineering

and sciences’. Optimization.
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1.2 The challenges of FSI from a mathematical perspective
After identification of possible topics that FSI-research is associated with, it remains
the question:

• Why is applied-mathematical FSI difficult?

Challenge 1.1. The answers are:

• Dealing and coupling of different classes of PDEs: elliptic, parabolic, hyperbolic
that require different mathematical analysis and numerical tools;

• Multidomain character and interface coupling conditions;

• Combining different coordinate systems.

Warning 1.2. On the first view, it seems natural to consider large problems as I
advertised at the beginning. And of course we should go for it. And it seems straight-
forward to add more and more equations to capture all physics and perform correct
modeling. However, this is neither accessible from the theoretical point of view nor
due to computational cost. Consider the simple example of an aircraft with Reynolds
number 108. A direct numerical simulation (DNS) that captures the smallest scales of
order O(Re9/4), would lead to a mesh with 1018 mesh points. This is simply infeasi-
ble with todays supercomputers [214] 9. Consequently, we have to find approximations
with less computational cost. This is one reason, why we also touch topics such as
Reynold’s lubrication approximation and discuss reduced modeling.

1.3 Conclusions and outline of these notes
I try to provide a mixture of basic techniques and sophisticated algorithms and exam-
ples. Not only do we study these aspects in terms of classical fluid-structure interaction
but we do also glance on special situations (porous media - fluid-structure modeling
on the microscale; and lubrication approximations). The main parts concentrate on
continuum mechanics and forward modeling of fluid-structure interaction. Later, we
also extend to sensitivity analysis including dual-weighted residual a posteriori error
estimation and PDE-based optimization with flow and fluid-structure interaction and
provide corresponding algorithmic details. For basics on PDE-based optimization and
numerical optimization, we refer reader to [136, 186, 236, 241] and the many references
provided therein.
Hopefully, everybody will identify himself with some parts of these notes and learn

something new.

9This note is inspired by a talk given by Johan Jansson at IWH Heidelberg, Nov 2014.
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2 Notation and Spaces

Throughout these lecture notes, we use standard function spaces [76, 260]. Let Ω ⊆
Rd, d ∈ {2, 3} be a bounded domain with boundary ∂Ω. We generally assume the
boundary to be Lipschitzian. A precise definition is given in [1, 119]. The outer unit
normal vector to ∂Ω is denoted by n.
We denote by Ω := Ω(t) ⊂ Rd, d = 2, 3, the domain of the fluid-structure interaction

problem. This domain consists of two time-dependent subdomains Ωf (t) and Ωs(t).
The interface between both domain is denoted by Γi(t) = ∂Ωf (t)∩∂Ωs(t). The initial
(or later reference) domains are denoted by Ω̂f and Ω̂s, respectively, with the interface
Γ̂i = ∂Ω̂f ∩ ∂Ω̂s. Furthermore, we denote the outer boundary by ∂Ω̂ = Γ̂ = Γ̂D ∪ Γ̂N
where Γ̂D and Γ̂N denote Dirichlet and Neumann boundaries, respectively. For the
convenience of the reader and when we expect no confusion, we omit the explicit time-
dependence and we use Ω := Ω(t) to indicate time-dependent domains. Throughout
these notes, we indicate with ‘f’ and ‘s’ suffixes, fluid and structure related terms,
respectively.
Function spaces on fixed domains
We adopt standard notation for the usual Lebesgue and Sobolev spaces [1, 260]. Let

X ⊂ Rd, d = 2, 3 be a time-independent domain. For instance, we later use X := Ω̂f
or X := Ω̂s. We indicate by Lp(X), 1 ≤ p ≤ ∞ the standard Lebesgue space that
consists of measurable functions u, which are Lebesgue-integrable to the p-th power.
The set Lp(X) forms a Banach space with the norm ‖u‖Lp(X).

‖u‖Lp(X) :=

(∫
X

|u(x)|p dx

) 1
p

, 1 ≤ p <∞, (1)

‖u‖L∞(X) := ess sup |u(x)|. (2)

We obtain the Hilbert space L2(X) for p = 2, equipped with the inner product

(u, v)L2(X) :=

∫
X

u(x)v(x) dx.

The Sobolev space Wm,p(X),m ∈ N, 1 ≤ p ≤ ∞ is the space of functions in Lp(X)
that have distributional derivatives of order up to m, which belong to Lp(X). This
space is equipped with the norm

‖u‖Wm,p(X) :=

 ∑
|α|≤m

‖Dαu‖pLp(X)

 1
p

, 1 ≤ p <∞,

‖u‖Wm,∞(X) := max
|α|≤m

‖Dαu‖L∞(X).

The symbol α = (α1, . . . , αd) ∈ Nd denotes a multi-index with the properties

|α| :=
d∑
j=1

αj , Dα :=
∂|α|

∂xα1
1 · · · ∂x

αd

d

.
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For p = 2, Hm(X) := Wm,2(X) is a Hilbert space equipped with the norm with the
inner product

(u, v)Hm(X) :=
∑
|α|≤m

(Dαu,Dαv)L2(X),

and the norm || · ||Hm(X) [260]. semi-norms

|u|Wm,p(X) :=

 ∑
|α|=m

‖Dαu‖pLp(X)

 1
p

, 1 ≤ p <∞,

|u|Wm,∞(X) := max
|α|=m

‖Dαu‖L∞(X).

Finally, we indicate the subspace Wm,p(X) of functions with zero trace on ∂X by
Wm,p

0 (X). Specifically, we define H1
0 (X) = {u ∈ H1(X) : u = 0 on ΓD ⊂ ∂X}. We

use frequently the short notation

V̂X := H1(X), V̂ 0
X := H1

0 (X),

and
L̂X := L2(X), L̂0

X := L2(X)/R.

Specifically, we introduce the trial and the test space of the velocity variables in the
fluid domain,

V̂ 0
f,v̂ := {v̂f ∈ H1

0 (Ω̂f ) : v̂f = v̂s on Γ̂i}.

Moreover, we introduce the trial and the test spaces for the artificial displacement (for
mesh moving using ALE10) in the fluid domain,

V̂ 0
f,û := {ûf ∈ H1

0 (Ω̂f ) : ûf = ûs on Γ̂i},

V̂ 0
f,û,Γ̂i

:= {ψ̂f ∈ H1
0 (Ω̂f ) : ψ̂f = ψ̂s on Γ̂i ⊂ ∂X}.

The dual space of Hm
0 (X) is denoted by H−m(X). We indicate the duality pairing

between H−m(X) and Hm
0 (X) by

〈f, u〉, f ∈ H−m(X), u ∈ Hm
0 (X).

The dual space is a Banach space with the norm

‖f‖H−m(X) := sup
ϕ∈Hm

0 (X)

〈f, ϕ〉
|ϕ|Hm(X)

.

For the definition of space-time functions, let I := (0, T ) with 0 < T <∞ a bounded
time interval. Let,

v(x, t), with (x, t) ∈ X × I
10Definition later.
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be such a function. For any Banach space X and 1 ≤ p ≤ ∞, the set Lp(I,X) denotes
the space of Lp-integrable functions v from I into X. This is a Banach space with the
norm

‖v‖Lp(I,X) :=

(∫
I

‖v(t)‖pX dt

) 1
p

, 1 ≤ p <∞,

‖v‖L∞(I,X) := ess sup t∈I‖v(t)‖X .

Moreover, we also need the space

H1(I,X) =
{
v ∈ L2(I,X)| ∂tv ∈ L2(I,X)

}
.

Detailed derivation of these spaces by means of the Bochner integral can be found in
[66, 260].
Let γ be an open regular, i.e., Lipschitz continuous, and measurable subset of ∂X.

We denote with H1/2(γ) the space of functions defined on γ that are traces of functions
in H1(X) [110]. Furthermore, we recall the Korn [56]

‖∇u‖2 ≤ CK(X)‖D(u)‖2 ∀u ∈ H1(X)d

and the Poincaré inequality [110]

‖u‖2L2(X) ≤ CP (X)‖∇u‖2L2(X) ∀u ∈ H1
0 (X)d,

with a positive constant CP (X) depending on the domain X. We also remind the
trace inequality [260]

‖u‖L2(∂X) ≤ CT (X)‖u‖H1(X) ∀u ∈ H1(X)d,

with a positive constant CT (X) depending on the domain X. For Korn’s inequality
[43, 56], let ûs ∈ H1(Ω̂s) and ε̂ = 1

2 (∇̂ûs + ∇̂ûTs ) ∈ L2(Ω̂s). Then,

‖ûs‖H1(Ω̂s) ≤ CK
(
|ûs|2L2(Ω̂s)

+ |ε̂|2
L2(Ω̂s)

)1/2 ∀ûs ∈ H1(Ω̂s),

and some constant CK .
Function spaces on moving domains
For the stability analysis of our equations, it is convenient to work in time-dependent

domains. Thus, we introduce (on a moving domain Ω):

V := {v : Ω× I → Rd : v ◦ Â = v̂, v̂ ∈ [H1(Ω̂)]d},

L := {p : Ω× I → R : p ◦ Â = p̂, p̂ ∈ [L2(Ω̂)]},

where Â : Ω̂ → Ω denotes the ALE transformation that is explained below. The
admissibility of the spaces is given by the relations

V ⊆ [H1(Ω)]d, and L ⊆ [L2(Ω)].
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This relation was proven by Formaggia and Nobile [85] and is recalled in Section 5.3.3.
A deeper discussion of fluid-structure interaction in moving domains can be found in
Formaggia et al. [87] (chapter 3) and the many references cited therein.
Convention for vector-valued functions
For the corresponding spaces of the d-dimensional vector-valued functions, we bear

the notation Lp(X)d, H1(X)d, etc. in mind, equipped with the usual product norm.
The scalar products and corresponding norms are defined in an analogous way as
those for scalar functions. We expect that the reader is familiar with the Navier-
Stokes equations and structural mechanics in d-dimensions. Consequently, we do not
differentiate between one-dimensional and d-dimensional spaces and the corresponding
solution variables.
Notational conventions
For the reader’s convenience, we often use

(·, ·)X := (·, ·)L2(X) and || · ||X := || · ||L2(X),

where X = Ωf ,Ωs or the corresponding spaces in the fixed reference domains X̂ =

Ω̂f , Ω̂s. Furthermore, in time-dependent spaces in which we need explicitly the depen-
dence on time, we use

(·, ·)Xn := (·, ·)L2(Xn) and || · ||Xn := || · ||L2(Xn).

In other cases, we denote explicitly the used scalar product and the induced norm, for
instance,

(·, ·)H1(Xn) and || · ||H1(Xn).

Gauss’ divergence theorem, green’s theorem, integration by parts

Proposition 2.1 (Gauss’ divergence theorem - special version). Let Ω ⊂ Rn, n =
1, 2, 3 be a cuboid and A = (A1, A2, A3) a continuously differentiable vector field in a
neighborhood of Ω. Then, ∫

Ω

divA dx =

∫
∂Ω

A · n ds. (3)

The outer normal of ∂Ω is given by n.

Proposition 2.2 (Green’s theorem). Let u ∈ C2(Ω) and v ∈ C1(Ω). Then,∫
Ω

v∆u dx = −
∫

Ω

∇v · ∇u+

∫
∂Ω

v∂nu ds. (4)

Proposition 2.3 (Partial integration). Let σ, u, v ∈ C2(Ω). Then,∫
Ω

vdiv(σgradu) dx = −
∫

Ω

σ∇v · ∇u dx+

∫
∂Ω

vσ∂nu ds.

15



More notation
We use standard notation from functional analysis and finite elements theory. The

colon operator denotes a scalar product between two matrices (tensors):

σ : e

means in 2d: (
σ1 σ2

σ3 σ4

)
:

(
e1 e2

e3 e4

)
= σ1e1 + σ2e2 + σ3e3 + σ4e4.

The ’dot’ operator means a scalar product between two vectors:

u · v =

(
u1

u2

)
·
(
v1

v2

)
= u1v1 + u2v2.

When the multiplication is between two scalar-valued functions u = u1 and v = v1

then, no punctutation operator is used: uv = u1v1. The gradient and divergence
operators are used according to the ’nabla’-operator notation:
The gradient of a single-valued function v := v(x, y) reads:

∇v =

(
∂xv

∂yv

)
.

The divergence does only makes sense for vector-valued functions
(v1(x, y), v2(x, y):

div v := ∇ · v := ∇ ·
(
v1

v2

)
= ∂xv1 + ∂yv2.
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3 Partial Differential Equations

Let us start with some definitions:

Definition 3.1 (PDE [76]). A partial differential equation (PDE) is an equation
involving an unknown function with at least two variables and certain of its partial
derivatives. �

Definition 3.2 (Coupled system of PDEs). A coupled system of PDEs is a collection of
at least two PDEs that interact through parameters, right-hand side forces or interface
terms. �

Unfortunately11, there is no general theory for studying PDEs and consequently,
there is no common framework to approximate and compute these PDEs on a com-
puter.
Apart from important PDE-analysis questions (which are discussed in standard

textbooks such as [76, 260]) regarding to well-posedness, strong and weak solutions
and their regularity, the principal difficulty in fluid-structure interaction is that
we intend to couple three (perhaps the most important) classes of PDEs together:

• Second-order and fourth-order elliptic equations: the mesh motion equation (us-
ing ALE-FSI);

• Second-order parabolic equations: Navier-Stokes fluid flow (if we assume mod-
erate Reynolds numbers);

• Second-order hyperbolic equations: elasto-dynamic solid equation.

Fourth-order problems in this respect seem a bit fancy; however they are indeed
important in solid and fluid mechanics:

Remark 3.3 (Fourth-order equations in solid mechanics). Fourth-order equations are
well known in solid mechanics since they include bending moments, e.g., Kirchhoff
plates [43].

Remark 3.4 (Fourth-order problems in fluid mechanics). To derive Galerkin FEM
methods for fluid problems, sometimes the derivation is made via the so-called stream-
line formulation. Here the intermediate step includes an explicit respresentation of the
vorticity [200].

Remark 3.5 (Homework). Please recall and make yourself familiar about the charac-
teristics of each of these classes (e.g., existence and uniqueness, maximum principle,
regularity). �

11Maybe fortunately because otherwise there would be nothing else remaining to do.
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4 Basic Principles of Continuum Mechanics

Continuum mechanics is a key tool to describe physical phenomena of a macroscopic
system without taking into account knowledge on detailed compositions of internal
structures. Many classical important fields are covered by these concepts such as
hydrodynamics and fluid mechanics, solid mechanics, or heat phenomena. Of course
there are limitations when we consider phenomena on micro- or nanoscales in which
other models such a particle representations are more appropriate to be used.
Befor we begin, one important remark: continuum mechanics is obvisously linked

to physics and one might think that the mathematical impact is rather limited. This
is not the case for fluid-structure modeling! We encounter most of the presented
concepts again in Section 5. It is worth to careful study the present section.

4.1 Kinematics; including Eulerian and Lagrangian modeling
In kinematics, we study the motion and deformation of bodies. All phenomena that
we consider are described in an open subset of the three-dimensional space.
To study kinematics we introduce two different coordinate systems: Lagrangian

coordinates x̂ (also called reference frame or material coordinates) and Eulerian co-
ordinates x (the current domain or spatial domain). In the Lagrangian coordinate
system, a specific material point and its deformation (i.e., its evolution in time) are
observed (see in Figure 4.1 the bold black line). In contrast, using Eulerian coordi-
nates, we observe a fixed point in space and observe what is happening at this spatial
point while time is evolving. It might be occupied by different materials while time
advances (imagine a river; here you do not identify the single water particle but the
general flow pattern). To make it more clear: please think of Heidelberg’s old town
Hauptstrasse when there is Christmas market or any other day in the year. Imagine
you observe people walking there: do you follow a specific person (that would be La-
grangian modeling) or do you look at the general flow of people (Eulerian point of
view).

Remark 4.1. From Figure 4.1 we already identify the principle difficulty in formu-
lating a common coordinate system when the underlying physics are described in La-
grangian and Eulerian coordinates. Shall we ‘move’ the Eulerian system according to
h(x) or shall we find any other presentation of h(x) that fits with an Eulerian descrip-
tion. One powerful possibility that we consider in detail in Section 5.3 is the arbitrary
Lagrangian-Eulerian (ALE) framework in which the Eulerian system fits with h(x) and
is moved. �
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Figure 5: The membrane (bold black line) with deflection h(x) is computed in La-
grangian coordinates; whereas a possible fluid represented by vx and vz
components between in [0, l]× [0, h(x)] is considered in Eulerian coordinates.
This figure already demonstrates the principle difficulty when coupling La-
grangian and Eulerian coordinates since both systems interacts with each
other.

Furthermore, we need a so-called reference configuration Ω̂ ⊂ Rd (or undeformed
configuration), which is open and connected. Depending on the application there
are different possibilities of reference configurations; in particular when working with
stress-free or pre-stressed configurations [139] (imagine a book that is just placed on
a table or a hot sausage that you slice in order to peel off the skin).
The time-evolution of a material point x̂ ∈ Ω̂ is described by the mapping:

t 7→ x(t, x̂).

For the following, let us introduce the following notation to describe (physical)
variables:

• Lagrangian coordinates: f̂(t, x̂).

• Eulerian coordinates: f(t, x).

The deformation is defined as

Definition 4.2 (Deformation field). A deformation of Ω̂ is a smooth one-to-one map-
ping

T̂ : Ω̂→ Ω with (t, x̂) 7→ (t, x) = (t, T̂ (t, x̂)).

This mapping associates each point x̂ ∈ Ω̂ (of a reference domain) to a new position
x ∈ Ω (of the physical domain). �

The displacement field is defined as

Definition 4.3 (Material/Lagrangian description of the displacement field).

û : (t, x̂)→ û(t, x̂) = x(t, x̂)− x̂

and it relates a particle’s position in the reference configuration x̂ to its corresponding
position in the current configuration x at time t. �
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In the spatial description, we have

Definition 4.4 (Spatial/Eulerian description of the displacement field).

u(t, x) = x− x̂(x, t).

This is formulated in terms of the current displacement, which results from its original
position x̂ plus the displacement for that position. �

It holds

Definition 4.5 (Identification of function values).

f(t, x(t, x̂)) = f̂(t, x̂).

�

With the help of the chain rule, we then obtain

Definition 4.6 (Total/Material derivative).

Dtf(t, x) = ∂tf(t, x) +∇f(t, x) · v(t, x).

�

The material derivative describes the change of an Eulerian variable f at a fixed
material point x̂ that is at time t at point x and travels with the velocity v(t, x).

4.1.1 Deformation gradient F̂ and Jacobian of the deformation Ĵ

In this section, we introduce two key quantities that are required to transform and
formulate equations in different coordinate systems. Specifically, we introduce concepts
to study the changes of size and shape of a body that is moved from the reference
configuration Ω̂ to the current domain Ω.
For simplicity, let a body occupies Ω̂ at time t = 0. It is described by its position

vector x̂ = (x̂1, x̂2, x̂3) in a Cartesian coordinate system with the orthonormal basis
(ê1, ê2, ê3). At time t the body has evolved (and possibly changed its size and shape)
and occupies the current domain Ω. Here, the position vector is xi(t, x̂j). Conse-
quently:

x̂ = x̂iêi, x = xi(t, x̂j)êi

(using Einstein’s sum convention).
In order to define the deformation gradient, let us consider an infinitesimal material

vector dx̂ in Ω̂ that displaces the material particle at x̂ such that the new position is
x̂+ dx̂. In the current domain, the previous operation yields x+ dx.

• The key purpose of the deformation gradient F̂ is to link dx and dx̂.

F̂ is a key principle in continuum mechanics and a primary measure of deformation
with nine components for all times. It transports any material vector dx̂ to dx onto
the current (deformed) configuration.
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Definition 4.7 (Deformation gradient F̂ ).

dx = F̂ · dx̂,

with F̂ = ∇̂x, i.e, F̂ij = ∂xi

∂x̂j
. �

Its inverse and transpose are defined correspondingly:

dx̂ = F̂−1 · dx, dx = dx̂ · F̂T .

Figure 6: Transport of materials vectors, transformation T̂ , and deformation gradient
F̂ .

Relation of deformation gradient and displacements
We are now prepared to relate F̂ and the displacement û(t, x̂). Recall from Definition
4.3

x = x̂+ û.

Definition 4.8 (Deformation and deformation gradient).

T̂ = id+ û.
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The deformation gradient F̂ can be expressed in terms of û as follows:

F̂ = ∇T̂ = Î + ∇̂û.

With the help of the deformation, T̂ , we can represent the deformed configuration as
Ω = T̂ (Ω̂).

Although we have Definition 4.5, such a relation does not hold for derivatives. Here
we have (see also Figure 6):

∇f = ∇̂f̂ F̂−1.

Determinant of deformation
The determinant of the deformation gradient (mathematically speaking we would call
it as the functional determinant) is defined as

Definition 4.9.
Ĵ := det(F̂ ) > 0,

which is used to relate volume changes between infinitesimal reference and current
domains:

dΩ = ĴdΩ̂. (5)

�

Extending Relation (5) to the whole domain, we can compute the volume change:

|Ω| =
∫

Ω

1 dx =

∫
Ω̂

Ĵ(t, x̂) dx̂, (6)

which further yields (employing the Eulerian development formula ∂tĴ(t, x̂) = ∇ ·
v(t, x)Ĵ(t, x̂))

d

dt
|Ω| =

∫
Ω

∇ · v(t, x) dx.

Consequently, Ĵ characterizes the volume ratio and is called in r-adaptive methods,
the adaptation factor (Section 5.5). Physically, we do not allow for negative volumes
Ĵ < 0 (which is mathematically still allowed). Furthermore, Ĵ = 0 would mean that F̂
is not invertible and has serious consequences in fluid-structure interaction modeling
using the ALE approach causing the approach to fail. Consequently, we shall control
Ĵ such that is stays positive during a numerical computation.
If a body does not move, we have F̂ = Î and it follows Ĵ = 1. On the other hand,

a motion is called isochoric when Ĵ = 1 with possibly F̂ 6= Î.
Nanson’s formula

This formula is required to transform normal vectors between both coordinate systems.
Let ds := dsn and dŝ := dŝn̂ be vector elements of infinitesimally small areas and n
and n̂ the corresponding normal vectors. Then,

Definition 4.10 (Nanson’s formula).

ds = Ĵ F̂−T dŝ.

�
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4.1.2 Reynolds’ transport theorem - differentiation under the integral sign

Proposition 4.11 (Reynolds’ transport theorem). Let (t, x̂) 7→ x(t, x̂) be given under
some assumptions (details see [74]). Furthermore, let the functions (t, x) 7→ ∂tx(t, x̂)
and (t, x) 7→ f(t, x) be continuously differentiable. Then,

d

dt

∫
Ω

f(t, x) dx =

∫
Ω

[
∂tf(t, x) +∇ · (f(t, x) · v(t, x))

]
dx.

4.1.3 Strain tensor

There are various definitions for strain tensors [139]. Let us introduce the most im-
portant concepts for these lecture notes:

Definition 4.12 (Right Cauchy-Green tensor Ĉ).

Ĉ = F̂T F̂ ,

which is symmetric and positive definite for all x̂ ∈ Ω̂. �

Definition 4.13 (Green-Lagrange strain tensor Ê).

Ê =
1

2
(F̂T F̂ − Î),

which is again symmetric and positive definite for all x̂ ∈ Ω̂ since Ĉ and of course, Î
have these properties. �

Geometrically speaking, the strain tensors measure the changes, caused by the de-
formation, both in lengths and angels of two material vectors.
Performing geometric linearization, we often work with the linearized Green-Lagrange

strain tensor

Definition 4.14 (Linearized Green-Lagrange strain tensor Êlin).

Êlin =
1

2
(∇̂û+ ∇̂ûT ).

�

4.2 Balance principles and conservation equations
The equations in continuum mechanics are based on the fundamental physical princi-
ples:

• Mass

• Momentum

• Angular momentum

• Energy
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4.2.1 Conservation of mass - the continuity equation

Let ρ(t, x) be the mass density in Eulerian coordinates.

Definition 4.15 (Conservation of mass).

d

dt

∫
Ω

ρ(t, x) dx = 0.

�

Applying Reynolds’ transport theorem, we get the integral formulation∫
Ω

[
∂tρ(t, x) +∇ · (ρ(t, x)v(t, x))

]
dx = 0.

This equation must hold for each sub-domain of Ω. If ρ and v are sufficiently smooth,
we get the differential formulation

∂tρ+∇ · (ρv) = 0.

Remark 4.16 (Homework). Make yourself clear how we come from the integral for-
mulation to the differential form. �

Remark 4.17. When changes in density are time-independent, we have

∇ · (ρv) = 0.

If the density is also spatially constant, we get

∇ · v = 0.

�

4.2.2 Conservation of momentum

Let f : Ω→ Rd be a given force density acting on the volume; and let g : ∂Ω→ Rd a
surface-related force (traction force).
Newton’s second law states:

d

dt
(mv) = F,

where F is the force that acts on the mass.
In continuum mechanics Newton’s second law reads:

d

dt

∫
Ω

ρv dx =

∫
Ω

ρf dx+

∫
∂Ω

g ds.

Employing again Reynolds’ transport theorem yields:∫
Ω

[
∂t(ρv) +∇ · (ρvv)

]
dx =

∫
Ω

ρf dx+

∫
∂Ω

g ds.
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Applying Cauchy’s existence [43, 55] of the stress tensor,

g = σ · n,

further allows to write (and using Gauss’ divergence theorem)∫
∂Ω

g ds =

∫
∂Ω

σ · nds =

∫
Ω

∇ · σ dx.

After some calculations, we finally obtain:

ρ∂tv + ρ(v · ∇)v −∇ · σ = ρf.

4.2.3 Conservation of angular momentum

Proposition 4.18. Let all parameters and data ρ, v, f, g be sufficiently smooth. If
conservation of momentum and angular momentum are satisfied, then Cauchy’s stress
tensor σ is symmetric.

Remark 4.19. In formulating the Navier-Stokes equations, you often find a non-
symmetric formulation. We strongly emphasize that such a simplification is related to
the specific setting. In general, you must use the symmetric stress tensor.

4.2.4 Conservation of energy

The conservation of energy reads:

d

dt

∫
Ω

ρ(
1

2
|v|2 + u) dx =

∫
Ω

ρf · v dx+

∫
∂Ω

σn · v ds−
∫
∂Ω

g · nds+

∫
Ω

ρh dx

This leads into,
ρ∂tu+ ρv · ∇u− σ : Dv +∇ · g − ρh = 0.

Here, u is related to the inner energy, v to the kinetic energy, f and σn right hand
side source terms, and g and h are related to heat energy terms.

4.3 Incompressible, isothermal equations with constant density
If there are no variations in density and temperature, we obtain the following equations
for conservation of momentum and mass balance:

ρ∂tv + ρ(v · ∇)v −∇ · σ = ρf,

∇ · v = 0.

The specification of the stress tensor σ follows in Section 4.4.
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4.4 Constitutive laws
The Cauchy stress tensor is not yet specified in Section 4.3 and hence the previous
equations do hold for all materials; specifically they do not distinguish between fluids,
solids, or gas. These properties are fixed by constitutive laws that are obtained from
measurements, for instance.
We provide two examples for constitutive laws:

• Friction-free fluid flow. Here, only pressure forces are taken into account. The
stress tensor reads:

σ = −pI.

• Viscous flow with inner friction:

σ = −pI + µ(∇v +∇vT ) + λ∇ · vI,

where λ and µ are volume and shear viscosity, respectively. In the case of in-
compressible materials, i.e., ∇ · v = 0, this relationship reduces to

σ = −pI + µ(∇v +∇vT ).

Remark 4.20. In Navier-Stokes formulations, you often find the non-symmetric ver-
sion

σ = −pI + µ∇v.

�

4.5 Incompressible, isothermal Navier-Stokes equations

ρ∂tv + ρ(v · ∇)v −∇ · σ = ρf,

∇ · v = 0,

where
σ = −pI + µ(∇v +∇vT ).

Here, µ = ρν is the dynamic viscosity, whereas ν is the so-called kinematic viscosity.
We have not yet talked about boundary conditions, which are crucial to all equations

presented so far. Depending on them and suitable right hand side data, we might
obtain existence of a unique solution; for details we refer to [227].
For the full 3d Navier-Stokes equations, the complete proof for smooth solutions

is still missing and one of the Millennium prices. Concretely, one has to establish
existence and smoothness of solutions in R3 [78]. This problem is also open for the
Euler equations (ν = 0). The 2d solution has been established in [164].
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4.6 Modeling thin fluid films: the lubrication equation
In many applications, the Navier-Stokes equations are reduced to a linear velocity-
pressure relationship (Darcy) or further to a lower-dimensional lubrication equation,
the so-called Reynolds’ lubrication equation. This approximation is used when the
geometry width (or height) is small compared to the length. In addition, we assume
that the Reynolds number is small; otherwise advection effects would play a major
role.

Definition 4.21. (Reynolds number)
For the characteristic data of a fluid; namely, velocity and length, we define

Re =
UL

ν
,

where ν = µ
% is the kinematic velocity as previously used. �

For fluids with high viscosity, friction terms dominate compared to inertia forces.
Consequently, we neglect the convection term v · ∇v.

Example 4.22. Small Reynolds numbers appear in the following situations for in-
stance:

• Transport of microscopic elements (here L is very small),

• Deformation/Transport of geological structures such as ice glaciers,

• Fluids with high viscosity such as honey.

Of course, these examples come from different applications, but they all have in
common that the Reynolds number is small and for the solution (in theory as well as
numerics), we can employ similar tools. These facts were discovered by Reynolds in
1883.
In the following, we assume no volume forces. Possible forces which can be rep-

resented by a potential can be inserted in the term ∇p. Furthermore, we assume a
quasi-stationary velocity field, namely ∂v

∂t ≈ 0. Then, we obtain the linear Stokes
equations:

0 = −∇p+ η∆v,

together with suitable boundary conditions, they have a unique solution [227].

4.6.0.1 Derivation of Reynolds’ equation in 1D The mathematical tools behind
the following calculations is a dimensional analysis. Our derivation is based on a two-
dimensional setting and the resulting PDE will be dependent only on x. The extension
to three dimensions is straightforward. Let us begin with a thin fluid film that is placed
on a fixed piece (i.e., a table). With thin, we mean h(x) � l (height much smaller
than length).
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Figure 7: Lubrication film with height h(x) and velocity components vx and vz

We start from the Stokes equations:

∇p = η∆v ⇔ ∂

∂xi
p = η

∂2vi
∂x2

l

for i = x, y.

Since the film is thin, we omit pressure variations in z-direction. Similarly, we take
only velocity variations in x-direction such that we obtain

−dp
dx

+ η

(
∂2vx
∂x2

+
∂2vx
∂z2

)
= 0 with vx = vx(x, z). (7)

Changes of the velocity in x-direction are much smaller than in z-direction and we can
assume: ∣∣∣∣∣∂2vx

∂x2

∣∣∣∣∣�
∣∣∣∣∣∂2vx
∂z2

∣∣∣∣∣ .
Consequently, (7) can be written as

−dp
dx

+ η
∂2vx
∂z2

= 0.

We assume a viscous fluid with no-slip boundary conditions

vx(x, 0) = vx(x, h) = 0, both boundaries are fixed.

Or,
vx(x, 0) = u0 and vx(x, h) = uh, h = h(x).

if the lower or upper boundary move with the horizontal velocity u0 i.e.,. uh:

Proposition 4.23 (Velocity profile of a thin film in 1D). The evolution of a fluid
characterized by a thin film is given by:

vx = − 1

2η

dp

dx
z(h− z)− u0

(
z

h
− 1

)
+
z

h
uh, h = h(x), vx = vx(x, z),

with the no-slip boundary conditions:

vx(x, 0) = u0 and vx(x, h) = uh.
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Proof. Two times integration leads to the velocity field of the thin film

− dp

dx
+ η

∂2vx
∂z2

= 0

⇒ − dp

dx
z + η

∂vx
∂z

+ C1 = 0, C1 = const

⇒ − dp

dx

1

2
z2 + ηvx + C1z + C2 = 0, C1, C2 = const.

Applying the boundary conditions leads to

i) vx(x, 0) = u0 ⇒ ηu0 + C2 = 0 ⇒ C2 = −ηu0

ii) vx(x, h) = uh ⇒ −dp
dx

1

2
h2 + ηuh + C1h− ηu0 = 0

⇒ C1 =
1

h

(
dp

dx

1

2
h2 + η(u0 − uh)

)
.

Inserting

0 = −dp
dx

1

2
z2 + ηvx + z

1

h

(
dp

dx

1

2
h2 + η(u0 − uh)

)
− ηu0

⇔ 0 =
1

2

dp

dx
z2 +

1

2

dp

dx
zh+ ηvx +

z

h
η(u0 − uh)− ηu0

⇔ 0 =
1

2η

dp

dx
(zh− z2) + vx +

z

h
u0 − u0 −

z

h
uh

⇔ vx = − 1

2η

dp

dx
z(h− z)− u0(

z

h
− 1) +

z

h
uh.

In order to obtain the pressure, we begin with the mass balance equation

div v = 0 ⇔ ∂vx
∂x

+
∂vz
∂z

= 0.

Integrating of the height h = h(x) yields:∫ h

0

∂vx
∂x

dz + [vz]
h
0 = 0. (8)

Using differentiation of parametric integrals gives us:∫ h(x)

g(x)

∂

∂x
f(x, z) dz =

d

dx

∫ h(x)

g(x)

f(x, z) dz − ∂h

∂x
f(x, h(x)) +

∂g

∂x
f(x, g(x)).
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For (8), we obtain the implications:

d

dx

∫ h

0

vx dz −
dh

dx
vx(x, h) + [vz]

h
0 = 0

⇒ d

dx

∫ h

0

(
− 1

2η

dp

dx
z(h− z)− u0(

z

h
− 1) +

z

h
uh

)
dz − dh

dx
uh + [vz]

h
0 = 0

⇒ d

dx

[
− 1

2η

dp

dx

(
1

2
z2h− 1

3
z3

)
− u0

(
1

2h
z2 − z

)
+

1

2h
z2uh

]h
0

− dh

dx
uh + [vz]

h
0 = 0

⇒ d

dx

(
− 1

2η

dp

dx

(
1

2
h3 − 1

3
h3

)
− u0(

h

2
− h) + uh

h

2

)
− dh

dx
uh + [vz]

h
0 = 0.

By composing all terms, we obtain the Reynolds equation for a viscous thin film
between moving boundaries:

d

dx

(
− 1

12η

dp

dx
h3 +

1

2
h(u0 + uh)

)
− dh

dx
uh + [vz]

h
0 = 0. (9)

We get:

Proposition 4.24 (Pressure distribution of a thin film in 1D). Let the top boundary
z = h(x) be moving with a velocity vz(x, h) =: vz; the lower boundary at h = 0 is fixed
for simplicity. Then,

− d

dx

(
h3

12η

dp

dx

)
= vz.

Appropriate Neumann boundary conditions are:

dp(0)

dx
= ∆p1 and

dp(1)

dx
= ∆p2.

In two-dimensions, we have

Proposition 4.25 (Pressure distribution of a thin film in 2D). Let the top boundary
z = h(x) be moving with a velocity vz(x, h) =: vz; the lower boundary at h = 0 is fixed
for simplicity. Then,

−∇ ·

(
h3

12η
∇p

)
= vz, h = h(x, y).

Neumann boundary conditions are given by

i)
∂p

∂x
= ∆p1 on Γ1 and

∂p

∂x
= ∆p2 on Γ3,

ii)
∂p

∂y
= ∆p3 on Γ2 and

∂p

∂y
= ∆p4 on Γ4.
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Remark 4.26 (Existence of the pressure lubrication equation). We emphasize that
the pressure lubrication problem is of elliptic type. Here, Neumann conditions on
all boundary parts require a compatibility condition (e.g., [43]) in order to establish
existence of the problem. This is equivalent to saying that the pressure solution is only
determined up to a constant. �

4.7 Modeling solids
In these lecture notes, we mainly concentrate on elastic deformations for solid model-
ing. Specifically, this means that a body under deformation goes back into its initial
configuration if forces are removed. So, we work in the linear regime sketched in Figure
4.7 12.
When the body does not go back into its initial configuration and a deformed settings

remains, we work in an elasto-plastic regime with plastic deformations.
There are huge contributions to hyperelastic materials. We aim to provide a brief

overview of basics concepts that help us throughout these lecture notes. For detailed
considerations, we refer to [38, 56, 139, 146].
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Figure 8: The stress-strain diagram. Here, σ is the stress and ε is the strain.

Typically and in contrast to fluid problems, elasticity is described in Lagrangian
coordinates. One reason is related to history-dependent materials. Using Lagrangian
coordinates, it facilitates treatment of such laws because each mesh point represents at
all times the same material point (for example stress-update procedures in nonlinear
elasticity or plasticity). However, it is nevertheless possible to obtain such information
in an Eulerian framework; for a discussion, we refer the reader to [38] (chapter 5).
Lagrangian coordinates describe a material point x̂ in the reference configuration Ω̂,

12I took this figure from my Master thesis that was written in German. Bruch = break, damage;
Bereich = region; Fließ= flow; Verfestigung = hardening; nicht = non.
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which is usually the configuration without outer forces (remember in contrast to pre-
stressed configurations [139]).
Since we intend to compute the solution (deformation and stress) in Lagrangian

coordinates, but the Cauchy’s stress tensor is formulated in the Eulerian framework,
we need to transform this tensor back to the reference configuration. This operation
is achieved with the so-called Piola-Kirchhoff stress tensor:

Definition 4.27 (First Piola stress tensor).

Π̂ = Ĵ σ̂sF̂
−T .

where σ̂s is Cauchy’s stress tensor. �

With its help, we are able to transform the solid equations from Ω to Ω̂. We notice
that Π̂ is in general not symmetric although σ̂s has this property. However, this is
often advantageous and consequently we define a second stress tensor in the reference
domain:

Definition 4.28 (Second Piola stress tensor).

Σ̂ = F̂−1Π̂ = Ĵ F̂−1σ̂sF̂
−T ⇔ F̂ Σ̂ = Π̂ = Ĵ σ̂sF̂

−T . (10)

�

We are now prepared to formulate the equations for elasticity. As we previously
learned, without specifying constitutive laws the conservation equations do hold for
all aggregation states. We recall the conservation of momentum:

d

dt

∫
Ω

ρ̂∂tu dx =

∫
Ω

f̂ dx+

∫
∂Ω

σnds.

Here, the density ρ̂ and the volume force f̂ are related to the reference configura-
tion. Further calculation (using Gauss’ divergence theorem and Reynolds transport
theorem) yields ∫

Ω

(
ρ̂∂2
t u−∇ · σ

)
dx =

∫
Ω

f̂ dx. (11)

We notice that the convective term in Reynolds’ theorem vanishes since we work in
a Lagrangian setting. For sufficiently smooth functions and since (11) holds for each
subdomain of Ω, we can write the differential form of the elasto-dynamics equations:

ρ̂∂2
t u−∇ · σ = f̂ . (12)

Remark 4.29 (A mixed formulation). We notice that you can split the solid equation
into a first order system:

ρ̂∂tv −∇ · σ = f̂ ,

ρ̂(∂tu− v) = 0.

In fact in Section 5 and 6, we go with this mixed formulation. Reasons are of numerical
nature and are explained in [12]. We notice that standard temporal solid discretization
is based on the so-called Newmark scheme [143, 261, 262]. �
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In order to specify the properties of a specific material, we again need a constitutive
law for the stress tensor. We already discussed the linearized strain tensor if we deal
with small strains. In addition, we need a relationship between the stress and strain
(we refer to Figure 4.7). Often, Hooke’s law is consulted, which reads:

Definition 4.30 (Linear stress-strain relationship/Hooke’s law).

σij =

d∑
k,l=1

aijklE
lin
kl for i, j = 1, . . . , d.

�

The tensor (aijkl)
d
ijkl ∈ Rd×Rd×Rd×Rd has 81 components in 3d. Using symmetry

arguments and further assumptions (e.g. isotropy), we arrive at

Definition 4.31 (St. Venant-Kirchhoff-Material).

σ̂(û) = 2µÊ + λtr(Ê)Î ,

with the Lamé constants µ and λ. �

Remark 4.32. We notice that this material law has limitations for problems that
involve large strains. �

Remark 4.33 (Hyperelastic materials). There is a huge body of literature concerned
with general laws of hyperelasticity [38, 56, 139, 146] from which the St. Venant-
Kirchhoff material is a special case. A material is called hyperelastic, and therefore
path-independent, when the applied work during a deformation process does only depend
on the initial state and the final configuration. In this case, there exists a potential, the
stored strain energy function or elastic potential per unit undeformed volume [139]. �

Remark 4.34 (Incompressible materials: neo-Hookean, Mooney-Rivlin).

σ̂s(û) := −p̂sÎ + µsF̂ F̂
−T ,

σ̂s(û) := −p̂sÎ + µsF̂ F̂
−T + µ2F̂

−T F̂−1,
(13)

with the coefficients µs and µ2 . �

Often, the elasticity of structures is characterized by the Poisson ratio νs (νs < 1
2

for compressible materials) and the Young modulus EY . The relationship to the Lamé
coefficients µs and λs is given by:

νs =
λs

2(λs + µs)
, EY =

µs(λs + 2µs)

(λs + µs)
, (14)

µs =
EY

2(1 + νs)
, λs =

νsEY
(1 + νs)(1− 2νs)

. (15)
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Let us finally derive the relationship between incompressible fluids and solids. Recall:

∇ · v = 0 for fluids Ĵ = 1 for solids .

Since they represent the same physical mechanism; namely mass conservation, they
should be the same! We calculate:

|Ω| =
∫

Ω̂

Ĵ dx̂

⇒ d

dt
|Ω| =

∫
Ω

∇ · v dx.

4.8 Summary: Equations for modeling fluids and solids

4.8.0.2 Fluid equations In a Newtonian incompressible fluid, it holds:

σf := σf (vf , pf ) = −pfI + 2ρfνfD(vf ), D(vf ) :=
1

2
(∇vf +∇vTf ) (16)

with the velocity vf , the pressure pf , the identity matrix I, the density ρf , and the
(kinematic) viscosity νf .
Using the equations for momentum and continuity together with the Cauchy stress

tensor, we obtain the incompressible, isothermal Navier-Stokes Equations:

ρf∂tvf + ρf (vf · ∇)vf − 2div(ρfνfD(vf )) +∇pf = ρff, in Ωf , t ∈ I, (17)
div vf = 0, in Ωf , t ∈ I. (18)

These equations are supplemented by appropriate boundary conditions. The first type
are Dirichlet conditions (a prescribed velocity):

vf = g on Γf,D ⊂ ∂Ωf ,

with a given function g : Γf,D × I → Rd. Such a Dirichlet condition is seen in the
velocity domain on the interface Γi in the case of a fluid-structure interaction setting,
i.e.,

vf = vs on Γi.

The second natural type are Neumann boundary conditions (applied stresses):

σfnf = [−pfI + 2ρfνfD(vf )]nf = h on Γf,N ⊂ ∂Ωf ,

with a given vector-valued function h = h(x, t). This condition is mostly used for the
outflow boundary (do-nothing condition [134]). However, the do-nothing condition
implies a constant pressure on this boundary that is not physiological in bio-medical
applications [88, 197]. Recent advances considering stability and well-posedness of set-
tings including the do-nothing conditions have been obtained in [42]. In particular, the
authors propose a modification, the directional do-nothing condition, that is necessary
when out- and inflow on one boundary part is involved.
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Figure 9: Impact of the correction term on the outflow boundary using the do-nothing
[134] condition. In order to get the ‘correct’ outflow profile using the sym-
metric stress tensor, you need to subtract the symmetric part ρfνf∇vTnf
on the outflow boundary. Otherwise you get non-physical curved streamlines
as displayed in the right figure. Further examples and serious consequences
are shown in [42].

4.8.0.3 Regularity of fluid equations In the following, we formulate time-dependent
functions in the Bochner spaces [260].

Problem 4.35 ([227], p. 190). Let f̂f and v̂0
f be given by

f̂f ∈ L2(I;H−1(Ω̂f )), v0
f ∈ L̂(Ω̂f ).

Find: v̂f ∈ L2(I;H1(Ω̂f )) such that the standard Navier-Stokes equations (as defined,
e.g., by Temam [227]) are solved with the initial data v̂f (0) = v̂0

f .

Theorem 3.1 in [227] shows that at least one solution to the previous defined problem
exists, i.e., it holds

v̂f ∈ L2(I,H1(Ω̂f )).

The main consequence for fluid-structure interaction is that v̂f ∈ H1/2(Γ̂i).

4.8.0.4 Solid equations For elasto-dynamics, we have:

ρ̂s∂
2
t ûs − d̂iv(F̂ Σ̂) = ρ̂sf̂ , in Ω̂s, t ∈ I. (19)
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This second-order (in time) equation is supplemented by appropriate initial conditions
and boundary conditions. As for the fluid equations, we prescribe Dirichlet boundary
conditions (fixing the displacements):

ûs = ĝ on Γ̂s,D ⊂ ∂Ω̂s,

where ĝ is a given function. We can also employ Neumann boundary condition (surface
stresses):

F̂ Σ̂n̂s = Ĵ σ̂sF̂
−T n̂s = ĥ on Γ̂s,N ⊂ ∂Ω̂s,

in which ĥ is a given vector-valued function. Such a condition is seen from the structure
side on the interface in case of a fluid-structure interaction problem, i.e.,

F̂ Σ̂n̂s = −Ĵ σ̂f F̂−T n̂f on Γ̂i.

4.8.0.5 Regularity of the solid equations Before we consider the regularity of the
solid equations, we extend the previously-derived equations. For mathematical and
physical reasons, it might be desirable to introduce damping terms.

Example 4.36 (Physical reason for damping terms). As example, consider the har-
monic oscillator, vibrations or simply a pendular that we let oscillating (remember
your physics classes). This pendular will stop at a finite time - otherwise we would
have created the famous perpetual motion machine. Correct physical modeling of this
process, consequently, requires introducing damping terms (i.e., friction terms). �

Example 4.37 (Mathematical point of view). Damping terms introduce higher regu-
larity into the solid solutions. We see later that this is important in the mathematical
analysis of fluid-structure interaction. �

The modified structure problem including damping terms reads:

ρ̂s∂
2
t ûs − d̂iv(F̂ Σ̂(ûs)) + γw∂tûs − γs∂td̂iv(ε̂(ûs)) = ρ̂sf̂s in Ω̂s, t ∈ I, (20)

with γs, γw ≥ 0. The first damping term is referred to as weak damping whereas the
second damping term is called strong damping. Using strong damping, the full operator
is used for damping, leading to an additional condition on the interface (because of
integration by parts) that has to be considered for the coupling with fluids. Assuming
that temporal and spatial differentiation can be changed, we obtain for strong damping:

−γs∂td̂iv(ε̂(ûs)) = −γsd̂iv(ε̂(∂tûs)) = −γsd̂iv(ε̂(v̂s)), with v̂s = ∂tûs.

The change of temporal and spatial differentiation is invalid for nonlinear strong damp-
ing, where we could have been used the full nonlinear operator, i.e.,

−γs∂td̂iv(F̂ Σ̂(ûs)) 6≈ −γsd̂iv(F̂ Σ̂(v̂s)). (21)

Such damping strategies have been employed in computational fluid-structure inter-
action as a perfectly-matched layer (PML) [30] approach to absorb outgoing elastic
waves in elastic-wall-fluid-flap simulations [249] as illustrated in Figure 10.
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Figure 10: Damped elastic equations are employed in x ≥ 6 as a PML-approach to
absorb outgoing elastic waves in the elastic walls.

Next, we pose a standard mixed formulation of the structure equations,

ρ̂s∂tv̂s − d̂iv(F̂ Σ̂(ûs)) + γwv̂s − γsd̂iv(ε̂(v̂s)) = ρ̂sf̂s in Ω̂s, t ∈ I, (22)

ρ̂s(∂tûs − v̂s) = 0 in Ω̂s, t ∈ I, (23)

where ε̂(v̂s) is defined by

ε̂(v̂s) =
1

2
(∇̂v̂s + ∇̂v̂Ts ). (24)

The modified structure problem (23) reduces to the original problem (19) when the
damping parameters are set to γw = γs = 0.

Remark 4.38. Using strong damping requires modification of the continuity of normal
stresses at the FSI-interface.

Remark 4.39 (Alternative to obtain higher regularity). Similar to elliptic and parabolic
equations if we assume higher regularity on data and the domain, we obtain higher regu-
larity on the solid solution. For details, I refer to PDE analysis textbooks, e.g., Section
7.2 in [76].

Remark 4.40 (Mixture of boundary conditions). Having Dirichlet and Neumann
boundary conditions requires that the closures of both boundary parts do not intersect
in order to keep the regularity of the solution [56], p. 298. �

Problem 4.41 ([120], p. 351). Let f̂s ∈ L2(I, L2(Ω̂s). Find

ûs ∈ L2(I,H1
0 (Ω̂s)) and v̂s = dtûs ∈ L2(I, L2(Ω̂s)),

such that the hyperbolic structure equations

d2
t ûs −∆ûs = f̂s in I × Ω̂s,

ûs = 0 on I × ∂Ω̂s,

are solved with the initial data ûs(0) = û0
s and v̂s(0) = v̂0

s .
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In Grossmann and Roos [120], Theorem 5.6 tells us that this problem has a unique
solution. The regularity of that solution is given by

ûs ∈ L2(I,H1
0 (Ω̂s)) and v̂s = dtûs ∈ L2(I, L2(Ω̂s)).

Consequently, we cannot expect v̂s ∈ H1/2(Ω̂s). Thus, condition (32) is only formally
valid. For this reason, we assumed a priori enough regularity of the hyperbolic struc-
ture equations. This was also observed (and resolved) in theoretically-oriented articles
with focus on proofs of existence of fluid-structure interaction problems [7, 61, 62, 147]
13.
The lack of solid-regularity can be resolved by using a vanishing viscosity approach

(that act on the velocity variables) to the structure equations. This coincides with the
terms introduced in Equation (20).
To analyze the regularity of structural deformations in more detail, we consider the

following hyperbolic equation with weak and linear strong damping.

Problem 4.42 ([103]). Let f̂s be sufficient regular. Let γs ≥ 0 and γw > −γsλ1, where
λ1 is the first eigenvalue of the −∆ operator under homogeneous Dirichlet boundary
conditions. Find

ûs ∈ L2(I,H1
0 (Ω̂s)) and v̂s = dtûs ∈ L2(I, L2(Ω̂s)),

such that the hyperbolic structure equations with weak and strong damping

d2
t ûs −∆ûs + γwdtûs − γsdt∆ûs = f̂s in I × Ω̂s,

ûs = 0 on I × ∂Ω̂s,

are solved with the initial data ûs(0) = û0
s and v̂s(0) = v̂0

s .

For example, in the work from Gazzola and Squassina [103], the first statement on
p. 189 explains that this problem has a unique solution. In particular, the regularity
of v̂s is given by

v̂s = dtûs ∈ L2(I,H1
0 (Ω̂s)),

for arbitrary γs > 0; hence, v̂s ∈ H1/2(Γ̂i). Thus, linear strong damping provides more
regularity of the solution, specifically for v̂s, such that the coupling condition (32) holds
true. We finally notice that we only consider regularity properties of linear structure
equations. Thus, typical nonlinearities of the structural operators are neglected.

13In this sense, we would like to point to two other important contributions analyzing FSI from the
theoretical point of view: [226] investigate time-dependent FSI flow-elastic-shell coupling with
small displacements; and [117] existence of a stationary FSI problem formulated in ALE coordi-
nates.
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5 Fluid-Structure Modeling

In Section 4, we have prepared ourselves with modeling of physics in terms of conser-
vation laws and partial differential equations. In this section, we shall couple these
equations into one common framework. The principal challenges are listed in Chal-
lenge 1.1. We discuss different coupling algorithms and concentrate on two of them on
which I have been working in the last few years.
The procedure of FSI-coupling is as follows: Let us say, we are given fluid equations

in Eulerian coordinates and solid equations in a Lagrangian framework. The first
questions we need to pose are:

• How to we couple or combine the coordinate systems?

• Once we decided for a technique, we further ask ourselves which amount of in-
formation needs to be transferred to the other problem; i.e, do we need weak
or strong coupling? This question might be posed from an application view-
point but also from a mathematical perspective (as example to the latter aspect:
a consistent Galerkin formulation for gradient-based sensitivity analysis would
require a monolithic coupling).

This information guides us through the discretization and the solution algorithm. We
particularly focus on consistent variational-monolithic coupling.

5.1 Techniques for coupling fluids and solids
In this first subsection, we provide an overview of possible coupling techniques.

5.1.1 Choosing frameworks for the coupled fluid-solid system

• Immersed boundary (IB) method:
References [131, 194].
This method was specifically designed for applications in hemodynamics and
heart valve simulations. It keeps the Eulerian and Lagrangian coordinate sys-
tems and the coupling is achieved by a Dirac delta function that can be seen as
a momentum forcing source term of the fluid equations. Consequently, the dis-
cretization uses two different meshes. Temporal discretization can be carried out
with finite difference schemes such as first-order backward Euler or higher-order
Runge-Kutta. Closely related is the immersed finite element method [265].

• Immersed structural potential method:
References: [107].
As the name indicates, this method is related to the IB method. Since numerical
diffusion is a challenge in the original IB-method the current method mainly
tries to reduce these errors. In addition, it allows to employ state-of-the-art
fiber-reinforced solid models.
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• Fictious domain method (FD):
References: [8, 111–113].
As in immersed boundary methods, two meshes (possibly nonmatching) are used
and the kinematic coupling condition is imposed with Lagrange multipliers and
possibly with mortar coupling. Again, the fluid is treated in the Eulerian frame-
work and the solid in Lagrangian coordinates.

• Arbitrary Lagrangian-Eulerian (ALE):
References: [28, 68, 90, 137, 145, 187].
The ALE method is perhaps the oldest approach. Here, Eulerian and Lagrangian
frameworks are combined without changing the mesh topology. One needs to
solve or prescribe the mesh movement of the fluid mesh. Difficult for large defor-
mations if no remeshing is used. The key advantage is that the interface aligns
with mesh edges and interface-terms such as traction forces can be computed
with high accuracy.

• Fixed mesh ALE (FM-ALE):
References: [58].
Here, an ALE approach is used in which at each time step, the problem is pro-
jected on a fixed background mesh. In other words: in each time step remeshing
is performed. The method was in particular developed for solid mechanics with
large strains in which the elements stretch.

• Universal mesh method:
References: [102].
This method has similarities to the FM-ALE method and tries again to combine
advantages from Eulerian and Lagrangian representations. In particular, large
deformations are possible. The key difference to FM-ALE is that during temporal
integration element splitting as in FM-ALE is avoided.

• Hybrid level-set/front-tracking approach:
References: [17].
The idea behind this approach is similar to the universal mesh method: roughly-
speaking, Eulerian and Lagrangian frameworks are combined. A level-set ap-
proach (interface-capturing) method is used to detect the interface, then the
mesh nodes are shifted in order to align the interface with mesh edges.

• Fully Eulerian FSI:
References: [69, 207].
This approach belongs to the fixed-mesh approaches but in contrast to IB and
FD methods, solid mechanics is formulated in terms of Eulerian coordinates.
Therefore, the coupled system can be computed on a single mesh. Coupling is
achieved by a variational monolithic formulation. As in the previous methods,
the interface is first captured (here with the initial-point set method rather than
a level-set approach). For the cut-cells a locally modified FEM method has been
proposed and is currently under further development [91, 206].
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• Discontinuous Galerkin (DG):
References: [79, 123, 124, 126, 245].
A specific proposed a method is by [245] in which again the fluid is kept in Eule-
rian coordinates and the solid is modeled in a Lagrangian setting. This specific
formulation is closely related to the IB method. Application to standard ALE
schemes is straightforward and performed in [123, 124]. In [79, 126], compressible
Navier-Stokes equations in ALE form are coupled with solid mechanics.

• XFEM /GFEM fixed-grid approach, Eulerian-Lagrangian coupling with
level-sets, mortar coupling
References: [106, 132, 166, 244].
The key idea is to compute the fluid in an Eulerian framework and to cou-
ple it to the Lagrangian structure. The interface (again) cuts the mesh cells
and is not anymore aligned with mesh faces. In order to represent jumps of
the velocity, pressure and stress fields, the extended/generalized finite element
(XFEM/GFEM) scheme is used. Recently, it has been shown that both ap-
proaches are equivalent [96]. The approach is that the shape functions are en-
riched by using additional degrees of freedom together with special enrichment
functions that are designed according to the solution form (its characteristics are
generally known). Mortar coupling [106] and mortar with domain decomposition
[132] allow for non-matching meshes on the interface. A Lagrange multiplier is
introduced to satisfy the coupling conditions.

• Isogeometric analysis (IGA):
References: [19, 144].
In IGA, the test and ansatz functions are not anymore polynomials but splines:
e.g., non-uniform rational B-Splines. The main purpose of IGA is to combine ge-
ometry representation and discretization. In particular, higher order discretiza-
tion require less degrees of freedom (for example for C1 implementations) as a
standard finite element model.

• Deforming spatial domain/stabilized space-time (DSD/SST):
References: [228, 229]:
This method is an interface-tracking method and moves the mesh similar to an
ALE approach. The problem is written in terms of a space-time discretization
rather than splitting into spatial Galerkin finite elements combined with finite
differences in time (Rothe method or the other way around method of lines).

• Lattice Boltzmann (LBM):
References: [162, 163].
Lattice Boltzmann methods have been introduced for computational fluid dy-
namics simulations. Rather than using continuum mechanics equations, the fluid
is represented by particles on a so-called lattice mesh. Has been successfully ap-
plied for fluid-structure interaction.

• The particle finite element method (PFEM):
References: [190].
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The PFEM method is based on a particle representation in which both continua
(fluid and solid) are modeled in Lagrangian coordinates. The nodes (the parti-
cles) are connected in order to build a mesh that serves as computational domain.
The resulting triangulation can be used for a finite element discretization. The
method is capable to treat large deformations and free surface problems (e.g. wa-
ter waves). Again, this approach has been successfully applied for fluid-structure
interaction.

In addition to the primer coupling techniques, we briefly mention examples of hybrid
techniques that couple two of the primal techniques in different parts of the domain:

• IB-Lattice Boltzmann for solving fluid-particle interaction problems [80];

• FD-ALE: [125, 215];

• Fluid-solid interface-tracking/interface-capturing technique (MITICT - FSITICT)
[3, 232];

• Coupling of fully-Eulerian/ALE (EALE) - FSITICT [253, 254].

5.1.2 Combining the underlying frameworks: FSI coupling algorithms

The key question we have to pose is:

• Shall the energy balance on the interface be satisfied? That means, do we satisfy

vf = vs,

σfn = σsn,

after temporal discretization?

The answers can be roughly divided into the following concepts [82]:

• Strongly-coupled (or implicit) schemes preserve the coupling conditions after
time discretization. Monolithic methods are strongly-coupled by construction or
partitioned approaches with several subiterations between both subsystems.

• Weakly-coupled (or loosely, explicit, staggered) schemes do not ‘exactly’ satisfy
the coupling conditions in each time step. Partitioned approaches with few
subiterations are weakly-coupled. Famous examples where these algorithms have
been applied are problems in aero-elasticity.

• Semi-implicit schemes [5, 6, 83] are a comprise of the previous two schemes with
respect to computational cost and stability.

• Coupling via an optimization algorithm [155] 14.
14In fact this approach is quite recent with satisfactory results for artery applications with small

displacements. Performance w.r.t. to larger displacements (e.g., FSI benchmarks [142]) have not
yet been performed.
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Remark 5.1 (Added-mass effect [54, 243]). In several studies it has been shown that
weakly-coupled schemes introduce instabilities when both densities such as in hemody-
namic problems are of similar order; consequently, strongly-coupled schemes are re-
quired. Various stabilization techniques have been investigated to make weakly-coupled
schemes stable [52, 83, 98, 170, 243]. �

5.1.3 Regularity of interface coupling in fluid-structure

Apart from practical aspects, there are some theoretical findings that should be taken
into account:

• The regularity gap between vf ∈ H1 and vs ∈ L2. Might be overcome by
backward difference discretization of vs [155]. Or by a viscosity method by adding
additional viscous terms to the structure equation [61, 62, 147]. Basically, if we
add structural damping (might be also physically taking place; and refer to our
discussion in Section 4.8.0.5), we obtain higher spatial regularity for vs.

5.2 Lagrangian, Eulerian, ALE
As we learned Section 4, Eulerian and Lagrangian approaches are the classical ways to
describe problems in continuummechanics. The so-called arbitrary-Eulerian-Lagrangian
(ALE) approach is an intermediate method to overcome some of the shortcomings of
the Eulerian and Lagrangian frameworks as we described above. Despite possible
drawbacks (mesh degeneration for large deformations; mesh tangling, mesh racing),
we focus on this approach in the following sections. The reasons are:

• It is one of the oldest and possibly (still) most widely-used algorithms.

• It is an interface-tracking approach in which the interface is aligned with mesh
edges at all times and allows for accurate measurements of, for example, traction
forces.

• It combines Lagrangian and Eulerian coordinate systems and we naturally learn
to work with transformation rules, which are (partially) indispensable for other
(but younger) approaches.

• Implemented correctly (which I always assume), it is an efficient, robust, and
accurate method in terms of a single consistent variational form and therefore
allows for trustable extensions towards sensitivity analysis and optimization 15

as discussed in Section 7. In this respect, our view in these lecture notes is more
directed to classical numerical topics (such as convergence studies, stability, and
error estimation) rather than real-world applications.

Let us recapitulate:

15This does not mean that the other approaches are not capable of doing this, but first we have to
trust our forward solver before we can go with adjoint formulations.
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• Lagrangian methods: mainly designed for problems in structural mechanics, al-
lows easy tracking of surfaces and interfaces between different materials, also
appropriate for materials with history dependent constitutive relations (such as
plasticity); but has difficulties for problems with large mesh deformations;

• Eulerian methods: used in fluid mechanics, the mesh is fixed and the body
moves with respect to the mesh, consequently, mesh deformations do not appear
here; but the interface is allowed to cut through cells, which requires adapted
discretization techniques in order to keep accuracy and robustness,

• ALE methods: The mesh can be moved (in the extreme case as in an Lagrangian
setting; on the other extreme: it is not moved at all and we recover an Eule-
rian approach), this flexibility is the major advantage and specifically for fluid-
structure interaction it leads to moving meshes around the interface and fixed
mesh far away (see Figure 11).

Generally-speaking the ALE approach tries to conserve mesh regularity and equidistri-
bution (the optimal mesh geometry) of mesh vertices while keeping the mesh topology.
Essentially, we shall control size, shape, and orientation of mesh cells. The location of
new vertices or the velocity of mesh points is usually determined by solving an addi-
tional partial differential equation: the moving mesh equation. In addition, a scalar
(or vector) valued monitor function is used to determine the optimal mesh vertices
distribution. From the mathematical viewpoint, the ALE-transformation maps one
domain into another and are therefore linked to geometry aspects. Furthermore, they
have common features with differential geometry (i.e., optimal transport) and mean
curvature flows.

5.3 ALE-FSI
In the present chapter, we discuss fluid-structure interaction problems in ALE co-
ordinates. The ALE mapping is defined by solving an additional partial differential
equation, for which we present three possibilities. With the help of this mapping, we
realize the fluid mesh motion. Next, the coupled framework is described in a coupled
fashion, leading to a variationally-coupled monolithic representation of fluid-structure
interaction. Our terminology to describe the monolithic approach is based on [69–
71, 140, 141, 207].
Firstly, we need to define the ALE transformation:

Definition 5.2. The ALE mapping is defined in terms of the fluid mesh displacement
ûf such that

Â(x̂, t) : Ω̂f × I → Ωf , with Â(x̂, t) = x̂+ û(x̂, t). (25)

It is specified through the deformation gradient and its determinant

F̂ := ∇̂Â = Î + ∇̂û, Ĵ := det(F̂ ). (26)

Furthermore, function values in Eulerian and Lagrangian coordinates are identified by

u(x) =: û(x̂), with x = Â(x̂, t). (27)
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The mesh velocity is defined by w := ∂tÂ. �

To formulate FSI in ALE coordinates, there are two possible ways presented in the
literature:

• ALEdm: We compute the fluid equations on the deformed configuration Ω and
move the mesh explicitely.

• ALEfx: All fluid equations are transformed onto the fixed reference configuration
Ω̂. In our work, we prefer this second possibility.

5.3.1 The ALE time derivative

The derivation of both approaches follows the same rules that we sketch in the follow-
ing. Let us briefly explain the relations between different time derivatives for different
frameworks (such as the Lagrangian, the Eulerian, and the ALE frameworks). In a
Lagrangian setting, the total and the partial derivatives coincide:

dtf̂(x̂, t) = ∂tf̂(x̂, t).

In an Eulerian framework, we find the following standard relation between the material
time-derivative (the total time derivative) dtf and the partial time derivative ∂tf :

dtf(x, t) = v · ∇f + ∂tf(x, t),

where the additional term v · ∇f is referred to as a transport term. In an analogous
fashion, we extend this concept to define the ALE time-derivative

∂̂tf(x, t) := ∂t|Âf(x, t) = w · ∇f + ∂tf(x, t), (28)

where the transport term appears due to the motion of the computational domain. In
a Lagrangian description, we have w = 0. In contrast, it holds w = v in an Eulerian
framework. The ALE time-derivative has important ramifications for the numerical
discretization of ALE equations; for a deeper discussion, we refer to [87], p. 88.

45



Figure 11: Comparison of cell occupation and computational domains for two time
steps between the ALEfx (top and middle) and Eulerian (bottom) method.
In ALEfx, all computations are done in the same fixed reference domain
Ω̂ (top). In particular, a specific cell remains all times the same material
(here, an elastic structure in red), i.e., Ωf and Ωs are time-independent.
The mesh movement is hidden in the transformation ~F and J . The physical
(current) ALE domain Ω(t) including the mesh movement is displayed in
the middle. In contrast, the computation with the Eulerian approach is
performed on a fixed (time-independent) mesh ΩE (bottom). However, the
two sub-domains for the structure and the fluid Ωs,E and Ωf,E change in
each time step because the material id of a cell might change since the
elastic structure (red) moves freely through the mesh. Figures partially
taken from [253].
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5.3.2 Navier-Stokes in ALE coordinates

Inserting now the ALE time derivative into the Navier-Stokes equations, we obtain:

Problem 5.3 (ALEdm fluid problem). Find
{vf , pf} ∈ {vDf +V 0

f }×L0
f such that the initial data satisfy vf (0) = v0

f , and for almost
all time steps t ∈ I holds:

ρf (∂̂tvf , ψ
v)Ωf

+ ρf
(
(vf − w) · ∇vf , ψv

)
Ωf

+(σf ,∇ψv)Ωf
− 〈σfnf ,∇ψv〉Γf,N∪Γi − ρf (f, ψv)Ωf

= 0 ∀ψv ∈ V 0
f ,

(div vf , ψp)Ωf
= 0 ∀ψp ∈ L0

f ,

(29)

with the Cauchy stress tensor

σf = −pfI + 2ρfνfD(vf ) = −pfI + ρfνf (∇vf +∇vTf ),

and a correction term on the outflow boundary ([134]):

g := −ρfνf∇vTf on Γf,N = Γout.

This is now the place in which ALEfx and ALEdm differ. Working with ALEdm,
we keep the above equations and solve these equations on the current domain Ω with
appropriate discretization of the ALE time derivatives16:

∂̂tvf =
1

k
(vnf − vn−1

f ◦ Ân−1 ◦ (Ân)−1).

Here, we work with an ALE map Â which is defined from the previous time step tn−1

to the the present time step tn. Thus, the reference configuration at time step tn is
denoted by Ωn. Moreover, vn ∈ Ωn is used as an approximation to v(tn), which is
transported from Ωn to any other configuration Ωl (for l 6= n) through the ALE map
([183]):

Ân,l = Âl ◦ Â−1
n .

On the other hand, in ALEfx, we use the fundamental theorem of calculus [154] in
higher dimensions, and we obtain the Navier-Stokes equations on a fixed domain. This
formulation introduces additional geometric nonlinearities in the equations (rather
than in terms of the mesh) and they are formulated in terms of F̂ and Ĵ .

Remark 5.4. Reading the literature, it seems that more people use ALEdm to for-
mulate fluid-structure interaction problems. Of course, the equations look much nicer
than introducing all transformation rules. However, we want to emphasize that in our
taste, the ALEfx approach is a more consistent way since all equations are formulated
on the same domain Ω̂ leading to a consistent variational-monolithic coupling scheme.
From the computational viewpoint it is maybe just a matter of taste. �

16Many thanks to my present colleague Huidong Yang for fruitful discussions!
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Proposition 5.5 (A claim without rigorous proof). ALEfx and ALEdm are equivalent
methods.

Let us know work with ALEfx and explain things in more detail. The boundary
of Ω̂f is divided into three non-overlapping parts ∂Ω̂f = Γ̂f,D ∪ Γ̂f,N ∪ Γ̂i, where Γ̂i
denotes later the interface and it coincides with Γ̂f,N in the case of pure fluid problems.
We prescribe

û = ûD, and v̂ = v̂D on Γ̂f,D,

Ĵ σ̂f F̂
−T n̂f = ĝ on Γ̂f,N .

Let v̂Df a suitable extension of Dirichlet inflow data. Then, the variational form in Ω̂f
reads:

Problem 5.6 (ALEfx fluid problem). Find
{v̂f , p̂f} ∈ {v̂Df + V̂ 0

f } × L̂0
f such that the initial data v̂f (0) = v̂0

f are satisfied, and for
almost all time steps t ∈ I holds:

ρ̂f (Ĵ∂tv̂f , ψ̂
v)Ω̂f

+ ρ̂f (Ĵ F̂−1(v̂f − ŵ) · ∇̂v̂f , ψ̂v)Ω̂f
+ (Ĵ σ̂f F̂

−T , ∇̂ψ̂v)Ω̂f

= 〈Ĵ ĝf F̂−T n̂f , ψ̂v〉Γ̂f,N
+ 〈Ĵ σ̂f F̂−T n̂f , ψ̂v〉Γ̂i

+ ρ̂f (Ĵ f̂f , ψ̂
v)Ω̂f

,

(d̂iv (Ĵ F̂−1v̂f , ψ̂
p)Ω̂f

= 0,

for all ψ̂v ∈ V̂ 0
f and ψ̂p ∈ L̂0

f , and with the transformed Cauchy stress tensor

σ̂f = −p̂f Î + 2ρ̂fνf D̂(v̂f ) = −p̂f Î + 2ρ̂fνf (∇̂v̂f F̂−1 + F̂−T ∇̂v̂Tf ). (30)

As before, ĝf accounts for (possible) Neumann data, for instance, a correction term
for the do-nothing outflow condition (see Figure 4.8.0.2 if this correction term is not
applied):

ĝf = −ρ̂fνf F̂−T ∇̂v̂Tf on Γ̂f,N = Γ̂out. (31)

Remark 5.7 (At all times). We use from time to time the notation for all times or
for almost all time steps. Please notice that this is a mathematical persnicketiness17

on the continuous level. As alternative, we could have used the notation L2(I,X) for
time-dependent Sobolev spaces. Of course, on the discretized level, we compute at each
(discrete) timestep a solution to our problem. �
Remark 5.8 (Variational-monolithic coupling; see also Section 5.3.6). Coupling fluid
flows with structural deformations along an interface Γ̂i requires the fulfillment of two
coupling conditions. Fluid flows require a Dirichlet condition on Γ̂i, i.e., the continuity
of the velocities is strongly enforced in the corresponding Sobolev spaces. The structural
problem is driven by the normal stresses that act on Γ̂i caused by the fluid. These
normal stresses are achieved with the boundary term:

〈Ĵ σ̂f F̂−T n̂f , ψ̂v〉Γ̂i
on Γ̂i.

�
17Spitzfindigkeit
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Remark 5.9. Finally, we note that the do-nothing conditions implicitly normalizes
the pressure by ∫

Γ̂out

p̂ dŝ = 0.

In such a case, it is sufficient to work with the space L̂f instead of L̂0
f . �

5.3.3 On the regularity of the ALE mapping

Because we work with both moving spaces and fixed spaces for fluid flows, we recall
the findings of [183], which provide the regularity conditions of the ALE mapping.

Problem 5.10. The ALE mapping Â has to be defined such that v̂ ∈ H1(Ω̂) if and
only if v = v̂ ◦ Â−1 ∈ H1(Ω).

Using classical function spaces, a sufficient condition is that Â is a C1-diffeomorphism:

Â ∈ C1(Ω̂), Â−1 ∈ C1(Ω),

and
F̂ ∈ L∞(Ω̂), F ∈ L∞(Ω).

This requirement must be weakened because classical function spaces are inappropri-
ate when approximate solutions with help of a Galerkin finite element scheme are
computed.

Proposition 5.11. Let Ω̂ be a bounded domain with C1,1-boundary (see, e.g., [260]).
Let Â be invertible in the closure of Ω̂ and there holds for each t ∈ I the two conditions

• Ω = Â(Ω̂) is bounded and ∂Ω is Lipschitz-continuous.

• Let Â ∈W 1,∞(Ω̂) and Â−1 ∈W 1,∞(Ω).

Then, v ∈ H1(Ω) if and only if v̂ = v ◦ Â ∈ H1(Ω̂). Moreover, the corresponding
norms are equivalent.

For a proof of this Lemma, we refer to [183].

Remark 5.12 (Accessing the ALE mapping regularity). As previously explained, as
quantity to measure the ALE regularity, we can consult the determinant Ĵ of the de-
formation gradient. In particular, Ĵ > 0 if ‖ûf‖W 2,p(Ω̂f ;Rd) is sufficiently small and we

see that this implies Â and Â−1 ∈ W 1,∞(Ω̂;Rd×d). Furthermore, the more we bound
the adaptation factor Ĵ away from zero, the better the regularity. In other words,
all mesh motion models aim to control Ĵ and try to bound this quantity away from
zero. Here, it is clear from the theoretical standpoint (and numerical tests (see Figures
13 and 14 and 15) confirm the theory) that biharmonic mesh motion leads to higher
regularity than harmonic or linear-elastic models. �
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5.3.4 Interface coupling conditions

In this section, we state the interface coupling conditions for fluid-structure interaction.
The coupling of the fluid with the structure equations must satisfy three conditions:
continuity of velocities, continuity of normal stresses, and geometrical coupling. In the
main part of this section, we focus our attention on formulations for defining the ALE
mapping Â.

5.3.4.1 Physical conditions: continuity of velocity and stress The velocity field
must be continuous on the interface (which is a Dirichlet-like condition seen from the
fluid side). Sufficient regularity for the structure velocity is taken as assumption, such
that this velocity can be given to the fluid problem. In detail, we have

vf = w = vs on Γi. (32)

To complete the structure problem, we must enforce the balance of the normal stresses
on the interface:

Ĵ σ̂f F̂
−T n̂f + F̂ Σ̂n̂s + γsε̂(v̂s)n̂s = 0 on Γ̂i. (33)

This condition corresponds to a Neumann-like boundary condition for the structure
subsystem.

Remark 5.13. Condition (33) is formulated for a general solid equation including
strong damping. Removing the term γsε̂(v̂s)n̂s brings you to the standard formulation
that you find in the literature. �

5.3.4.2 Geometric coupling (the third condition) For fluid-structure interaction
based on the ‘arbitrary Lagrangian-Eulerian’ framework (ALE), the choice of appro-
priate fluid mesh movement is important. In general, an additional elasticity equa-
tion is solved [51, 221, 233]. For moderate deformations, one can pose an auxiliary
Laplace problem [48, 68, 259] that is known as harmonic mesh motion. More advanced
equations from linear elasticity (including Jacobi-based stiffening) are also available
[213, 233]. Thirdly, we also use (for mesh moving) the fourth-order biharmonic equa-
tion that others have studied for fluid flows in ALE coordinates [130]. It was also
shown there, that using the biharmonic model provides greater freedom in the choice
of boundary and interface conditions. In general, the biharmonic mesh motion model
leads to a smoother mesh (and larger deformations of the structure) compared to the
mesh motion models based on second order partial differential equations [250]. Al-
though the mesh behavior of the harmonic and the biharmonic mesh motion models
were analyzed in [130] for different applications, we upgrade these concepts to fluid-
structure interaction problems. Quantitative comparisons are shown in the Figures 14
and 15 (taken from [250]).
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In the discrete setting of the coupled problem, the moving fluid domain follows the
motion of the interface (it is therefore a geometrical coupling):

ûf = ûs on Γ̂i, (34)

from which we obtain immediately ŵ = v̂s with temporal differentiation.
We define the ALE mapping in terms of the displacement variable, such that we

obtain
û(x̂) = Â(x̂)− x̂.

Inside the fluid domain Ω̂f this operation is arbitrary and it is described by means of
a partial differential equation, such that we produce a smooth evolution of the fluid
mesh. In the following, we discuss the three possible partial differential equations in
detail, which can be used for fluid mesh moving. In two dimensional configurations,
the mesh moves in x- and y-direction, which allows us to find a vector-valued artificial
displacement variable

ûf := (û
(1)
f , û

(2)
f , û

(3)
f ) := (û

(x)
f , û

(y)
f , û

(z)
f ).

We need the single components of ûf below to apply different types of boundary con-
ditions to the biharmonic mesh motion model. In the following, the formal description
of the first two mesh motion models coincides and only differ in the definition of the
stress tensors σ̂mesh.

5.3.5 Mesh motion models

5.3.5.1 Mesh motion with a harmonic model The simplest model is based on the
harmonic equation, which reads in strong formulation:

−d̂iv(σ̂mesh) = 0, ûf = ûs on Γ̂i, ûf = 0 on ∂Ω̂f \ Γ̂i, (35)

with
σ̂mesh = αu∇̂ûf .

The monitor function αu := αu(x̂) (for a solid equation, we would just call it diffusion
parameter) is chosen such that a good fluid mesh quality is guaranteed. The oldest
idea steems from [259]. As second idea, we can choose

αu(x̂) = a+ b exp(−cd̂ ), (36)

with certain constants a, b, c > 0. The Euclidian distance of a point x̂ to the interface
Γ̂i is denoted by d̂ = |x̂ − Γ̂i| . Another, even simpler, strategy was proposed by
Tezduyar et al. [233], which was further developed by Stein et al. [221]. They propose
to choose as monitor function:

αu(x̂) = Ĵ−1. (37)

This choice works well because mesh cell distortion appears in the vicinity of Γ̂i. That
means Ĵ ↘ 0 near Γ̂i, and consequently αu(x̂) � 0 near Γ̂i. By reason that high
diffusion causes low mesh movement, the quality of the fluid mesh is maintained. For
a comparison of different choices of αu := αu(x̂), we refer to [250].
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Remark 5.14. Using model (37) leads to a nonlinear equation for σ̂mesh since û is
used to define Ĵ . �

5.3.5.2 Mesh motion with a linear elastic model The equation of linear elasticity
is formally based on the well-known momentum equations from structural mechanics
as introduced previously. In a steady-state regime, we obtain the following equation
defining a static equilibrium:

−d̂iv(σ̂mesh) = 0, ûf = ûs on Γ̂i, ûf = 0 on ∂Ω̂f \ Γ̂i,

where σ̂mesh is formally equivalent to the STVK constitutive tensor in Equation (4.31).
It is given by

σ̂mesh := αλ(tr Êlin)Î + 2αµÊlin, (38)

where Êlin was defined in Definition 4.14. The mesh monitor parameters αλ := αλ(x̂)
and αµ := αµ(x̂) are chosen in a way, such that a good fluid mesh quality is guaran-
teed. By virtue of (14), we compute αλ and αµ from the Young modulus EY and the
Poisson ration νs. Therefore, we choose EY according to (36) or (37). Further, we
choose a negative Poisson ratio (recall that νs ∈ (−1, 0.5]). Materials with negative
Poisson ratio belongs to auxetic materials and they become thinner in the perpendic-
ular direction, when they are compressed. This is a useful property for the evolution
of the fluid mesh. We refer the reader again to [221] (and references cited therein) for
other choices of αλ and αµ.

5.3.5.3 Mesh motion with a biharmonic model Using the biharmonic mesh model
provides much more freedom in choosing boundary conditions [57, 130]. In these
notes, solving the biharmonic equation is introduced as a third possible fluid mesh
deformation:

∆̂2ûf = 0 in Ω̂f , ûf = ûs and ∂ûf = ∂ûs on Γ̂i, ûf = ∂ûf = 0 on ∂Ω̂f .

This model is considered in a mixed formulation in the sense of Ciarlet [57]. As before,
an artificial material parameter is used to control the mesh motion. Then, we deduce

η̂f = −αu∆̂ûf and − αu∆̂η̂f = 0. (39)

It is more convenient to consider the single component functions û(1)
f , û

(2)
f and û(3)

f ,

η̂
(1)
f = −αu∆̂û

(1)
f and − αu∆̂η̂

(1)
f = 0, (40)

η̂
(2)
f = −αu∆̂û

(2)
f and − αu∆̂η̂

(2)
f = 0, (41)

η̂
(3)
f = −αu∆̂û

(3)
f and − αu∆̂η̂

(3)
f = 0. (42)

We utilize two types of boundary conditions. First, we pose the first type of boundary
conditions (that corresponds to conditions of a clamped plate)

û
(k)
f = ∂nû

(k)
f = 0 on ∂Ω̂f \ Γ̂i, for k = 1, 2, 3. (43)
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Second, we are concerned with a mixture of boundary conditions

û
(1)
f = ∂nû

(1)
f = 0 and η̂

(1)
f = ∂nη̂

(1)
f = 0 on Γ̂in ∪ Γ̂out, (44)

û
(2)
f = ∂nû

(2)
f = 0 and η̂

(2)
f = ∂nη̂

(2)
f = 0 on Γ̂wall, on Γ̂in ∪ Γ̂out, (45)

û
(3)
f = ∂nû

(3)
f = 0 and η̂

(3)
f = ∂nη̂

(3)
f = 0 on Γ̂wall. (46)

which we call second type of boundary conditions. In particular, the conditions

η̂
(k)
f = ∂nη̂

(k)
f = 0 on Γ̂in ∪ Γ̂out, for k = 1, 2, 3, (47)

mean, that a plate is left free along this boundary part. Using biharmonic mesh
motion, we also must enforce two conditions on the interface:

ûf = ûs and ∂nûf = ∂nûs on Γ̂i.

Remark 5.15. Using the second type of boundary conditions in a rectangular domain
where the coordinate axes match the Cartesian coordinate system, leads to mesh move-
ment only in the tangential direction. This effect reduces mesh cell distortion because
only the perpendicular directions of ûf and η̂f are constrained to zero at the different
parts of ∂Ω̂. The effects of these boundary conditions are examined in Figure 13 �

Remark 5.16 (Mixed system on non-convex domains). It has been shown in [266],
that the solutions of the biharmonic problem do not correspond (in general) to the
mixed system if the problem is considered on a non-convex domain. This is exactly the
case in our situations. However, we emphasize that the mesh motion problem is an
artificial problem and we are not interested in its accurate physical solution but rather
in a reasonable approximation in order to move the mesh. �

Remark 5.17 (Tolerance of the numerical solution). We notice again that the moving
mesh equations are auxiliary equations to move the mesh. This means in particular,
we are still mainly interested in the solution of the physical equations (fluid and solid).
Consequently, for the numerical solution of the mesh moving equations a much lower
tolerance can be employed for the nonlinear and/or linear solver. �
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Figure 12: Mesh tangling/degeneration in which the inner angle 180 degree opening
(left) and mesh racing in which solid mesh cells (in red) intersect illegally
with fluid cells (in white) - right figure.

Figure 13: CSM 4 test [250] with harmonic and linear-elastic mesh motion models on
top. Both models lead to mesh distortion close to the lower boundary. At
the bottom, meshes using biharmonic mesh motion are displayed, which
perform significantly better near the tip of the beam. In addition, we
observe node-clustering that is a typical result of mesh motion.
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Figure 14: Function plots of min(Ĵ) for the mesh motion models of the CSM 4 test.
Degeneration of mesh cells corresponds to negative values of Ĵ , arising in
the first three models.
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Figure 15: Function plots of min(Ĵ) for the mesh motion models of the membrane on
fluid test (proposed in [18] and re-computed in [250]). Degeneration of mesh
cells corresponds to negative values of Ĵ , arising in the first three models.
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5.3.6 Variational-monolithic coupling

Before we state the coupled FSI problem, let us briefly recapitulate our philosophy
for coupling. In these notes, we aim for a consistent variational-monolithic coupling
scheme in which we need all equations defined in the same domain; therefore, ALEfx
was introduced. In variational monolithic coupling, Neumann-like interface condi-
tions, like the continuity of normal stresses are fulfilled exactly in a weak sense on the
continuous level:

〈Ĵ σ̂f F̂−T n̂f , ϕ〉+ 〈F̂ Σ̂n̂s, ϕ〉+ 〈γsε̂(v̂s)n̂s, ϕ〉 = 0 ∀ϕ ∈ V. (48)

The continuity of flow conditions,
vf = vs,

are incorporated directly in the Sobolev spaces as usually done for Dirichlet conditions.

Remark 5.18. We use the same coupling idea for the fully Eulerian approach described
in Section 5.6. Again: this is possible since all equations are defined in the same
domain; there it is Ω.

5.3.7 A variational-monolithic FSI-formulation using ALEfx

With the previous preparations at hand, in this section, we define the monolithically
coupled fluid-structure interaction problems employing the ALEfx approach. Thus,
we define the setting in a fixed domain and formulate the equations in a fashion that
can be used in a straightforward way for the implementation. The coupled strong
problem (with the fluid equations defined in a moving domain Ω) can be formulated
as illustrated previously, see [87], p. 120-121, and [19]. The corresponding weak
formulations have also been derived elsewhere [19, 180].
The definitions of the fully coupled problems include three types of nonlinearities

that are divided into two groups. The physical nonlinearities includes the convection
term for the fluid and the nonlinear structure model, whereas the additional nonlin-
earity induced by the ALE transformation is a so-called geometric nonlinearity.
Then, the weak form reads:

Problem 5.19 (ALEfx FSI with harmonic and linear-elastic mesh motion). Find
{v̂f , v̂s, ûf , ûs, p̂f , p̂s} ∈ {v̂Df + V̂ 0

f,v̂} × L̂s × {ûDf + V̂ 0
f,û} × {ûDs + V̂ 0

s } × L̂0
f × L̂0

s, such
that v̂f (0) = v̂0

f , v̂s(0) = v̂0
s , ûf (0) = û0

f , and ûs(0) = û0
s are satisfied, and for almost
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all time steps t ∈ I holds:

Fluid momentum

 (Ĵ ρ̂f∂tv̂f , ψ̂
v)Ω̂f

+ (ρ̂f Ĵ(F̂−1(v̂f − ŵ) · ∇̂)v̂f ), ψ̂v)Ω̂f

+(Ĵ σ̂f F̂
−T , ∇̂ψ̂v)Ω̂f

− 〈ĝf , ψ̂v〉Γ̂N
− (ρ̂f Ĵ f̂f , ψ̂

v)Ω̂f
= 0 ∀ψ̂v ∈ V̂ 0

f,Γ̂i
,

Solid momentum, 1st eq.

 (ρ̂s∂tv̂s, ψ̂
v)Ω̂s

+ (F̂ Σ̂, ∇̂ψ̂v)Ω̂s

+γw(v̂s, ψ̂
v)Ω̂s

+ γs(ε̂(v̂s), ∇̂ψ̂v)Ω̂s
− (ρ̂sf̂s, ψ̂

v)Ω̂s
= 0 ∀ψ̂v ∈ V̂ 0

s ,

Fluid mesh motion
{

(σ̂mesh, ∇̂ψ̂u)Ω̂f
= 0 ∀ψ̂u ∈ V̂ 0

f,û,Γ̂i
,

Solid momentum, 2nd eq.
{
ρ̂s(∂tûs − v̂s, ψ̂u)Ω̂s

= 0 ∀ψ̂u ∈ L̂s,

Fluid mass conservation
{

(d̂iv (Ĵ F̂−1v̂f ), ψ̂p)Ω̂f
= 0 ∀ψ̂p ∈ L̂0

f ,

Solid mass conservation
{

(P̂s, ψ̂
p)Ω̂s

= 0 ∀ψ̂p ∈ L̂0
s,

with ρ̂f , ρ̂s, νf , µs, λs, F̂ , and Ĵ as defined before. The stress tensors σ̂f , Σ̂, and
σ̂mesh are defined in the Equations (30), (13), (4.31), and in (35) and (38), respectively.
The pressure-related quantity in the last equation is determined by P̂s = Ĵ −1 (volume
conserving), using incompressible materials, such as the INH or the IMR material. In
the case of the STVK material, the last term is not present.

Recall that we use the mixed form of the wave equation, for this reason we have a
decomposition of the momentum equation into two subequations.
Next, we state the monolithic setting for fluid-structure interaction with a bihar-

monic mesh motion model utilizing the first type of boundary conditions:
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Problem 5.20 (ALEfx FSI with biharmonic mesh motion). Find
{v̂f , v̂s, ûf , ûs, η̂f , η̂s, p̂f , p̂s} ∈ {v̂Df + V̂ 0

f,v̂} × L̂s × {ûDf + V̂ 0
f,û} × {ûDs + V̂ 0

s } × V̂f ×
V̂s × L̂0

f × L̂0
s, such that v̂f (0) = v̂0

f , v̂s(0) = v̂0
s , ûf (0) = û0

f , ûs(0) = û0
s are satisfied,

for almost all time steps t ∈ I, and

(Ĵ ρ̂f∂tv̂f , ψ̂
v)Ω̂f

+ (ρ̂f Ĵ(F̂−1(v̂f − ŵ) · ∇̂)v̂f ), ψ̂v)Ω̂f

+(Ĵ σ̂f F̂
−T , ∇̂ψ̂v)Ω̂f

− 〈ĝf , ψ̂v〉Γ̂N
− (ρ̂f Ĵ f̂f , ψ̂

v)Ω̂f
= 0 ∀ψ̂v ∈ V̂ 0

f,Γ̂i
,

(ρ̂s∂tv̂f , ψ̂
v)Ω̂s

+ (F̂ Σ̂, ∇̂ψ̂v)Ω̂s

+γw(v̂s, ψ̂
v)Ω̂s

+ γs(ε̂(v̂s), ∇̂ψ̂v)Ω̂s
− (ρ̂sf̂s, ψ̂

v)Ω̂s
= 0 ∀ψ̂v ∈ V̂ 0

s ,

(αuη̂f , ψ̂
η)Ω̂f

− (αu∇̂ûf , ∇̂ψ̂η)Ω̂f
= 0 ∀ψ̂η ∈ V̂f ,

(αuη̂s, ψ̂
η)Ω̂s

− (αu∇̂ûs, ∇̂ψ̂η)Ω̂s
= 0 ∀ψ̂η ∈ V̂s,

(αu∇̂η̂f , ∇̂ψ̂u)Ω̂f
= 0 ∀ψ̂u ∈ V̂ 0

f,û,Γ̂i
,

ρ̂s(∂tûs − v̂s, ψ̂u)Ω̂s
= 0 ∀ψ̂u ∈ L̂s,

(d̂iv(Ĵ F̂−1v̂f ), ψ̂p)Ω̂f
= 0 ∀ψ̂p ∈ L̂0

f ,

(P̂s, ψ̂
p)Ω̂s

= 0 ∀ψ̂p ∈ L̂0
s,

with all quantities as defined in Problem 5.19 and the monitor parameter αu defined
in (39).

Remark 5.21. The monolithic variational formulation for the second type of boundary
conditions is formally equivalent as demonstrated in Problem 5.20. Only the definition
of the function spaces for trial and test functions of the displacement variables û and
η̂ changes. �

For later purposes (basically Chapter 7), we also state a stationary version of the
coupled equations:

Problem 5.22 (Stationary FSI with harmonic and linear-elastic mesh motion). Find
{v̂f , ûf , ûs, p̂f , p̂s} ∈ {v̂Df + V̂ 0

f,v̂} × {ûDf + V̂ 0
f,û} × {ûDs + V̂ 0

s } × L̂0
f , such that

(ρ̂f Ĵ(F̂−1v̂f · ∇̂)v̂f ), ψ̂v)Ω̂f

+(Ĵ σ̂f F̂
−T , ∇̂ψ̂v)Ω̂f

− 〈ĝf , ψ̂v〉Γ̂N
− (ρ̂f Ĵ f̂f , ψ̂

v)Ω̂f
= 0 ∀ψ̂v ∈ V̂ 0

f,v̂,

(F̂ Σ̂, ∇̂ψ̂v)Ω̂s
− (ρ̂sf̂s, ψ̂

v)Ω̂s
= 0 ∀ψ̂v ∈ V̂ 0

s ,

(σ̂mesh, ∇̂ψ̂u)Ω̂f
= 0 ∀ψ̂u ∈ V̂ 0

f,û,Γ̂i
,

(d̂iv (Ĵ F̂−1v̂f ), ψ̂p)Ω̂f
= 0 ∀ψ̂p ∈ L̂0

f ,

with all quantities as defined in Problem 5.19.

Problem 5.22 offers further insight of key differences between stationary and non-
stationary fluid-structure interactions. We do not search any longer for a velocity
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solution v̂s in the structure because it is zero in a stationary setting. Consequently,
the damping terms vanish because they are defined by means of v̂s. Likewise, the fluid
domain velocity ŵ vanishes too.
The weak continuity of the normal stresses of Equation (33) that is required on Γ̂i

becomes an implicit condition computing nonstationary fluid-structure interactions:

(Ĵ σ̂f F̂
−T n̂f , ψ̂

v)Ω̂f
+ (F̂ Σ̂n̂s, ψ̂

v)Ω̂s
+ γs(ε̂(v̂s)n̂s, ψ̂

v)Ω̂s
= 0 ∀ψ̂v ∈ V̂ 0.

In stationary settings, we deal with

(Ĵ σ̂f F̂
−T n̂f , ψ̂

v)Ω̂f
+ (F̂ Σ̂n̂s, ψ̂

v)Ω̂s
= 0 ∀ψ̂v ∈ V̂ 0.

Remark 5.23 (Discretizing solid’s stress tensor in terms of velocities). An alternative
way (and this seems more natural in fluid-structure interaction, see, e.g., [138]) is to
take the time derivative on solid’s stress tensor, e.g.,

∂tσ̂s(ûs) = ∂t(2µÊlin(û) + λtr(Ê(û))Î) = 2µÊlin(v̂) + λtr(Ê(v̂))Î .

This has the advantage that both stress tensors can be formally combined into one
global stress tensor σ̂ = χf σ̂f + χsσ̂s. To the best of my knowledge it is not yet clear
which formulation (our or the the unified one) is preferrable from computational cost
point of view. �

5.3.8 A partitioned approach using ALEfx

In this partitioned coupling algorithm, we solve subsequently for three problems:

• The fluid mesh (mesh motion problem);

• Solving the fluid problem in Ω̂;

• Solving the solid problem.

Then, the weak form reads:

Problem 5.24 (Partioned FSI with harmonic and linear-elastic mesh motion). Given
the initial conditions v̂f (0) = v̂0

f , v̂s(0) = v̂0
s , ûf (0) = û0

f , we compute for almost all
time steps t ∈ I the following problems.

• Find {ûf} ∈ {ûDf + V̂ 0
f,û},

(σ̂mesh, ∇̂ψ̂u)Ω̂f
= 0 ∀ψ̂u ∈ V̂ 0

f,û,Γ̂i
,

• Find {v̂f , p̂f} ∈ {v̂Df + V̂ 0
f,v̂} × L̂0

f ,

(Ĵ ρ̂f∂tv̂f , ψ̂
v)Ω̂f

+ (ρ̂f Ĵ(F̂−1(v̂f − ŵ) · ∇̂)v̂f ), ψ̂v)Ω̂f

+(Ĵ σ̂f F̂
−T , ∇̂ψ̂v)Ω̂f

− 〈ĝf , ψ̂v〉Γ̂N
− (ρ̂f Ĵ f̂f , ψ̂

v)Ω̂f
= 0 ∀ψ̂v ∈ V̂ 0

f,Γ̂i
,

(d̂iv (Ĵ F̂−1v̂f ), ψ̂p)Ω̂f
= 0 ∀ψ̂p ∈ L̂0

f ,
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• Find {v̂s, ûs} ∈ L̂s × {ûDs + V̂ 0
s },

(ρ̂s∂tv̂s, ψ̂
v)Ω̂s

+ (F̂ Σ̂, ∇̂ψ̂v)Ω̂s

+γw(v̂s, ψ̂
v)Ω̂s

+ γs(ε̂(v̂s), ∇̂ψ̂v)Ω̂s
− (ρ̂sf̂s, ψ̂

v)Ω̂s
= 0 ∀ψ̂v ∈ V̂ 0

s ,

ρ̂s(∂tûs − v̂s, ψ̂u)Ω̂s
= 0 ∀ψ̂u ∈ L̂s,

with ρ̂f , ρ̂s, νf , µs, λs, F̂ , and Ĵ as defined before. The stress tensors σ̂f , Σ̂, and σ̂mesh
are defined in the Equations (30), (13), (4.31), and in (35) and (38), respectively.

5.3.9 A partitioned approach using ALEdm

We solve in the same order as in Section 5.3.8 but now the fluid equations on the
current (deformed) domain Ω.
The weak form reads:

Problem 5.25 (Partitioned FSI with harmonic and linear-elastic mesh motion).
Given the initial conditions vf (0) = v0

f , v̂s(0) = v̂0
s , we compute for almost all time

steps t ∈ I the following problems.

• Find {ûf} ∈ {ûDf + V̂ 0
f,û},

(σ̂mesh, ∇̂ψ̂u)Ω̂f
= 0 ∀ψ̂u ∈ V̂ 0

f,û,Γ̂i
,

• Find {vf , pf} ∈ {vDf + V 0
f,v} × L0

f ,

(ρf ∂̂tvf , ψ
v)Ωf

+ (ρf (vf − w) · ∇)vf , ψ
v)Ωf

+(σf ,∇ψv)Ωf
− 〈gf , ψv〉ΓN

− (ρfff , ψ
v)Ωf

= 0 ∀ψv ∈ V 0
f,Γi

,

(div (v̂f ), ψp)Ωf
= 0 ∀ψp ∈ L0

f ,

• Find {v̂s, ûs} ∈ L̂s × {ûDs + V̂ 0
s },

(ρ̂s∂tv̂s, ψ̂
v)Ω̂s

+ (F̂ Σ̂, ∇̂ψ̂v)Ω̂s

+γw(v̂s, ψ̂
v)Ω̂s

+ γs(ε̂(v̂s), ∇̂ψ̂v)Ω̂s
− (ρ̂sf̂s, ψ̂

v)Ω̂s
= 0 ∀ψ̂v ∈ V̂ 0

s ,

ρ̂s(∂tûs − v̂s, ψ̂u)Ω̂s
= 0 ∀ψ̂u ∈ L̂s,

with ρ̂f , ρ̂s, νf , µs, λs, F̂ , and Ĵ as defined before. The stress tensors σ̂f , Σ̂, and σ̂mesh
are defined in the Equations (30), (13), (4.31), and in (35) and (38), respectively.
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Remark 5.26 (Iteration loop / Fix point iteration). In the implementation, we add
iteration indices k to all equations and produce sequences of solutions

u1
f , u

2
f , u

3
f , . . . Mesh motion

v1
f , v

2
f , v

3
f , . . . Fluid

p1
f , p

2
f , p

3
f , . . . Fluid

v̂1
s , v̂

2
s , v̂

3
s , . . . Solid

û1
s, û

2
s, û

3
s, . . . Solid.

A loosely-coupled scheme would terminate (or be forced to stop) after a few iterations.
A strongly-coupled algorithms solves up to a tolerance and based a stopping criterion
that is based on the Steklov-Operator, i.e., find û on Γ̂i such that the stress condition
σ̂f n̂f = σ̂sn̂s is satisfied. �

Remark 5.27 (Solution of the mesh motion problem). In the partitioned approach dif-
ferent solution techniques can be easily employed to solve the three subproblems (mesh,
fluid, solid). Here, we emphasize that the mesh motion equation is purely artificial
without physical relevance and it can be solved without satisfying a low tolerance. So,
its solution can be achieved in a fast way. �

Remark 5.28 (Decoupling in time). In the partitioned approach it is obvious (under
the condition that certain relationships and additional information are known) that we
can decouple in time. For instance, we have seen in [209] that the FSI-benchmark
requires smaller time steps than the pure fluid benchmark. An open question is if we
could use a partitioned solver in which we solve the fluid equations and mesh motion
problem only at every 10th time step. �

5.3.10 Monolithic and partitioned (fixed-stress) approaches for Darcy
flow-elasticity coupling

In this section, we consider a first special case of fluid-solid coupling: the Biot-Lamé-
Navier system. The Biot system [35–37] is a standard model in poroelasticity and is
a multi-scale problem which is identified on the micro-scale as a fluid-structure inter-
action problem (details on the interface law are found in Mikelić and Wheeler [177]).
Through homogenization, the Biot system is derived for the macro-scale level. This
system is specifically suited for applications in subsurface modeling for the poroelastic
part, the so-called pay-zone. On the other hand, surrounding rock (the non-pay zone)
is modeled with the help of linear elasticity [56]. Therefore, the final configuration
belongs to a multiphysics problem in non-overlapping domains in which we again need
to specify appropriate interface coupling conditions.
Compared to classical FSI modeling, we deal with the following simplifications:

• The Biot problem averages the fluid-solid coupling and we do not have anymore
the typical multi-domain structure with interface conditions between fluid and
solid.
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• The resulting system is quasi-stationary with a time-derivative only in the pres-
sure (fluid) equation.

• The resulting system is geometrically-linearized and all equations are formulated
in a common framework without ALE-transformation rules.

Remark 5.29 (Identification of Eulerian and Lagrangian frameworks). The last point
of linearization is based on mainly two assumptions: the hypothesis of small perturba-
tions [60]:

• ||∇u|| � 1. Then, the Lagrangian and Eulerian methods coincide up to a first-
order approximation.

• Small displacements u for the skeleton particles:

||u/L|| � 1

where L is the characteristic length of the pore structure. This second hypothesis
allows to identify the reference configuration Ω̂ with the current domain Ω and
additionally, i.e,

x̂ ≈ x, f̂(x̂) ≈ f(x), Ω̂ ≈ Ω.

�

Remark 5.30 (Darcy’s momentum conservation law). The Darcy flow equations (rep-
resenting the momentum equations) arise as an intermediate step while averaging the
Stokes equations to get the lubrication equation. Darcy [65] derived this law empiri-
cally and the mathematical argument can be obtained through homogenization of Stokes’
equations [29]. It holds:

vB = − 1

ηf
K(∇pB − ρfg),

which gives a linear relationship between the velocity and the pressure gradient. �

Problem 5.31. Find the pressure pB and displacement uB such that

∂t(cBpB + αB∇ · uB)− 1

ηf
∇ · K(∇pB − ρfg) = q in ΩB × I,

−∇ ·
(
σB(u)

)
+ αB∇pB = fB in ΩB × I,

with
σB(uB) := µB(∇uB +∇uTB) + λB∇ · uBI,

and the coefficients cB ≥ 0, the Biot-Willis constant αB ∈ [0, 1], (in fact, this constant
relates to the amount of coupling between the flow part and the elastic part) and the
permeability tensor K, fluid’s viscosity and its density ηf and ρf , gravity g and a
volume source term q (i.e., usually fluid injection). In the second equation, the Lamé
coefficients are denoted by λB > 0 and µB > 0 and fB is a volume force.
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Usually a non-pay zone is described in terms of linear elasticity: Find a displacement
uS such that

−∇ ·
(
σS(uS)

)
= fS in ΩS × I,

with

σS(uS) := µS(∇uS +∇uTS ) + λS∇ · uSI,

with the Lamé coefficients µS and λS and a volume force fS . On the boundary
∂ΩS := ΓD ∪ ΓN , the conditions

uS = ūS on ΓD, σS(uS)nS = t̄S on ΓN ,

are prescribed with given ūS and t̄S .
It finally remains to describe the interface conditions on Γi between the two sub-

systems:
uB = uS ,

σB(uB)nB − σS(uS)nS = αpBnB ,

− 1

ηf
K(∇pB − ρfg) · nS = 0.

(49)

It is important to notice that the second condition in (49), requires careful imple-
mentation on the interface. Furthermore, this condition shows in fact similarities to
standard fluid-structure interaction coupling conditions.
Let d be the dimension and VP := {φp ∈ H1(ΩB)|f = pDon Γp} and VS := {φu ∈

[H1(ΩB∪ΩS)]d|g = uDon Γu} be Hilbert spaces and pD and uD extensions of Dirichlet
data.
The definition of a weak formulation follows standard argumentation and leads to

the system:

Problem 5.32 (Biot-Lamé-Navier Problem). Find {p, u} ∈ {pD + VP } × {uD + VS},
such that u(0) = u0 and p(0) = p0, for almost all times t ∈ I, and

cB(∂tp, φ
p) + αB(∇ · u, φp) +

K

νF
(∇p,∇φp)

−ρF (g, φp)− (q, φp) = 0 ∀φp ∈ VP ,
(σB ,∇φu)− αB(pI,∇φu)− (fB , φ

u) = 0 ∀φu ∈ VS ,
(σS ,∇φu)− (fS , φ

u) = 0 ∀φu ∈ VS .

The corresponding partitioned approach (fixed-stress splitting) reads:

Problem 5.33 (Fixed-stress split of the Biot system). For l = 1, 2, 3, . . ., find pl such
that (

cB +
α2

3λ+ 2µ

)(pl − pn−1

∆t
, φp
)

+
(
Keff (∇p− ρ0g),∇φp

)
− (q, φp) + α

(∇ · ul−1 −∇ · un−1

∆t
, φp
)
− α2

3λ+ 2µ

(pl−1 − pn−1

∆t
, φp
)
,

= 0 ∀φ ∈ VP .
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Then, we solve for the displacements ul such that:(
σB , e(φ

u)
)

= (αpl, div φu) + (fB , φ
u) ∀φu ∈ VS .

The iteration is completed if

max{‖ul − ul−1‖, ‖pl − pl−1‖} < TOLFS .

5.3.10.1 Numerical results for Mandel’s problem We briefly test a specific imple-
mentation (the reader is invited to visit DOpElib [116] Examples/PDE/InstatPDE/Example6
in order to examine and run the example. There, the well-known Mandel’s problem
[173] is considered, which is an acknowledged benchmark in subsurface modeling. In
the second example, the augmented Mandel problem [109] is used as verification.

Example 5.34. To enhance your imagination, a physical example is that of a sponge
that you press: First the fluid pressure will slightly increase due to the sudden appli-
cation of traction forces on the outer boundary. Then, the pressure reduces (finally to
zero) because the fluid is pushed out of the pores.

The configuration and parameters are taken from [99, 121, 168, 169]. The do-
main is [0, 100m] × [0, 20m]. As parameters, we choose: MB = 2.5 ∗ 1012Pa, cB =
1/MBPa

−1, αB = 1.0, νF = 1.0 ∗ 10−3m2/s,KB = 100md, ρF = 1.0kg/m3, t̄ = F =
1.0 ∗ 107N . As elasticity parameters in Biot’s model, we use ρS = 1.0kg/m3, µS =
1.0e + 8, νS = 0.2. The time step is chosen as k = 1000s. The final time is 5 ∗ 106s
(corresponds to computing 5000 time steps). The initial mesh is 4-times globally re-
fined corresponding to 256 cells and 2467 degrees of freedom (with the Taylor Hood
element).

ΩB

Γtop

Γb

ΓrΓl

Figure 16: Configuration of Mandel’s problem.

As boundary conditions, we choose:

σBn− αBpBn = t̄− αBpBn on Γtop,

p = 0 on Γr,

uy = 0 on Γb,

ux = 0 on Γl.
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For different time steps t1 = 1∗103, t2 = 5∗103, t3 = 1∗104, t4 = 1∗105, t5 = 5∗105

and t10 = 5 ∗ 106[s] (the numeration of time steps is taken from [99]) the solution
of the pressure and the x-displacement evaluated on the x-axis is shown in Figure
17. These values coincides with the literature values displayed in [99, 121, 168, 169].
In particular, the well-known Mandel Creyer effect (non-monotonic pressure behavior
over time) is identified.
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Figure 17: Mandel’s problem: Pressure trace and x-displacement on the x-axis.

Next, we test another configuration that is closer to that application. Specifically,
we deal now with a problem in non-overlapping domains. The configuration is inspired
by Girault et al. [109]. We use the same Biot-region parameters as in the previous
example. In addition, we use in the pure elastic zone the same Lamé coefficients, such
that µB = µS and λB = λS . We consider this as a new benchmark configuration
that is prototypical for reservoir simulations with some overburden. (In the same
manner, an underburdon could have been added in addition. This leads, however, to
no additional difficulties). The computational domain is enlarged in height such that
[0, 100m]× [0, 40m] and is sketched in Figure 18.

ΩB

Γb

Γr,BΓl,B

Γtop

ΩSΓl,S Γr,S

Γi

Figure 18: Configuration of augmented Mandel’s problem.
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As boundary conditions, we choose:

σBn = t̄ on Γtop,

σBn = 0 on Γr,S ,

p = 0 on Γr,B ,

uy = 0 on Γb,

ux = 0 on Γl,B ∪ Γl,S .

The augmented Mandel problem shows also the well-known Mandel Creyer effect
as illustrated in Figure 19. Here, it is important to carefully implement the interface
conditions on Γi. Otherwise the results are not correct from physical point of view.
Graphical solutions of the surfaces of pressure distribution is shown in Figure 20. Here,
we detect the typical pressure behavior on the x-axis.
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Figure 19: Augmented Mandel’s problem: Pressure trace and x-displacement on the
x-axis.

Figure 20: Augmented Mandel’s problem: Pressure surface for two time steps t1 and
t4.
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5.3.11 A rate-dependent partitioned scheme; coupling the membrane equation
with Reynolds lubrication model

5.3.11.1 Modeling In this part, we present another partitioned approach (from
[247]) that offers some interesting features:

• Coupling of the most simplest equations for fluids (Reynolds lubrication equa-
tion) and solids (second order membrane - Laplace - equation). As in the previ-
ous section, all equations are linearized and are formulated in a common setting
without ALE-transformation rules (please consult Remark 5.29).

• Formulation of the stationary solid equation in terms of a rate-dependent algo-
rithm; well-known from solving plasticity problems [72, 203, 220].

• However, despite from being simple: the lubrication equation is widely used in
different fields (see also in these notes; reaction-induced boundary movement or
fluid-filled fractures) and rate-dependent algorithms are of utter importance for
non-trivial solid models such as just mentioned before for example plasticity.

Let us first simplify the solid equations. By omitting acceleration effects in (12), we
arrive at

−∇̂ · σ̂s = f̂ in Ω̂.

The Reynolds equation has been presented in Proposition 4.25. For completeness, in
an ALE setting it reads:

Proposition 5.35 (Reynolds lubrication equation in ALE coordinates). Let the top
boundary ẑ = ĥ(x) be moving with a velocity v̂z(x, h) =: vz; the lower boundary at
ĥ = 0 is fixed for simplicity. Then,

∇ ·

(
ĥ3

12η
Ĵ∇̂p̂F̂−T

)
= −v̂z, ĥ = ĥ(x̂, ŷ).

Neumann boundary conditions are given by

i)
∂p̂

∂x
= ∆p̂1 on Γ1 and

∂p̂

∂x
= ∆p2 on Γ3,

ii)
∂p̂

∂y
= ∆p̂3 on Γ2 and

∂p̂

∂y
= ∆p̂4 on Γ4.

In the following, we provide more details on the derivation of the membrane equation.
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Figure 21: Fixed membrane with length l and thickness a.

The fixed membrane is a special case of the plate equation [43]. Our membrane has
length l and thickness a with a� l

0 ≤ x, y ≤ l and h0 −
a

2
≤ z ≤ h0 +

a

2
.

Lemma 5.36 (Fixed membrane in 2D). A thin plate with thickness a and length l is
subject to forces p(z+) and p(z−) orthogonal to the middle plane. Then,

∂2z

∂x2
+
∂2z

∂y2
= −p

(z+) − p(z−)

µa
in Ω = [0, l]2 (50)

The non-homogeneous (time-dependent) Dirichlet conditions are z = h0 on ∂Ω.

Remark 5.37. Bending moments are neglected in the membrane equation. In order
to include them, one has to use the fourth-order biharmonic plate equation [43]. �

5.3.11.2 Coupling and variational form The task consists in coupling Reynolds’
equation with the membrane equation. However, due to our (over)simplifications, the
membrane equation delivers a displacement u (here z) but the lubrication equation
requires as input a velocity v̂z. The key trick is now to re-formulate the stationary
membrane equation in terms of a quasi-stationary rate-dependent formulation. We
follow [72, 203] and introduce a time (although these are only rate-increments).
We first write the second order membrane problem in terms of a mixed setting using

∆z = div∇z such that

∆z = div∇z = divσ !
= −p

(z+) − prey
µa

=: −f̃ with σ = ∇z.
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In classical formulation, the mixed form would read:

divσ = −f̃ in Ω, (51)
σ = ∇z in Ω, (52)
z = h0 on ∂Ω. (53)

For time discretization, as done in the previous sections, we introduce a time interval
I := [0, T ] with fixed N ∈ N such that we have the time points t0, . . . , tN :

0 = t0 < t1 < . . . < tN−1 < tN = T.

The incremental velocity vnz (n ∈ N) is derived with help of the middle Equation (51).
Formal transformation σ(x) → σ(x, t) introduces time-dependence of the system and
gives us

∂tσ = ∂t∇z = ∇∂tz = ∇ż = ∇vz = ∇vz.
In short notation

σ̇ = ∇vz.
We approximate σ̇ with a difference quotient for two subsequent time steps tn−1 and
tn:

σ̇ ≈ σt
n − σtn−1

tn − tn−1
= ∇vt

n

z , n = 1, 2, . . . , N.

Using σt
n

=: σn and ∇vtnz =: ∇nz yields

σ̇ ≈ σn − σn−1

dtn
= ∇vnz , n = 1, 2, . . . , N.

The function vnz ∈ V is the so-called incremental displacement velocity. To compute
the current σn, we have

σn = σn−1 + dtn∇vnz , n = 1, 2, 3, . . . . (54)

We are now prepared to derive a variational formulation. Inserting (54) into the
first equation of (51) gives

−divσn = f̃n,

and Green’s formula ∫
Ω

udivϕdx = −
∫

Ω

∇u · ϕdx+

∫
∂Ω

uϕds,

and multiplication with a test function ϕ ∈ H1
0 (Ω) yields:

−
∫

Ω

divσn ϕdx =

∫
Ω

f̃nϕdx

⇔
∫

Ω

σn · ∇ϕdx−
∫
∂Ω

σnϕds︸ ︷︷ ︸
=0 wg. ϕ∈H1

0 (Ω)

=

∫
Ω

f̃nϕdx.
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Furthermore,

(σn,∇ϕ)0 = (σn−1 + dtn∇vnz ,∇ϕ)0 = (σn−1,∇ϕ)0 + dtn(∇vnz ,∇ϕ)0.

Additional calculations and the right hand side bring us to

dtn(∇vnz ,∇ϕ)0 = (f̃n, ϕ)0 − (σn−1,∇ϕ)0.

Then, the problem reads

Problem 5.38.

Find vnz ∈ H1
0 (Ω) : dtna(vnz , ϕ) = l(ϕ) ∀ϕ ∈ H1

0 (Ω)

With the help if vnz , we can now calculate zn and the stress update σn:

• Displacement:
zn = zn−1 + dtnvnz

with initial value z0 = h0 (no deflection of the membrane).

• Stress update:
σn = σn−1 + dtn∇vnz (55)

with initial value σ0 = 0.

The following results simplifies practical aspects of the implementation:

Proposition 5.39 (Stress recursion σn). For equal-distant time steps dtn, it holds

σn = σ0 + dtn∇

 n∑
k=1

vkz

 for all n ∈ N. (56)

Proof. The proof is carried out using an induction argument. Begin with (induction
start): n = 1:

σ1 = σ0 + dt1∇vnz .
The induction assumption is given by (56). We show now the induction step n→ n+1.
With (55), we have

σn+1 = σn + dtn+1∇vn+1
z .

Using dtn = dtn+1, and (56) and linearity of the differential operator ∇(·) yields

σn+1 = σ0 + dtn∇

 n∑
k=1

vkz

+ dtn∇vn+1
z

= σ + dtn+1

∇
 n∑
k=1

vkz

+∇vn+1
z


= σ0 + dtn+1∇

n+1∑
k=1

vkz

 .
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The following statement is the main result:

Proposition 5.40 (Weak form of the coupled rate-dependent membrane equation).
For all functions p(z+), prey ∈ L2(Ω) and σn−1 ∈ L2(Ω)d of the right hand side, there
exists in each pseudo-time step n = 1, 2, . . . , a unique weak solution vnz ∈ H1

0 (Ω) with

dtna(vnz , ϕ) = l(ϕ) ∀ϕ ∈ H1
0 (Ω) (57)

where

l(ϕ) =

(
p(z+)

µa
, ϕ

)
0

−
(
prey
µa

, ϕ

)
0

− (σn−1,∇ϕ)0.

Proof. Let µ, a be constant and let the time interval dtn be constant as well. Let the
previous stress σn−1 ∈ L2(Ω)d. Using the Lax-Milgram theorem, and setting

l(ϕ) =

(
p(z+)

µa
, ϕ

)
0

−
(
prey
µa

, ϕ

)
0

− (σn−1,∇ϕ)0.

we obtain a unique solution.

In the following, we present a partitioned coupling algorithm to solve the coupled
Reynolds-membrane problem. The time rates are sufficiently small such that they are
negligible compared to the finite element discretization error.
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Algorithm 5.41 (Rate-dependent Reynolds-membrane coupling).

A) σ0 = 0, z0 = h0, f
0 =

p(z+)

µa
, p0

rey = 0;

B) for n = 1, 2, . . .

{
dtn := tn − tn−1;

fn,0 := fn−1 −
pn−1
rey

µa
;

zn,0 := zn−1;

k = 1;

do

{
Solve structure:

dtna(vn,k−1
z , ϕ) = (fn,k−1, ϕ)0 − (σn−1,∇ϕ)0;

→ vn,k−1
z

Update displacements:

zn,k = zn,0 + dtnvn,k−1
z ;

Solve fluid:

a(pn,k−1
rey , ϕ) = (vn,k−1

z , ϕ)0 + (ϕ, g)0,Γ;

→ pn,k−1
rey

Dk =

∣∣∣∣∣zn,k − zn,k−1

zn,k

∣∣∣∣∣ ;
k++;

}while(Dk > D);

vn := vn,kε ;

pnrey := pn,kεrey ;

updates:

i) zn = zn−1 + dtnvn;

ii) σn = σn−1 + dtn∇vn;

iii) fn = fn−1 + dtnf0;

}
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5.3.11.3 Numerical tests

5.3.11.3.1 Computations with constant pressure p(z+) This section presents the
findings that have been obtained using the algorithmic advances from Section 5.3.11.
The configuration is sketched in Figure 22 and the parameters are provided in Table
1.

h(x,y)

l
x

v

0

z
p=const p=const

h0

z

Figure 22: Configuration of membrane-lubrication coupling: the top boundary is
moved with a velocity vz = vz(x, h).

Table 1: Parameters of the membrane-lubrication coupling.

Parameter Value Dimension
l (length of interval) 1 m
h0 5 ∗ 10−4 m
p(z+) 1 ∗ 105 N/m
µ 4.0 ∗ 1010 N/m2

a 2.5 ∗ 10−3 m

The initial force is given by

f0 = −p
(z+)

µa
= − 105

1011
= −0.001.

The pressure normalization is achieved by the condition:∫
Ω

p dx = 0.
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Figure 23: Deformation of the membrane at the time steps n = 1, 2, 3, 4 using the
constant initial force f0 = −0.001
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Figure 24: Pressure distribution at time steps obtained n = 1, 2, 3, 4 by solving
Reynolds’ lubrication equation.

Since the membrane deflection has its maximal displacement in the middle of the
interval, the highest pressure is obviously also observed here. We notice that the
homogeneous Neumann pressure conditions are clearly observed.
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5.3.11.3.2 Long-term evolution We extend the previous example and compute n =
80 time steps in order to observe a quasi-stationary limit.
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Figure 25: Membrane deformation at the time steps n = 1, 10, 20, 30, 40, 50, 60, 70, 80
using the initial force f0 = −0.001.

We observe an oscillating behavior (physically absolutely plausible!) before the
membrane reaches its final state. The absolute minimum is 2.5 ∗ 10−5m. Similar
behavior can be seen for the pressure distribution.
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Figure 26: Pressure distribution at time steps n = 1, 10, 20, 30, 40, 50, 60, 70, 80.
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5.3.11.3.3 L2 error estimates in 1D We complement the computational results by
some basics from numerical analysis: order of convergence of the numerical solution
with respect to a manufactured solution. In order to relax a bit, let us do this in 1d
and as simple as possible.

Algorithm 5.42. Let the following problem be given:

−z′′ = f in Ω

z = 0 on Γ = {0, 1}

i) Provide z for which the boundary conditions are fulfilled For example z(x) =
x(x− 1) on the left hand side.

ii) Determine f(x) = −z′′. Here, f(x) = −1.

iii) Compute uh.

iv) Compare u and uh in appropriate norms ( for example energy norm and/or L2

norm).

Example 5.43. Take

−z′′ =
p(z+)

µa
= −0.001 in Ω = (0, 1),

with z(0) = z(1) = 5 ∗ 10−4. The corresponding manufactured solution reads

z(x) = 5 ∗ 10−4(x2 − x+ 1).

We know from our numerical methods for PDEs class:

||u− uh||0 = O(h2).

Here, we obtain

Cells DOFs L2-error
2 3 3.282 ∗ 10−5

4 5 5.702 ∗ 10−6

8 9 1.426 ∗ 10−6

16 17 3.566 ∗ 10−7

32 33 8.915 ∗ 10−8

64 65 2.229 ∗ 10−8

128 129 5.572 ∗ 10−9

256 257 1.393 ∗ 10−9

Here, we clearly see O(h2) convergence.
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5.3.12 ALE-FSI techniques using Nitsche’s method for moving boundary
problems in precipitation-dissolution processes (reactive flow)

In this section, we discuss a second example involving Reynolds’ lubrication approxi-
mation. Indeed, the setting is quite similar to the previous section:

• a thin channel with boundary movement.

The differences are:

• the boundary movement is now given by chemical reactions (that cause time-
dependent displacements) rather than a volume force; consequently, we are deal-
ing with a moving boundary problem (rather than a classical FSI problem) that
will be solved with FSI-techniques.

• We formulate a monolithic solution algorithm in which the boundary movement
is taken into account by Nitsche’s trick.

• Regarding the results, we numerically compute Navier-Stokes in 2D and compare
this solution (i.e., its characteristic behavior) to a manufactured upscaled lubri-
cation solution in 1D. The question is: Can we represent the flow by a (cheaper)
lower-dimensional equation?

Remark 5.44. In fact, this example shows how useful it is to learn FSI-techniques.
We solve another physical problem but we can adopt our experiences from FSI modeling.
�

With regard to the physical model, the chemical reactions represent precipitation-
dissolution reactions taking place at the boundaries of the channel resulting in bound-
ary movements act as a precursor to the clogging process. The resulting problem is
a coupled flow-reactive transport process in a time-dependent geometry that is solved
with the ALEfx approach (for related studies for flow interacting with surfactants, we
refer for example to [100, 101]).
The geometry description in which the flow and transport processes take place is

given by:

Ω(t) := {(x, y) ∈ R2 | 0 ≤ x ≤ 1, −(ε− d(x, t)) ≤ y ≤ (ε− d(x, t))},
Γ(t) := {(x, y) ∈ R2 | 0 ≤ x ≤ 1, y ∈ {−(ε− d(x, t)), (ε− d(x, t))}},
Γi(t) := {(x, y) ∈ R2 | x = 0, −(ε− d(0, t)) ≤ y ≤ (ε− d(0, t))},
Γo(t) := {(x, y) ∈ R2 | x = 1, −(ε− d(1, t)) ≤ y ≤ (ε− d(1, t))}.

Due to the reactions at the boundaries, Ω and the boundaries Γ’s are time-dependent.
The flow and transport of the solutes (the ions) are described by the following system

of equations. The transport equation and reaction laws read [153]:

∂tc−∇ · (D∇c− vc) = 0, in Ω(t)× (0, T ),

ρs∂td = f(c, ρsd)
√

1 + (∂xd)2, on Γ(t)× (0, T ),

f(c, ρsd) = r(c)− w, on Γ(t)× (0, T ).

(58)
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Here, the unknowns are: c(x, y, t), concentration of the charged ions, d(x, t) free and
moving boundary resulting due to reactions, and v(x, y, t) the flow field. The known
physical parameters are: D > 0, diffusion constant, ρs, the density of ions in the
precipitate. (58)1 describes the transport of solutes due to convection and molecular
diffusion processes, whereas (58)2 describes the movement of the boundary due to
reaction term f . According to (58)3, the reaction rate f is imposed by the following
structure:

f(c, ρsd) = r(c)− w, (59)

where r(·) describes the precipitation part whereas w models the dissolution process.
Additionally, we assume that r(·) : R → [0,∞), is monotone and locally Lipschitz
continuous in R. The usual mass-action kinetics laws governing the precipitation
process satisfy this assumption. For the dissolution process, the rate law is given as

w ∈ H(d), where H(d) =


{0}, if d < 0,

[0, 1], if d = 0,

{1}, if d > 0.

(60)

Remark 5.45. The flow equations are given by the incompressible, isothermal Navier-
Stokes equations. �

The flow and transport equations are complemented by the initial and boundary
conditions. The initial conditions read:

c(x, y, 0) = co, d(x, 0) = do. (61)

The boundary conditions read:

c = cb, p(0, y, t) = 1, on Γi(t)× (0, T ),

∂xc = 0, p(L, y, t) = 0, on Γo(t)× (0, T ),

v = 0, ν · (−D∇c)
√

1 + (∂xd)2 = ∂td(ρs − c) on Γ(t)× (0, T ).

(62)

As stated above, at the inlet and outlet, we prescribe the pressures and further impose
that the flow takes place normal to the boundaries.

5.3.12.1 Towards clogging: a 1D averaged lubrication model for fluid flow Simi-
larly to Section 5.3.11, an upscaled model is obtained by integrating the Navier-Stokes
equations in the z-direction. We consider a sequence of problems depending upon
the thickness of strip ε and using formal asymptotic expansions, the unknowns are
assumed to be of the form

zε = z0 + εz1 +O(ε2),
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with zε denoting any of cε, dε, vε. Following the procedure in [188], the following
upscaled equations are derived

∂xv0 = 0, v0 − (1−d0)3

3µ ∂xP0 = 0,

∂t
(
(1− d0)c0

)
+ ∂t(ρsd0) = ∂x

(
D(1− d0)∂xc0

)
− ∂x(v0c0),

∂td0 − f(u0, ρsd0) = 0.

(63)

As our interest is in the case of closing of the channel, the above system of equations
degenerates as d0 → 1.

Remark 5.46. For more information, we would like to refer the reader to [156, 157],
where all details are given. The discretization is realized with the multiphysics template
[256] based on the finite element software deal.II [13]. �

Figure 27: Initial (and also the reference) mesh and the deformed mesh at end time
step T = 14. Local mesh refinement with hanging nodes is used in the
middle of the channel.

When the channel starts getting narrower, the flow profile alters because of changing
geometry. However, as the channel starts getting clogged (as observed in Figure 27),
the flow is expected to decrease and eventually, the channel should be closed. For the
upscaled model, following calculations show that the flow becomes zero as the channel
closes. Using (63)1

∂x(
(1− d0)3

3µ
∂xP0) = 0, leading to

(1− d0)3

3µ
∂xP0 = C,

and hence,

P0(x, t) =

∫ 1

x

C

(1− d0(ξ, t))3
dξ,
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where C is obtained by using the boundary conditions for P0,

v0(t) = C(t) =

{∫ 1

0

1

(1− d0(ξ, t))3
dξ

}−1

. (64)

Now considering (64), formally, one sees that the integral is dominated by the regions
where 1 − d0 is small and the flow v0(t) decreases as (1 − d0)3. Hence, wherever
locally d0 → 1, we get that the flow in the channel tends to zero, allowing us to
conclude that in the limit (clogging), the flow becomes zero. Since the 2D model is
quite complicated, an analytical treatment is rather difficult. We resort to numerical
computations to study this process in Section 5.3.12.5.

5.3.12.2 A variational-monolithic formulation By summarizing the previous sub-
problems into one common setting, we derive the framework for the coupled three-field
system:

Problem 5.47 (Variational ALE fluid reaction-diffusion moving-boundary problem).
Find {v̂, p̂, ĉ, û} ∈ {v̂D + V̂f} × L̂f × {ĉD + V̂c} × V̂c such that for almost times t:

(Ĵ ρ̂f (∂tv̂ + (F̂−1(v̂ − ŵ) · ∇̂)v̂), ψ̂v)Ω̂

+(Ĵ σ̂f F̂
−T , ∇̂ψ̂v)Ω̂ − 〈ĝf , ψ̂

v〉Γ̂N
= 0 ∀ψ̂v ∈ V̂f ,

(d̂iv (Ĵ F̂−1v̂), ψ̂p)Ω̂ = 0 ∀ψ̂p ∈ L̂f ,

(Ĵ∂tĉ, ψ̂
c) + (Ĵ σ̂cF̂

−T , ∇̂ψ̂c)Ω̂ + (Ĵ v̂ĉF̂−T , ∇̂ψ̂c)Ω̂

−〈Ĵ ĝcF̂−T , ψ̂c〉Γ̂N
− (Ĵfc, ψ̂

c)Ω̂ = 0 ∀ψ̂c ∈ V̂c,

α(∇̂û, ∇̂ψ̂u) = 0 ∀ψ̂u ∈ V̂u.

The boundary conditions for the last equation are described in detail in Section
5.3.12.3. Let us note that the above formulation though presented here for the partic-
ular description of reaction rates, can be easily adapted to more general or different
reaction rates. Even though we have not assumed any reactions taking place in the
fluid domain, it is of no particular difficulty to adapt the model to include such rates.
Similarly, for the system of reactions, analogous models can be provided. For closely
related models of this type, we refer to [174, 189, 246].

Remark 5.48 (Possible extension to classical FSI). By introducing the full displace-
ment variable in the whole domain rather than just a boundary movement offers the
possibility to easily extend the problem to full elasticity. Such a setting might be solving
a fluid reaction-diffusion problem in a thin strip in some pay-zone with surrounding
elasticity which is the elastic part of a porous medium. This will be explored and dis-
cussed elsewhere. However, a satisfactory understanding of the reaction on the elastic
properties is still an open question in the community [64], although some suggestions
exist [149]. �
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5.3.12.3 Nitsche’s idea for boundary conditions and wall movement We comment
below how we prescribe the boundary movement on Γtop,bottom. Recall, that the
’structure’ part is one dimension lower and we need a technique which allows us to
describe the variable explicitly. Here, we make use of Nitsche’s method [182] and give
the normal displacements uν weakly to the problem. Starting from the continuous
level, we recall:

ρsvν = ρs∂tuν := r(c)−H(u) on Γ̂top,bottom.

This is discretized by a backward difference quotient for the (uniform) time step size
k := kn := tn+1 − tn:

unν − un−1
ν =

k

ρs
[r(cn)−H(un−1)] on Γ̂top,bottom.

The new displacement for time index n is then obtained by

unν = un−1
ν +

k

ρs
[r(cn)−H(un−1)] on Γ̂top,bottom. (65)

In Problem 5.47, the boundary movement is then given (without ’hats’) in weak form:

(∇û, ∇̂ψ̂u) +
αN
h

∫
Γ̂top,bottom

ûψ̂u ds−
∫

Γ̂top,bottom

∇̂û · ν̂ψ̂u ds−
∫

Γ̂top,bottom

∇̂ψ̂u · ν̂û ds,

where h describes as usually the cell diameter and αN Nitsche’s parameter. The last
two integrals are required for the consistency of the method [122, 182]. In fact, this
is a very elegant way to obtain a monolithically-coupled problem. For the moving
boundary, we use the information from the previous time step which brings explicit
flavor into the formulation.
With that, the above semi-linear form (122) is complemented by Nitsche’s terms:

Âh(Û)(Ψ̂) := Â(Û)(Ψ̂) +
αN
h
〈û, ψ̂u〉Γ̂top,bottom

− 〈∇̂û · n̂ψ̂u〉Γ̂top,bottom
− 〈∇̂ψ̂u · n̂û〉Γ̂top,bottom

.
(66)

5.3.12.4 Numerical convergence tests of line-integrated concentration We fix x =
0.25 and consider the line-integrated concentration cx = c(x = 0.25, y, t), with dx =
d(x = 0.25, t)

c̄x(t) =

∫ dx(t)

−dx(t)

cx(y, t)dy on the mesh levels 2,3,4,5,

and note that c̄x is a function of time only. We then study the evolution of c̄x for the
spatial mesh hierarchy. Here, we measure the error

J(ch − cexact) = J(ch)− J(cexact) = c̄x − c̄exact,
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where cexact is computed on the finest mesh level by

c̄exact(t) =

∫ dx(t)

−dx(t)

cx(y, t)dy on mesh level 5.
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Figure 28: Example 1: test b), quantitative convergence tests of the line-integrated
concentration at x = 0.25 using global refinement on three different mesh
levels. The fourth mesh level is used as ’exact’ solution. Displayed are
ρs = 5 (left) and ρs = 100 (right). Taken from [157].

5.3.12.5 Comparing 2D numerical solution with 1D manufactured model We con-
duct numerical tests using the full 2D model and study the pressure and flow profiles.

Figure 29: Results of the 2D numerical simulation: Concentration at the first time
step and the end time step T = 14. At the initial time, the concentration is
c = 1 in the whole channel. Starting the simulation, c = 0 is applied at the
inlet boundary (blue) and the source term f increases the concentration in
the middle (red).

These 2D tests are based on the second numerical example presented in [157]. Specif-
ically, we have a right-hand side force function (representing an analytical expression
for a point source)

f(x, y) = a exp(−b(x− xm)2 − c(y − ym)2),
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where a = 1000, b = c = 100 and xm = 0.5, ym = 0.05, representing a source with
maximum strength at (xm, ym) and having an exponential decay and causing the
precipitation in the middle of the thin channel Ω := [0, 1] × [0, 0.1]. All material
parameters and geometry information are described in the previously mentioned article
[157]. In contrast, the flow is now driven by pressure difference such that we have
p = 1 on the inflow (left boundary) and p = 0 at the right (outflow) boundary. The
initial concentration is c = 1 for all x ∈ Ω. In addition, we prescribe c = 0 at the left
boundary. The goal of our present study is now different from [157]. We are specifically
interested in the pressure behavior along the x-axis and the validity of approximating
the behavior through the lower-dimensional lubrication equation (63)1.
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Figure 30: Results of the 2D numerical simulation: Profiles at final time T = 14 for
the pressure, its gradient, and the key observation quantity ∂xpw2 shown
in the first three figures. Each of the quantities of interest is computed
on a sequence of three locally refined meshes to have numerical evidence
of convergence. In the final figure, the velocity component in normal flow
direction integrated over the cross section is shown on the finest mesh for
the inlet and the middle (narrow part of the channel).

Figure 30 shows the pressure and the pressure gradient at T = 14 when the channel
has closed by ≈ 92 percent. Furthermore, the two bottom figures show w2∂xp (w is
the width of flow domain) and the vx velocity with respect to time. The choice of this
scaling w2 is motivated by considering (63) 1; since the total flow follows the cubic
law, the average flow obeys a square law. For the 2D model, achieving the limit is not
possible since the mesh will degenerate as the channel is closed. (This drawback in the
numerics is investigated in terms of a standard fluid-structure interaction framework in
[93–95]). However, the amount of channel constriction is pretty close to the process of
clogging. The profile shows that the pressure gradients are blowing up as the channel
gets smaller. However, when this is weighted with 2(ε − d)2, that is with square of
the opening width of the channel, the resulting quantity goes to zero. This quantity is
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proportional to the flow and showing similar behavior as displayed in Figure 30. This
suggests that the flow strength vanishes as the channel progressively gets clogged.
This is consistent with the case of upscaled model. Figure 29 displays the plot of
concentration for two different times.

5.4 FSI techniques on microscopic and macroscopic levels: the
Biot system and fluid-filled fracture propagation - towards
multiscale problems

When you read the title (Biot plus fracture) of this section, you do not immediately
think on fluid-structure interaction. And you are right! We go again away from the
very classical point of view. Looking more closely, we however identify parts in which
FSI knowledge helps us enormously.
Let us pose some homework rather than explaining everything in detail 18.
One of the key topics are fractures such as in mechanical engineering, subsurface

modeling, energy recovery (by far not only oil but more important also heat exchangers
in the earth mantle) and also hemodynamics.
Imagine now you are given the task to model fluid-filled fracture propagation in

poroelasticity as sketched in Figure 31.

C

Ω

(0, L)3

Figure 31: A crack C embedded in a porous medium. Here, the dimensions of the crack
are assumed to be much larger than the pore scale size (black dots) of the
porous medium.

What do we need?

• A model for poroelasticity (solid-fluid coupling);

• A model for fracture propagation;

• A model for fluid flow in the fracture.

Possibly (and very likely), we need:

18In a future version of these notes, we will complement this section with appropriate answers.
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• Knowledge on techniques for moving domains, boundaries and interfaces (the
fracture is moving!);

• Coupling of different equations from multiphysics via volume terms and interface
laws;

• Transformations between different coordinate systems;

• Developing algorithmic schemes in which order we couple and solve the equations;

• Developing of nonlinear and linear solvers.

Remark 5.49. If we would go into detail (in a future version of these notes, we will
do this), then we also need to know how to model and discretize variational inequalities
[151, 152, 234]. �
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5.5 A larger perspective: Connecting ALE schemes and
r-adaptivity (moving mesh methods)

It is interesting to notice that ALE-schemes can be connected to a larger class of
mesh-adaption procedures that are known as r-adaptivity methods (a nice overview is
provided in [48]). In particular, they are used to improve the finite element discretiza-
tion accuracy, which is known as r-adaptivity (beyond usual h and p adaptivity). This
is slightly different from moving boundary problems, since here, as in fluid-structure
interaction, you must move the mesh according to the interface. Whereas in other
applications it is a powerful method that complements other techniques to improve
the accuracy of the solution.
In extension to our explanations in Section 5.2, moving mesh methods can be de-

composed into two different sub-classes:

• Location-based methods: the new mesh points are directly obtained from the
solution of the auxiliary PDE. Typically, such methods cluster mesh points (see
Figure 34).

• Velocity-based methods: the auxiliary PDE computes a mesh-velocity that is
then integrated in order to obtain new mesh points. It is clear that such methods
are prone to mesh tangling since we work in a Lagrangian-based setting for
solving fluid flows and consequently, if we transport the mesh in a setting with
high fluid vorticity, mesh faces might intersect. (see, e.g., Figure 12).

Remark 5.50 (Mesh moving in non-convex domains). In fluid-structure interaction,
there is the inherent problem that the moving mesh equations must be solved in non-
convex domains, which might lead to additional complications due to re-entrant cor-
ners. For a brief discussion, we refer to [73]. However, we observed in several nu-
merical tests [250] that biharmonic mesh motion offers interesting features, and very
smooth meshes in non-convex domains. We recall that the second equation is related
to the bending moment (in solid mechanics) or the vorticity in fluid dynamics. �

Since the ALE method can be identified as a moving mesh method, the following
theorem from measure theory builds the ground of mesh moving and equidistribution:

Theorem 5.51 (Radon-Nikodym). Let Â be an invertible mapping that maps Â ⊂ Ω̂
to Â(A) ⊂ Ω. The Borel measure is ν(Â(A)) = |A|, where | · | denotes the Lebuesgue
measure. If ν is a well-defined Borel measure on Ω, then there exists a non-negative
function α : Ω→ R such that

ν(Â(A)) =

∫
Â(A)

M(x) dx,

for any Â(A) ⊂ Ω. Additionally, M is unique up to a Lebuesgue measure zero.

This theorem ensures that for any invertible mapping Â, we can find a unique
function M such that ∫

A

dx =

∫
Â(A)

M(x) dx.
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The function M is usually called a monitor function that should be large when mesh
points are required to be clustered or mesh tangling is likely to occur.

Example 5.52. The simplest and oldest example is Winslow’s method [259]. Another
example is given by setting

α =
1

M
=

1

Ĵ

as done by employing Jacobi-based stiffening. We refer to Figure 34 for visualization.

Remark 5.53 (Vector-valued monitor functions). We notice that the concept of the
monitor function is straightforward to apply to matrix-valued monitor functions [48].
�

Remark 5.54 (Viewpoint of energy minimization). The mesh motion equations can
be interpreted as the Euler-Lagrange equations of a corresponding energy functional.
With this step, mesh moving strategies can be embedded into calculus of variations. As
simplest example, we may write harmonic mesh motion as

min I(x̂),

with
I(x̂) =

∫
Ω̂

α|∇̂û|2 dx̂.

�

Remark 5.55 (Extension to time-dependent mesh motion equations). One might
think that a time-dependent mesh motion model would produce more reliable results
since fluid-structure interaction is itself time-dependent. Carrying out several numer-
ical tests by using a heat-type equation,

∂tû− ∇̂ · (α∇̂û) = 0, in Ω̂f ,

or
∂tû− ∇̂ · σ̂mesh = 0, in Ω̂f ,

we never could produce better results than with a pure stationary method as described
in the previous sections. �
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5.6 Fully Eulerian FSI

5.6.1 Explanation of the approach

The characteristic features of this approach are [69, 71, 207]:

• Formulating both fluid and solid equations in Eulerian coordinates using variational-
monolithic coupling resulting in a single semi-linear form;

• Using a single mesh for both equations;

• Accessing the current shape of the solid by an initial point set (IPS) function
[69] that maps to the initial domain;

• Implicit usage of a level-set advection function that is automatically included in
the solid equation as second equation of a first-order-in-time mixed formulation;

The necessity for this approach (or any other fixed-mesh interface-capturing ap-
proach) are explained by the following Figure 32.

Figure 32: Rotational flow around an unmounted obstacle at different time steps. Top
row: moving mesh interface-tracking (ALE) computation without remesh-
ing. Bottom row: fixed-mesh interface-capturing (fully Eulerian) approach
(taken from [209]).

Let us briefly recapitulate the necessary ingredients to transform variables, vectors,
and tensors from Eulerian to Lagrangian systems and vice versa.
First, we define the inverse transformation required for the fully Eulerian framework,

which is, however, only required in the structure domain Ωs:

A(x, t) : Ωs × I → Ω̂s, with A(x, t) = x− us(x, t). (67)

Simple calculation yields [69]:

A(Â(x̂, t), t) = x̂. (68)
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Spatial differentiation of (68) brings us

(I −∇us) (Î + ∇̂ûs)︸ ︷︷ ︸
=F̂s

= Î , (69)

where I and Î denote the identity matrices. The following relations between the ALE
deformation gradient and its Eulerian counterpart can be inferred from the previous
calculations:

F̂s = (Î + ∇̂ûs) = (I −∇us)−1 =: F−1
s , (70)

Ĵs = det(F̂s) = det(F−1
s ) =: J−1

s . (71)

Summarizing, we obtain the deformation gradient and its determinant in Eulerian
coordinates:

Fs = (I −∇us), Js := det(Fs). (72)

Remark 5.56. In the same way, we define Ff and Jf in the fluid part. �

Remark 5.57. In the following, we use the short hand notation F and J because it
is clear from the context whether we work with Fs and Js or Ff and Jf , respectively.
�

With the help of these relations, we recapitulate the Green-Lagrange tensors in both
coordinate systems:

E :=
1

2
(F−TF−1 − I), Ê :=

1

2
(F̂T F̂ − Î). (73)

With the previously definitions, we recall the constitutive stress tensors in the respec-
tive frameworks:

σf := σf (vf , pf ) = −pfI + 2ρfνf (∇vf +∇vTf ), (74)

σ̂f := σ̂f (v̂f , p̂f ) = −p̂f Î + 2ρ̂fνf (∇̂v̂f F̂−1 + F̂−T ∇̂v̂Tf ), (75)

with the velocity vf , the pressure pf , the density ρf , and the (kinematic) viscosity
νf and their respective ‘hat’ coordinates for the definition in the ALE framework.
For elastic structures, we use the laws based on the Saint Venant-Kirchhoff (STVK)
material:

σs := σs(us) = JF−1(λs(trE)I + 2µsE)F−T , (76)

σ̂s := σ̂s(ûs) = Ĵ−1F̂ (λs(trÊ)Î + 2µsÊ)F̂T , (77)

in which the material is characterized by the Lamé coefficients λs and µs.
It remains to recall the concept of time-derivatives in both frameworks. As before,

let x = x(x̂, t), where x̂ denotes the initial position of the point x. The velocity v is
defined as the total time derivative of the point’s position:

v(x, t) = dtx(x̂, t). (78)
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In Lagrangian coordinates, the total time derivative of a function û(x̂, t) := u(x(x̂, t), t)
is determined by

dtû(x̂, t) = ∂tû(x̂, t) + ∇̂û(x̂, t)dtx̂ = ∂tû(x̂, t), (79)

or short
dtû = ∂tû, (80)

because dtx̂ = 0 in the Lagrangian system. In contrast, the total time derivative of a
function u(x, t) in the Eulerian framework reads:

dtu(x, t) = ∂tu(x, t) +∇u(x, t)dtx

= ∂tu(x, t) +∇u(x, t)v(x, t)

= ∂tu(x, t) + v(x, t) · ∇u(x, t).

(81)

Or short:
dtu = ∂tu+ v · ∇u. (82)

The convection term v ·∇u denotes the key difference between time derivatives in both
frameworks and plays an important role when formulating the governing elasticity
equations in Eulerian coordinates.

5.6.2 Comparing variational-monolithic ALE and fully Eulerian FSI

There are striking similarities between our concepts for ALEfx and fully Eulerian FSI
using variational-monolithic coupling:

• ALE: Â(x̂, t) : Ω̂f × I → Ωf ;

• Fully Eulerian: A(x, t) : Ωs × I → Ω̂s.

Both mappings are exactly the opposite operations (see also Figure 33 as further
illustration) and therefore, all principal quantities such as the deformation gradient
can be transformed into the other approach. To show these relationships between
both frameworks and related computations was the purpose of [207].

5.6.3 IPS - initial point set

Finally, we introduce the initial point set (IPS) [69] for the fully Eulerian framework.
This equation is defined on the continuous level (like a level-set function) and is used
(after discretization) to map each structure point to its initial position:

Problem 5.58. Find u such that

∂tu− w + (w · ∇)u = 0, (83)

The initial and boundary conditions are given by

u(x, 0) = 0, x ∈ ΩE ,

u(x, t) = 0, x ∈ ∂ΩE , t ∈ I.
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Ω̂f Ωf (t)
Â

A

Ωs(t)Ω̂s

Figure 33: Transformation in ALEfx and fully Eulerian frameworks in order to move
the fluid on Ωf or to detect the solid in Ω̂s. To recall: in ALEfx all
computations are performed in Ω̂. In contrast using the fully Eulerian
framework all equations are computed in Ω.

Then, the value of u is transported with the velocity w to its initial position at time
zero.

Remark 5.59. The IPS-function is (like level-set) a Hamilton-Jacobi-type equation
that requires special techniques for its theory [76] and often for its computation [181,
191, 219]. In fact, it is a pure advection equation that always requires stabilization
techniques.

Remark 5.60 (Difference of the IPS-function and a level-set-function). Using the
IPS-function, the position of the interface is determined by structural mechanics. In
contrast, a level-set-function is given by the local fluid velocity normal to the interface.
In addition, the IPS-function is already included in the physical model by splitting
the second-order-in-time wave equation into a mixed system [12]. Here, the second
equation represents the IPS-function. Finally, the IPS-function preserves corners and
edges as demonstrated in [70]. �

5.6.4 Practical aspects of solid localization

In order to detect the solid in each time step, we use the very definition of A := x− u
and define and indicator function that localizes the solid in Ω̂s (according to the IPS-
function). To this end, we define characteristic functions in Ωf and Ωs by

χs :=

{
0, x− u ∈ Ω̂f ,

1, x− u ∈ Ω̂s ∪ Γ̂i,
and χf = 1− χs. (84)

How does this operation work? Well, in each point (cell corner or quadrature point),
i.e., x ∈ Ωs, we subtract the displacement u. If the result x − u belongs to the solid
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configuration in the initial setting Ω̂s = Ωs(0), then χs = 1 (otherwise χs = 0). How-
ever, if you notice carefully, in a fully implicit way, the displacement is an unknown
solution variable itself. Here, we do (for simplification) the following: The character-
istic function χf,s for the evaluation of the new domain depends on the solution un of
previous time step (and not on the present unknown solution u := un+1). This cir-
cumvents the evaluation of the directional derivatives of χf,s, but, on the other hand,
it introduces an explicit flavor such that the time steps have to be chosen sufficiently
small. Consequently, the interface deforms moderately during two time steps un and
u := un+1. Then,

χf (x) = χ̂f (x− u) ≈ χ̂f (x− un),

should be a good approximation. To ensure that the two domains Ωn+1 and Ωn are
sufficiently close such that the previous assumptions may be taken, the time steps k
are chosen adaptively and they are used to control to nonlinear solution process. With
this explicit usage, an additional nonlinearity at the interface is prevented because the
evaluation of the derivatives of the characteristic functions is circumvented:

χ′f (δu;x) ≈ χ̂′f (δu;x− un)⇒ χ′f (δu;x) = 0.

5.6.5 Variational-monolithic fully Eulerian FSI - the complete system

As for fluid flows, let vDs and uDs be suitable extensions of Dirichlet inflow data. Then:

Problem 5.61 (Structure models in Eulerian coordinates). Find
{vs, us, ps} ∈ Ls ×{uDs + V 0

s }×L0
s, such that vs(0) = v0

s and us(0) = u0
s are satisfied,

and for almost all time steps t ∈ I holds:

(ρsJ∂tvs, ψ
v)Ωs + (ρsJ(vs · ∇)vs, ψ

v)Ωs

+(σs,∇ψv)Ωs
− 〈σsns, ψv〉Γi∪ΓN

− (ρsJfs, ψ
v)Ωs

= 0 ∀ψv ∈ V 0
s ,

ρs(∂tus + (vs · ∇)us − vs, ψu)Ωs
= 0 ∀ψu ∈ Ls,

(J − 1, ψp)Ωs = 0 ∀ψp ∈ L0
s,

where ρs denotes the structure density, ns the outer normal vector on Γi and ΓN ,
respectively. The Cauchy stress tensors for the material models are given by

σINH
s := −psI + µs(F

−1F−T − I),

σSTVK
s := JF−1(λs(trE)I + 2µsE)F−T ,

(85)

with the Lamé coefficients λs and µs. External volume forces are described by the
term fs. Using the STVK material, the third equation becomes redundant and the
compressibility is related to the Poisson ratio νs (νs < 1

2).

Formulating a fully coupled system in Eulerian coordinates results in the innocent
problem:
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Problem 5.62 (Variational-monolithic FSI in Eulerian coordinates - the mathematical
version). Find
{vf , vs, us, pf , ps} ∈ {vDf + V 0

f } × Ls × {uDs + V 0
s } × L0

f × L0
s, such that vf (0) = v0

s ,
vs(0) = v0

s , us(0) = u0
s are satisfied, and for almost all time steps t ∈ I holds:

Fluid momentum

{
(χfρf∂tvf , ψ

v
f ) + (χfρf (vf · ∇)vf , ψ

v
f )

+(χfσf ,∇ψvf )− (g, ψvf )− (χfρfff , ψ
v
f ) = 0 ∀ψvf ∈ V 0

f ,

Solid momentum, 1st eq.

{
(χsJρs∂tvs, ψ

v
s ) + (χsJρs(vs · ∇)vs, ψ

v
s )

+(χsσs,∇ψvs )− (χsJρsfs, ψ
v
s ) = 0 ∀ψvs ∈ V 0

s ,

Solid momentum, 2nd eq.; IPS
{
χsρs(∂tus + (vs · ∇)us − vs, ψus ) = 0 ∀ψu ∈ Ls,

Fluid mass conservation
{

(χfdiv vf , ψ
p
f ) = 0 ∀ψpf ∈ Lf ,

Solid mass conservation
{

(χsPs, ψ
p
s )Ωs

= 0 ∀ψp ∈ L0
s.

A crucial point in computing fully nonstationary processes is the decoupling of the
fluid vf and the structure velocity vs. Using the previous formulation, the fluid velocity
disturbs in computations over long time intervals and this leads to oscillations at the
interface. To prevent this, analogously to Dunne [69], an additional velocity variable
is introduced, satisfying19

w = vs in Ωs ∪ Γi,

∆w = 0 in Ωf .

As second step, we extend us and ws to the fluid domain for computational reasons20
Then a possible computational stable framework is given by [255]:

Problem 5.63 (Variational-monolithic FSI in Eulerian coordinates - a computational
version). Find
{vf , vs, wf , ws, uf , us, pf , ps} ∈ {vDf + V 0

f } × Ls × {wDf + V 0
f } × Ls × {uDf + V 0

s } ×
{uDs + V 0

s } × L0
f × L0

s, such that vf (0) = v0
s , wf (0) = w0

s , uf (0) = u0
f , vs(0) = v0

s ,

19This might be overcome by techniques currently investigated in [91].
20This second step is of course not mandatory!
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wf (0) = w0
s , us(0) = u0

s are satisfied, and for almost all time steps t ∈ I holds:

(χfρf∂tvf , ψ
v
f ) + (χfρf (vf · ∇)vf , ψ

v
f )

+(χfσf ,∇ψvf )− (g, ψvf )− (χfρfff , ψ
v
f ) = 0 ∀ψvf ∈ V 0

f ,

(χsJρs∂tvs, ψ
v
s ) + (χsJρs(vs · ∇)vs, ψ

v
s )

+(χsσs,∇ψvs )− (χsJρsfs, ψ
v
s ) = 0 ∀ψvs ∈ V 0

s ,

χf (αw∇wf ,∇ψwf ) = 0 ∀ψw ∈ V 0
f ,

χs(vs − ws, ψwf ) = 0 ∀ψw ∈ Ls,
χfρf (∂tuf + (wf · ∇)uf − wf , ψuf ) = 0 ∀ψw ∈ Lf ,
χsρs(∂tus + (ws · ∇)us − ws, ψus ) = 0 ∀ψu ∈ Ls,

(χfdiv vf , ψ
p
f ) = 0 ∀ψpf ∈ Lf ,

(χsPs, ψ
p
s )Ωs

= 0 ∀ψp ∈ L0
s.

with a monitor parameter αw.

For fully nonstationary simulations, it is important to consider the following three
convection terms which make their corresponding equations from pure hyperbolic type:

Jρs∂tvs + Jρs(vs · ∇)vs (1st structure equation),
∂tuf + (wf · ∇)uf (3rd fluid equation),
∂tus + (ws · ∇)us (3rd structure equation).

(86)

These equations require stabilization for their numerical treatment.

Remark 5.64 (Mass/Volume conservation). We shall give a brief account to mass con-
servation because this is a well-known difficulty and often asked when using interface-
capturing techniques. This is strongly-related to the signed distance function property,
which needs to remain valid for long-time computations. For numerical validations,
we refer the reader to [204, 255]. �

Remark 5.65 (Signed distance function property). Even though reinitialization is not
necessary in this framework, it is often being asked. In fact, although the interface-
capturing-function is initialized as a signed distance function, it is not for sure it
remains so. However, it many situations it is preferable to have a signed distance
function throughout the numerical simulation. The reasons are that velocity exten-
sion methods can be employed successfully, a possibly given thickness of the interface
remains valid, and finally, that the level-set function behaves well near the interface
[219]. To ensure the signed-distance property, the interface-capturing-function needs
to be reinitialized. For various methods and explication, we refer the reader to the
level-set literature. For explicit usage of reinitialization in terms of fully Eulerian
fluid-structure interaction, we refer to [127]. �
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5.6.6 Summary of features

• The two major drawbacks are cut-cells (interface is not aligned to mesh faces)
and convective behavior.

• Detailed comparisons and code-validation with two different software packages
(each contains ALE and fully Eulerian codes) have been performed [69, 93, 94,
204, 207, 255]. Further important studies confirming correct modeling are [161,
222].

• On the other hand, we achieve large structural deformations as displayed in
Figure 32.

Figure 34: CSM 4 test in fully Eulerian (at left) and ALE coordinates (at right) with
biharmonic mesh motion model without any remeshing. The results are
taken from [255].

Using an unfitted finite element method and convection-stabilization [255], we obtain
similar results to ALE method for the most difficult FSI2-benchmark problem (so, the
method is able reproduce benchmark results!). However, for stability and robustness
reasons, a locally modified FEM method has been proposed recently [91] that keeps the
connectivity of the system matrix and reproduces full convergence order in the energy
norm (see also XFEM/GFEM [9]). Furthermore, the improvement of time integration
is currently in development [92].

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  100  200  300  400  500  600  700  800

y
-d

is

Time

Eulerian

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  100  200  300  400  500  600  700  800

y
-d

is

Time

ALE

Figure 35: [255]: Comparison of the transient oscillation of the fully Eulerian and the
ALE approach for the FSI 2 benchmark.
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Figure 36: [255]: Dynamics of the FSI 2 benchmark: x-velocity profile to different time
steps t = 7.22, 7.32, 7.42.

Remark 5.66 (References). Although being a young and recent method, interesting
studies using a fully-Eulerian approach have been obtained in [59, 69, 70, 93–95, 127,
161, 204, 207, 222–224, 255, 267]. �

5.7 Coupling of ALE and Eulerian FSI
Let us finally make a brief excursion to a coupled moving mesh/fixed-mesh method:

• Coupling ALE coordinates with the fully Eulerian framework.

To organize a fully monolithically-coupled formulation, the computational domain Ω̂
is split into an ALE subdomain and an Eulerian subdomain, i.e., Ω̂ = Ω̂A ∪ ΩE .
We propose the following EALE framework [253, 254] for computing fully nonsta-

tionary processes:

Problem 5.67 (Variational fluid-structure interaction in EALE coordinates with an
additional velocity). Find the following variables:

• Velocities {vf , v̂f , vs, v̂s} ∈ {vDf + V 0
f,v} × {v̂Df + V̂ 0

f,v̂} × {vDs + V 0
s,v} × L̂s with

vf (0) = v0
f , v̂f (0) = v̂0

f , vs(0) = v0
s and v̂s(0) = v̂0

s ,

• Additional velocities {wf , ws} ∈ {wDf + V 0
f,w} × {wDs + V 0

s,w} with wf (0) = w0
f

and ws(0) = w0
s ,

• Displacements {uf , ûf , us, ûs} ∈ {uDf +V 0
f,u}×{ûDf + V̂ 0

f,û}×{uDs +V 0
s,u}×{ûDs +

V̂ 0
s,û} with uf (0) = u0

f , ûf (0) = û0
f , us(0) = u0

s and ûs(0) = û0
s,

• Pressures {pf , p̂f} ∈ L0
f × L̂0

f ,
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such that for t ∈ I and αw > 0 holds:

(χfρf∂tvf , ψ
v
f ) + (χfρf (vf · ∇)vf , ψv

f ) (87)
+(χfσf ,∇ψv

f )− 〈χfgfnf , ψ
v
f 〉 − (χfρfff , ψ

v
f ) (88)

= 0 ∀ψv
f ∈ V 0

f,v, (89)

(χ̂f Ĵ ρ̂f∂tv̂f , ψ̂
v
f ) + χ̂f (ρ̂f Ĵ(F̂

−1(v̂f − ∂tÂ) · ∇̂)v̂f ), ψ̂v
f ) (90)

+(χ̂f Ĵ σ̂f F̂
−T , ∇̂ψ̂v

f )− 〈χ̂f ĝf n̂f , ψ̂
v
f 〉 − (χ̂f ρ̂f Ĵ f̂f , ψ̂

v
f ) (91)

= 0 ∀ψ̂v
f ∈ V̂ 0

f,v̂, (92)
(93)

(χsJρs∂tvs, ψ
v
s ) + (χsJρs(vs · ∇)vs, ψv

s ) (94)
+(χsσs,∇ψv

s )− (χsJρsfs, ψ
v
s ) (95)

= 0 ∀ψv
s ∈ V 0

s , (96)

(χ̂sρ̂s∂tv̂s, ψ̂
v
s ) + (χ̂sĴ σ̂sF̂

−T , ∇̂ψ̂v
s )− (χ̂sρ̂sf̂s, ψ̂

v
s ) (97)

= 0 ∀ψ̂v
s ∈ V̂ 0

s , (98)
(99)

χfρf (∂tuf + (wf · ∇)uf − wf , ψ
u
f ) = 0 ∀ψu

f ∈ V 0
f , (100)

(χ̂f σ̂mesh, ∇̂ψ̂u
f ) = 0 ∀ψ̂u

f ∈ V̂ 0
f,û,Γ̂i,A

, (101)

(102)

χsρs(∂tus + (ws · ∇)us − ws, ψ
u
s ) = 0 ∀ψu

s ∈ V 0
s , (103)

χ̂sρ̂s(∂tûs − v̂s, ψ̂u
s ) = 0 ∀ψ̂u

s ∈ L̂s, (104)
(105)

χf (αw∇wf ,∇ψw
f ) = 0 ∀ψw ∈ V 0

f , (106)
− (107)

(108)
χs(vs − ws, ψ

w
f ) = 0 ∀ψw ∈ Ls, (109)

− (110)
(111)

(χfdiv vf , ψp
f ) = 0 ∀ψp

f ∈ L
0
f , (112)

(χ̂f d̂iv (Ĵ F̂−1v̂f ), ψ̂
p
f ) = 0 ∀ψ̂p

f ∈ L̂
0
f , (113)

(114)

Let us understand the meaning of all the twelve equations in Problem 5.67, which
is divided into seven parts. In part I, Equation (89) and (92) are the Navier-Stokes
equations described in Eulerian coordinates and in the ALE framework. Then, in
part II and IV, the first order solid system is used. Consequently, the first equations
(Eulerian and secondly in Lagrangian coordinates) are given here in part II. We notice
in the Eulerian structure that we deal with an additional (nonstandard) convection
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term in Equation (96) due to the transformation from the Lagrangian system. In
the third part, we find transformations related to the fluid problems. Here, the first
Equation (100) comes from the IPS whereas the second Equation (101) is the well-
known moving-mesh PDE for ALE problems. Next, in part IV, the second equations
of the elasticity system are given (therefore, related to part II). The next two parts V
and VI, Equation (106) and (109), define the additional velocity variable w, which is
only required in the Eulerian domain. Finally, the incompressibility condition of the
fluid is expressed in part VII.
In Problem 5.67, the characteristic functions in Ω̂f,A and Ω̂s,A are defined as

χ̂f :=

 1, x̂ ∈ Ω̂f,A,

0, x̂ ∈ Ω̂s,A ∪ Γ̂i,A,
and χ̂s := 1− χ̂f . (115)

Specifically, the cells that belong to the ALE domain are simply marked in the fixed
reference configuration because it is clear where the fluid and the structure are located
thanks to the interface-tracking character of ALE. However, in the Eulerian domain it
is a bit more complicated to identify the structure. Here, the characteristic functions
in Ωf and Ωs are defined as

χf :=

{
1, x− u ∈ Ω̂f,E ,

0, x− u ∈ Ω̂s,E ∪ Γ̂i,E ,
and χs = 1− χf . (116)

Details are provided elsewhere [255].

Remark 5.68 (Coupling conditions for coupling ALE with Eulerian). The coupling
conditions to couple the ALE framework with the fully Eulerian framework on the
EALE-interface are given by

ûf,A = uf,E = 0, (117)
∂nûf,A = ∂nuf,E = 0, (118)

σ̂f,An̂f,A = σf,Enf,E . (119)

A deeper discussion is provided in [251]. �
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6 Discretization and Solution of Nonlinear Problems
in the ALEfx framework

In this part, we focus on

• Time discretization based on finite differences: first-order backward Euler, sec-
ond order Crank-Nicolson, second-order shifted Crank-Nicolson, second-order
Fractional-Step-θ;

• Spatial discretization based on inf-sup stable Galerkin finite elements;

• Newton’s method with simple line search backtracking;

• Solution of the linear equations;

• To discuss a ‘simple’ problem showing that our approach is easy to realize with
pre-understanding of a class such as numerical methods for partial differential
equations;

• Pointing to some code pieces that have been used for numerical simulations
presented in these notes.

We concentrate on descriptions for the ALEfx setting. The other formulations can be
formulated in similar ways; however we notice that fully Eulerian time discretization is
a bit tricky since the interface moves between two time steps and test functions might
correspond to the other continuum. Details are outlined in [92, 209].

6.1 Time

In the domain Ω̂ and the time interval I = [0, T ], we consider the fluid-structure
interaction Problem 5.19 with harmonic or linear-elastic mesh motion in an abstract
setting (the biharmonic problem is straightforward): Find Û = {v̂f , v̂s, ûf , ûs, p̂f , p̂s} ∈
X̂0
D, where X̂

0
D := {v̂Df + V̂ 0

f,v̂} × L̂f × {ûDf + V̂ 0
f,û} × {ûDs + V̂ 0

s } × L̂0
f × L̂0

s, such that∫ T

0

Â(Û)(Ψ̂) dt =

∫ T

0

F̂ (Ψ̂) dt ∀Ψ̂ ∈ X̂, (120)

where Ψ̂ = {ψ̂vf , ψ̂vs , ψ̂uf , ψ̂us , ψ̂
p
f , ψ̂

p
s} and X̂ = V̂ 0

f,v̂ × L̂f × V̂ 0
f,û,Γ̂i

× V̂ 0
s × L̂0

f × L̂0
s. The

time integral is defined in an abstract sense such that the equation holds for almost
all time steps.

Problem 6.1 (Semi-linear form of FSI using harmonic mesh motion). Using the har-
monic mesh motion model leads to the following expressions of Â(Û)(Ψ̂) and F̂ (Ψ̂):

F̂ (Ψ̂) = (ρ̂sf̂s, ψ̂
v
s )Ω̂s

, (121)
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and

Â(Û)(Ψ̂) = (Ĵ ρ̂f∂tv̂f , ψ̂
v
f )Ω̂f

+ (ρ̂f Ĵ(F̂−1v̂f · ∇̂)v̂f ), ψ̂vf )Ω̂f
(122)

− (ρ̂f Ĵ(F̂−1ŵ · ∇̂)v̂f ), ψ̂vf )Ω̂f
− 〈ĝf , ψ̂vf 〉Γ̂N

− (ρ̂f Ĵ f̂f , ψ̂
v
f )Ω̂f

(123)

+ (Ĵ σ̂f F̂
−T , ∇̂ψ̂vf )Ω̂f

+ (ρ̂s∂tv̂s, ψ̂
v
s )Ω̂s

+ (F̂ Σ̂, ∇̂ψ̂vs )Ω̂s
(124)

+ (ρ̂s∂tûs, ψ̂
u
s )Ω̂s

− (ρ̂sv̂s, ψ̂
u
s )Ω̂s

+ (αu∇̂ûf , ∇̂ψ̂uf )Ω̂f
(125)

+ γw(v̂s, ψ̂
v
s )Ω̂s

+ γs(ε̂(v̂s), ∇̂ψ̂vs )Ω̂s
(126)

+ (d̂iv (Ĵ F̂−1v̂f ), ψ̂pf )Ω̂f
+ (P̂s, ψ̂

p
s )Ω̂s

. (127)

The fluid convection term in (122) is decomposed into two parts for later purposes.

6.1.1 Basic concepts and considerations for temporal discretization

Before we begin, let us briefly recapitulate some basics from our lecture numerical
methods for ordinary differential equations. A classical scheme for problems with a
stationary limit is the (implicit) backward Euler scheme (BE), which is strongly A-
stable (but only from first order) and dissipative. It is used in numerical Examples,
where a stationary limit must be achieved. In contrast, the (implicit) Crank-Nicolson
scheme is of second order, A-stable, and has very little dissipation but suffers from
case-to-case instabilities caused by rough initial and/or boundary data. These prop-
erties are due to weak stability (it is not strongly A-stable). A variant of the Crank-
Nicolson scheme is called shifted Crank-Nicolson scheme, is analyzed in Rannacher et
al. [133, 199], which allows for global stability of the solution. These time-stepping
schemes are addressed in more detail below. The third scheme summarizes the advan-
tages of the other two and is known as the Fractional-Step-θ scheme for computing
unsteady-state simulations [114]. Roughly-speaking it consists of summarizing three
Crank-Nicolson steps and has therefore the same accuracy and compuational cost as
the Crank-Nicolson scheme. However, it is more robust, i.e., it is strongly A-stable,
and therefore well-suited for computing solutions with rough data and long-term com-
putations for problems on fixed meshes. This property also holds for ALE-transformed
fluid equations, which is demonstrated in a numerical test below. We also refer the
reader to a modification of the Fractional-Step-θ scheme [240].

Definition 6.2 (A-stability). To summarize:

• A-stable (Crank-Nicolson)

• strictly A-stable (shifted Crank-Nicolson)

• strongly A-stable (backward Euler and Fractional-step-θ)

�
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We briefly explain the derivation of One-Step-θ schemes (see, e.g., [237, 240]) for
the heat equation. Let

∂tu−∆u = f,

be given. Time discretization yields:

u− un−1

δt
− θ∆u− (1− θ)∆un−1 = θf + (1− θ)fn−1.

Thus,
u− δtθ∆u = un−1 + δt(1− θ)∆un−1 + δtθf + δt(1− θ)fn−1.

6.1.1.1 Time stability of second-order hyperbolic equations In fluid-structure in-
teraction, the solid equation is of hyperbolic type and satisfies an energy conservation
law on the continuous level. That means that our time-discretization scheme should
reproduce this property. We recall findings (neglecting the damping terms) from the
theory [12, 31, 120]:

• Stability in the L2-norm: the One-Step-θ scheme (139) is unconditionally stable,
i.e., there is no time step restriction on k if and only if θ ∈ [ 1

2 , 1].

• Energy conservation: the one-step-θ scheme (139) preserves energy only for the
choice θ = 1

2 . For θ > 1
2 (e.g., the implicit Euler scheme for the choice θ = 1)

the scheme dissipates energy.

Consequently, the Crank-Nicolson scheme is an optimal time-stepping scheme for hy-
perbolic equations. Possible restrictions with respect to the time-step size are weaker
for hyperbolic problems than for parabolic differential equations [120]. This finding
leads us to the assumption that the fluid problem has stronger influence on stability
aspects than the structural problem.

Remark 6.3. The last statement is in contradiction to our numerical observations
made in [209]. �

To bring it to the point: issues of numerical stability of the coupled problem are of
utter importance, as it consists of a combined consideration of two different types of
equations:

• the incompressible Navier-Stokes equations which is of parabolic type and that
comes with smoothing properties; and the hyperelastic solid equation of hyper-
bolic type, which requires good conservation properties with very little numerical
dissipation.

By these considerations, the Crank-Nicolson scheme and its variants like shifted ver-
sions [133, 172, 199] or the fractional step theta scheme [45, 240], appear to be ideal
candidates that further show second order accuracy.
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Figure 37: Simulation for k = 0.005. Top: undamped Crank-Nicolson scheme develops
an instability after T = 8.5. Bottom: implicitely shifted scheme produces
a stable solution on I = [0, 10] (taken from [209]).

6.1.1.2 Consequences of energy conservation in pipes/tubes/arteries with moving
elastic walls Let us briefly illustrate practical consequences associated with hyper-
bolic (non-damping) solid equations. Assuming we have optimal conservation proper-
ties using a Crank-Nicolson-type scheme for temporal discretization. As we mentioned
in the introduction, hemodynamical applications are often subject of research. Here,
blood flows in a veine or artery. Due to its enormous computational cost, we can not
simulate the whole circulatory system and we need to cut the computational domain.
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Blood flow is a pulsating fluid and introduces waves and in particular these waves can
be observed in the arterial wall (see a snapshot at time t∗ in Figure 38). Using stan-
dard Dirichlet or Neumann conditions on the structural boundary conditions (inlet
and outlet), elastic waves are reflected. This is non-physical behavior and is subject of
present research [49, 89, 105, 183]. Our conclusion that is inferred from these observa-
tions is that correct numerical discretization does not necessarely result in the correct
physical answer.

Figure 38: Snapshot at time step t∗ of flapping simulation with moving elastic
boundaries.

6.1.2 Temporal discretization of fluid-structure interaction

The abstract problem (120) can either be treated by a full time-space Galerkin formula-
tion, which was investigated previously for fluid problems in Besier et al. [33, 34, 218].
Alternatively, the Rothe method can be used in cases where the time discretization is
based on finite difference schemes.
To sum-up: After semi-discretization in time, we obtain a sequence of generalized

steady-state fluid-structure interaction problems that are completed by appropriate
boundary values at every time step. Let us now go into detail and let

I = {0} ∪ I1 ∪ . . . ∪ IN

be a partition of the time interval I = [0, T ] into half open subintervals In := (tn−1, tn]
of (time step) size kn := tn − tn−1 with

0 = t0 < · · · < tN = T.
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We (formally) define the following semi-linear forms and group them into four cat-
egories: time equation terms (including the time derivatives), implicit terms (e.g., the
incompressibility of the fluid), pressure terms, and all remaining terms (stress terms,
convection, damping, etc.):

ÂT (Û)(Ψ̂) = (Ĵ ρ̂f∂tv̂f , ψ̂
v
f )Ω̂f

− (ρ̂f Ĵ(F̂−1ŵ · ∇̂)v̂f ), ψ̂vf )Ω̂f
(128)

+ (ρ̂s∂tv̂s, ψ̂
v
s )Ω̂s

+ (ρ̂s∂tûs, ψ̂
u
s )Ω̂s

, (129)

ÂI(Û)(Ψ̂) = (αu∇̂ûf , ∇̂ψ̂uf )Ω̂f
(130)

+ (d̂iv (Ĵ F̂−1v̂f ), ψ̂pf )Ω̂f
+ (P̂s, ψ̂

p
s )Ω̂s

, (131)

ÂE(Û)(Ψ̂) = (ρ̂f Ĵ(F̂−1v̂f · ∇̂)v̂f ), ψ̂vf )Ω̂f
+ (Ĵ σ̂f,vuF̂

−T , ∇̂ψ̂vf )Ω̂f
(132)

+ (F̂ Σ̂, ∇̂ψ̂vs )Ω̂s
+ γw(v̂s, ψ̂

v
s )Ω̂s

+ γs(ε̂(v̂s), ∇̂ψ̂vs )Ω̂s
− (ρ̂sv̂s, ψ̂

u
s )Ω̂s

,

(133)

ÂP (Û)(Ψ̂) = (Ĵ σ̂f,pF̂
−T , ∇̂ψ̂vf )Ω̂f

+ (Ĵ σ̂s,pF̂
−T , ∇̂ψ̂vs )Ω̂s

, (134)

where the reduced stress tensors σ̂f,vu, σ̂f,p, and σ̂s,p are defined as:

σ̂f,p = −p̂f Î , σ̂f,vu = ρfνf (∇̂v̂f F̂−1 + F̂−T ∇̂v̂Tf ), (135)

σ̂s,p = −p̂sÎ , (if we deal with the INH or IMR material), (136)

and Σ̂ denotes as usual the structure tensor of the INH, IMR, or STVK material. The
time derivative in ÂT (Û)(Ψ̂) is approximated by a backward difference quotient. For
the time step tn ∈ I for n = 1, 2, . . . , N (N ∈ R), we compute v̂i := v̂ni , ûi := ûni (i =
f, s) via

ÂT (Ûn,k)(Ψ̂) ≈ 1

k

(
ρ̂f Ĵ

n,θ(v̂f − v̂n−1
f ), ψ̂v

)
Ω̂f
− 1

k

(
ρ̂f (Ĵ F̂−1(ûf − ûn−1

f ) · ∇̂)v̂f , ψ̂
v
)

Ω̂f

(137)

+
1

k

(
ρ̂s(v̂s − v̂n−1

s ), ψ̂v
)

Ω̂s
+
(
ûs − ûn−1

s , ψ̂u
)

Ω̂s
, (138)

where we introduce a parameter θ, which is clarified below. Furthermore, we use

Ĵn,θ = θĴn + (1− θ)Ĵn−1,

and ûni := ûi(tn), v̂ni := v̂i(tn), and Ĵ := Ĵn := Ĵ(tn). The former time step is given
by v̂n−1

i , etc. for i = f, s.

6.1.2.1 The One-Step-θ scheme Let the previous time step solution
Ûn−1 = {v̂n−1

f , v̂n−1
s , ûn−1

f , ûn−1
s , p̂n−1

f , p̂n−1
s } and the time step k := kn = tn − tn−1

be given.
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tn+1tntn−1
t

Figure 39: Time step computation using One-Step-θ schemes.

Find Ûn = {v̂nf , v̂ns , ûnf , ûns , p̂nf , p̂ns } such that

ÂT (Ûn,k)(Ψ̂) + θÂE(Ûn)(Ψ̂) (139)

+ÂP (Ûn)(Ψ̂) + ÂI(Û
n)(Ψ̂) = − (1− θ)ÂE(Ûn−1)(Ψ̂) (140)

+ θF̂n(Ψ̂) + (1− θ)F̂n−1(Ψ̂), (141)

where F̂n(Ψ̂) = (ρ̂sf̂
n
s , ψ̂

v
s )Ω̂s

with f̂ns := f̂s(tn). The concrete scheme depends on the
choice of the parameter θ. Specifically, we get the backward Euler scheme for θ = 1,
the Crank-Nicolson scheme for θ = 1

2 , and the shifted Crank-Nicolson for θ = 1
2 + kn

[133, 199]. We notice that for problems with large time steps (k ≥ 0.5), we need to
normalize/non-dimensionalize the equations in order to get the characteristic time step
size that can be used for the shifted variant. Otherwise, you have θ > 1, we is senseless.
As alternative, one can use the Rannacher time-stepping by adding backward Euler
steps on a regular basis [198].

6.1.2.2 The Fractional-Step-θ scheme We choose θ = 1 −
√

2
2 , θ

′ = 1 − 2θ, and
α = 1−2θ

1−θ , β = 1− α. The time step is split into three consecutive sub-time steps. Let
Ûn−1 = {v̂n−1

f , v̂n−1
s , ûn−1

f , ûn−1
s , p̂n−1

f , p̂n−1
s } and the time step k := kn = tn − tn−1

be given.

tn−1 tn−1+θ tntn−θ
t

Figure 40: Time step computation using the Fractional-Step-θ scheme.
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Find Ûn = {v̂nf , v̂ns , ûnf , ûns , p̂nf , p̂ns } such that

ÂT (Ûn−1+θ,k)(Ψ̂) + αθÂE(Ûn−1+θ)(Ψ̂) (142)

+θÂP (Ûn−1+θ)(Ψ̂) + ÂI(Û
n−1+θ)(Ψ̂) = −βθÂE(Ûn−1)(Ψ̂) + θF̂n−1(Ψ̂), (143)

(144)

ÂT (Ûn−θ,k)(Ψ̂) + αθÂE(Ûn−θ)(Ψ̂) (145)

+θ′ÂP (Ûn−θ)(Ψ̂) + ÂI(Û
n−θ)(Ψ̂) = −αθ′ÂE(Ûn−1+θ)(Ψ̂) + θ′F̂n−θ(Ψ̂),

(146)

(147)

ÂT (Ûn,k)(Ψ̂) + αθÂE(Ûn)(Ψ̂) (148)

+θÂP (Ûn)(Ψ̂) + ÂI(Û
n)(Ψ̂) = −βθÂE(Ûn−1)(Ψ̂) + θF̂n−θ(Ψ̂). (149)

With the help of the previous considerations, we formulate a statement for the
time-discretized equations:

Problem 6.4. Let the semi-linear form Â(·)(·) be formulated in terms of the previous
arrangement, such that

Â(Û)(Ψ̂) := ÂT (Û)(Ψ̂) + ÂI(Û)(Ψ̂) + ÂE(Û)(Ψ̂) + ÂP (Û)(Ψ̂).

After time discretization, let the time derivatives are approximated with

ÂT (Û)(Ψ̂) ≈ ÂT (Ûn,k)(Ψ̂),

such that the time-discretized semi-linear form reads

Â(Ûn)(Ψ̂) := ÂT (Ûn,k)(Ψ̂) + ÂI(Û
n)(Ψ̂) + ÂE(Ûn)(Ψ̂) + ÂP (Ûn)(Ψ̂).

Then, we aim to find Ûn = {v̂nf , v̂ns , ûnf , ûns , p̂nf , p̂ns } ∈ X̂0
D, where X̂

0
D := {v̂Df + V̂ 0

f,v̂}×
L̂s×{ûDf + V̂ 0

f,û}×{ûDs + V̂ 0
s }× L̂0

f × L̂0
s and X̂ = V̂ 0

f,v̂ × L̂s× V̂ 0
f,û,Γ̂i

× V̂ 0
s × L̂0

f × L̂0
s,

for all n = 1, 2, . . . , N such that

Â(Ûn)(Ψ̂) = F̂ (Ψ̂) ∀Ψ̂ ∈ X̂,

where this equation is treated with one specific time-stepping scheme as introduced
previously.

Remark 6.5 (Newmark scheme [143, 261, 262] for temporal solid discretization).
We notice that the standard discretization for solid equations is based on the so-called
Newmark scheme, which avoids splitting into a first-order mixed system. The relation
to special cases of One-Step-θ schemes (in particular Crank-Nicolson) is discussed in
[12]. �
Remark 6.6 (Geometrical conservation law). Using the ALEdm scheme for time dis-
cretization, there have been studies [77, 85, 86, 183] that convergence is influenced
by the discretization of the mesh motion velocity and also depends if ALE conserva-
tive schemes are used. Such studies are open questions for ALEfx schemes. Several
examples and ideas are presented in [183], p. 71. �
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6.1.3 Numerical observations for long-term FSI computations

In this section, we are interested in the following:

• The detection of instabilities (or even the blow-up of solutions in finite time) for
the ordinary (i.e., unstabilized) Crank-Nicolson scheme. If we observe any, we
are able to resolve them by the choice of a sufficiently small time step.

• Finally, we compare the standard second-order time-stepping schemes for the
simulation of nonstationary fluid flows/fluid-structure interactions such as the
Crank-Nicolson scheme, the shifted Crank-Nicolson scheme, and the Fractional-
Step-θ scheme.

The following conclusions were obtained by studying the fluid-structure interaction
benchmark test FSI 2 [142]. To detect numerical artefacts is a delicate task, therefore,
we study (qualitative) convergence with respect to space and time on three different
(globally-refined) mesh levels with 1914, 7176 and 27744 degrees of freedom using the
Qc2/P

dc
1 element (which is introduced in the next section). Moreover, we use three

different time levels with the time steps k = 0.01, 0.005 and 0.001. It is sufficient
to study the results for the drag evaluation because we observed the same qualitative
behavior for all the four quantities of interest (the x- and the y-displacement, the drag,
and the lift).
Observation 1
We observed in our computations that there are only minor differences in the drag

evaluation computed with the unstabilized Crank-Nicolson scheme using the differ-
ent ALE convection term discretizations defined in the problems above. Specifically,
we observed unstable behavior (blow-up) for computations over long-term intervals,
as illustrated in Figure 41. Naturally, we expected this behavior from our previous
numerical analysis.
Observation 2
As expected, the shifted Crank-Nicolson scheme and the Fractional-Step-θ scheme

showed no stability problems in long-term computations, even for the large time step
k = 0.01 (see the top of Figure 42). This result indicates that the instabilities in-
duced by the ALE convection term have minor consequences, and our observation is
in agreement with the statement in [86]. Furthermore, all time-stepping schemes are
stable over the entire time interval for a sufficiently small time step k = 0.001; (see
the bottom Figure 42).
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Figure 41: Blow-up (using the time step k = 0.01) of the unstabilized Crank-Nicolson
schemes (secant and tangent) whereas the shifted Crank-Nicolson schemes
is stable throughout the whole time interval. We notice that the secant
Crank-Nicolson scheme exhibits the instabilities earlier than the tangent
version. The unit of the time axis is s, whereas the drag unit is kg/ms2.
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Figure 42: Top: stable solution (using the large time step k = 0.01) computed with
the shifted Crank-Nicolson and the Fractional-Step-θ scheme. Recall the
blow-up of the unstabilized Crank-Nicolson scheme in this case. Bottom:
using the smaller time step k = 0.001 yields stable solutions for any time-
stepping scheme. The unit of the time axis is s, whereas the drag unit is
kg/ms2.
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6.1.4 Time stability

In the following, we consider the stability of the monolithically coupled problem.

Theorem 6.7. Let the fluid-structure interaction problem be coupled via an implicit
solution algorithm and let both subproblems be time-discretized with the second order
Crank-Nicolson scheme. The coupled problem is assumed to be isolated, i.e., vn+1

f = 0

on ∂Ωf \Γi and F̂ Σ̂(ûn+1
s )n̂s = 0 on ∂Ω̂s \ Γ̂i. Further, in the case of strong damping

γw > 0, let ε̂(v̂n+1
s )n̂s = 0 on ∂Ω̂s \ Γ̂i. Then,

ρf ||vn+1
f ||2

Ωn+1
f

+ ρ̂s||v̂n+1
s ||2

Ω̂s
+

∫
Ω̂s

W
(
F̂ (ûn+1

s )
)

dx

+ kρfνf ||D(vn+1
f + vnf )||2

Ωn+1
f

+
kρf
4

∫
Ωn+1

f

∇ · wn+1|vn+1
f + vnf |2 dx

+
kγw

2
||v̂n+1
s ||2

Ω̂s
+
kγs
2
||ε̂(v̂n+1

s )||2E

≤ ρf ||vnf ||2Ωn+1
f

+ ρs||v̂ns ||2Ω̂s
+

∫
Ω̂s

W (F̂ (ûns )) dx

+
kγw

2
||v̂ns ||2Ω̂s

+
kγs
2
||ε̂(v̂ns )||2E .

Proof. The proof can be found in [248].

6.2 Space
The time-discretized equations are the starting point for a finite element Galerkin
discretization method in space.

6.2.1 Galerkin approximations

Our goal is to approximate the weak solutions by using finite-dimensional subspaces.
So far, the equations still contain the continuous spatial spaces V̂ , V̂ 0 and L̂0. In the
following, we discuss the spatial discretization of the semi-discrete problems obtained in
the previous section. To this end, we construct finite dimensional subspaces V̂h ⊂ V̂ ,
V̂ 0
h ⊂ V̂ 0, L̂0

h ⊂ L̂0. For a Galerkin approximation, the specific form of the basis
functions does not matter. A concrete realization can be performed in terms of a
Galerkin finite element method (in short FEM).

6.2.2 Finite element spaces

As basis functions, we choose piecewise polynomial functions up to order l. The spatial
terms are computed in a fixed reference configuration. This is the characteristic feature
of the ALEfx approach. The computational domain Ω̂ is partitioned into open cells K̂
that depend on the spatial dimension d. A mesh consists of quadrilateral or hexahedron
cells K̂. They perform a non-overlapping cover of the computation domain Ω̂ ⊂ Rd,
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d = 2, 3. The mesh T̂h = {K̂} of Ω̂ is formed by taking all cells. The cell parameter ĥ
is given as a cell-wise constant function ĥK := diam(K̂) (where diam(K̂) denotes the
diameter ĥK of a cell K̂). The maximum diameter is denoted by ĥ := maxK̂∈Th ĥk.
We follow the standard literature ([43, 44, 57]) to formulate the following statements:

Definition 6.8 (Regularity). A mesh T̂h = {K̂} is called regular if the following
conditions are fulfilled:

1) Ω̂ =
⋃
K̂∈T̂h K̂.

2) K̂1 ∩ K̂2 = ∅ for all cells K̂1, K̂2 ∈ T̂h with K̂1 6= K̂2.

3) Any face of any cell K̂1 ∈ T̂h is either a subset of the boundary ∂Ω̂ or a face of
another cell K̂2 ∈ T̂h.

�

The last condition is too restrictive for our purposes and is weakened for the following
reason. To facilitate adaptive mesh refinement and to avoid connecting elements, we
use the concept of hanging nodes. Cells are allowed to have nodes that lie on the
midpoints of the faces or edges of neighboring cells. At most, one hanging node is
allowed on each face or edge. In three dimensions, this concept is generalized to
subplanes and faces because we must deal with two types of lower manifolds.
We define continuous H1-conforming finite element spaces V̂ lh by (see [44, 57, 150]):

V̂ lh :=

{
v̂h ∈ C(Ω̂)| v̂h|K̂ ∈ Q(K̂) ∀K̂ ∈ T̂h

}
⊆ H1(Ω̂).

Here, Q(K̂) denotes the space of polynomial-like functions on K̂ ∈ T̂h. In the following,
we introduce the space Ql(K̂) of tensor product polynomials up to degree l. On the
reference cell K̂unit = (0, 1)d they are defined as

Q̂l(K̂unit) := span


d∏
i=1

x̂αi
i |αi ∈ {0, 1, . . . , l}

 .

We consider for each K̂ ∈ T̂h the bilinear transformation σ̂K : K̂unit → K̂. Then, the
Qc1 element is defined as

Qc1(K̂) = {q̂ ◦ σ̂−1
K : q̂ ∈ span < 1, x̂, ŷ, x̂ŷ >} (d = 2),

Qc1(K̂) = {q̂ ◦ σ̂−1
K : q̂ ∈ span < 1, x̂, ŷ, ẑ, x̂ŷ, x̂ẑ, ŷẑ, x̂ŷẑ >} (d = 3),

with dim Qc1 = 4 (in 2D) and Qc1 = 8 (in 3D) in which the dimension denotes the local
degrees of freedom on a single cell. The Qc2 element (in two dimensions) is defined as

Qc2(K̂) = {q̂ ◦ σ̂−1
K : q̂ ∈ span < 1, x̂, ŷ, x̂ŷ, x̂2, ŷ2, x̂2ŷ, ŷ2x̂, x̂2ŷ2 >},
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K̂unit

ϕ̂K

K̂
K

Figure 43: Transformation ϕ̂K from the unit cell K̂unit to the ALE cell K̂ and from
that cell via the ALE mapping Â to the physical cell K.

with dim Qc2 = 9. Finally, the P dc1 element is defined with the help of linear functions
and it reads

P dc1 (K̂) = {q̂ ◦ σ̂−1
K : q̂ ∈ span, < 1, x̂, ŷ >}

with dim P dc1 (K̂) = 3. If the transformation σ̂K itself is an element of Q̂l(K̂)d , the
corresponding finite element space is called isoparametric.
Extending these concepts to finite element spaces in the case of hanging nodes

requires some remarks. To enforce global continuity (i.e., global conformity), the
degrees of freedom located on the interface between different refinement levels have
to satisfy additional constraints. They are determined by interpolation of neighboring
degrees of freedom. Therefore, hanging nodes do not carry any degrees of freedom.
For more details on this, we refer to [53].
To ensure the approximation properties of the finite element spaces, additional con-

ditions on the geometry of the cells are required. The two classical assumptions from
the literature ([43, 44]) are the so-called uniformity and the weaker quasi-uniformity :

Definition 6.9 (Quasi-Uniformity). A family of meshes {T̂h|h ↘ 0} is called quasi-
uniform if there is a constant κ such that the following two conditions are fulfilled:

1) For each transformation σ̂K : K̂unit → K̂ it holds

sup{||∇σ̂K(x̂)x̂|| |x̂ ∈ K̂, ||x̂|| = 1}
inf{||∇σ̂K(x̂)x̂|| |x̂ ∈ K̂, ||x̂|| = 1}

≤ κ, K̂ ∈
⋃
h

T̂h. (150)

2) It holds
ĥK
ρ̂K
≤ κ ∀K̂ ∈

⋃
h

T̂h.

�

6.2.3 Spatial discretization of fluid-structure interaction

To compute fluid-structure interactions problems, we prefer the biquadratic, discontinuous-
linear Qc2/P dc1 element. The definitions of the spaces for the unknowns v̂h, ûf and p̂h
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read:

V̂h := {v̂h ∈ [C(Ω̂h)]d, v̂h|K̂ ∈ [Q2(K̂)]d ∀K̂ ∈ T̂h, v̂h|Γ̂\Γ̂i
= 0},

Ŵh := {ûh ∈ [C(Ω̂h)]d, ûh|K̂ ∈ [Q2(K̂)]d ∀K̂ ∈ T̂h, ûh|Γ0
= 0},

P̂h := {p̂h ∈ [L̂2(Ω̂h)], p̂h|K̂ ∈ [P1(K̂)] ∀K̂ ∈ T̂h}.

Defining the displacement variables ûh and ŵh is straightforward.

Remark 6.10. Other choices for inf-sub stable elements would be the classical Taylor-
Hood element Qc2/Qc1 or also Qc2/P dc0 . �

v, u

v, p, u

v, u

p

v, u

v, u

Figure 44: Taylor Hood element Qc2/Qc1 (left) and Qc2/P dc1 element (right).

The continuity of the velocity values across different mesh cells is one property of the
Qc2/P

dc
1 element. In contrast, the pressure is allowed to be discontinuous across faces

because it is defined utilizing discontinuous test functions. In addition, this element
preserves local mass conservation, is of low order, gains the inf-sup stability, and it
is therefore an optimal choice for both fluid problems and fluid-structure interaction
problems. Because there is no relationship between fluid and structure pressure (be-
yond the fact that there is no physical meaning of pressure for compressible materials),
the Qc2/P dc1 is a good choice for fluid-structure interactions.
Bearing the three mesh motion models in mind, the computation of fluid-structure

interaction with biharmonic mesh motion incurs a greater computational cost at each
time step than using only a harmonic model or the equations of linear elasticity because
an additional equation is added to the problem (see Problem 5.20). In the context of
a Galerkin finite element scheme, the spatial discretization of the mixed biharmonic
equation is stable for equal-order discretization on polygonal domains, which is one of
our assumptions. In this lecture notes, we work with Qc2 elements for ûh and η̂h.
For the next statement, let v̂Df,h, û

D
f,h, and v̂

D
s,h be suitable extensions of Dirichlet in-

flow data. Having these preparations, the spatially (and temporal) discretized problem
of (120) reads:

Problem 6.11. Let the semi-linear form be composed as shown in Problem 6.4. Find
Ûnh = {v̂nf,h, v̂ns,h, ûnf,h, ûns,h, p̂nf,h, p̂ns,h} ∈ X̂0

h,D, where X̂
0
h,D := {v̂Df,h + V̂ 0

f,v̂,h} × L̂s,h ×
{ûDf,h + V̂ 0

f,û,h} × {ûDs,h + V̂ 0
s,h} × L̂0

f,h × L̂0
s,h, for all n = 1, 2, . . . , N such that

Â(Ûnh )(Ψ̂h) = F̂ (Ψ̂h) ∀Ψ̂h ∈ X̂h,
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with Ψ̂h = {ψ̂vf,h, ψ̂vs,h, ψ̂uf,h, ψ̂us,h, ψ̂
p
f,h, ψ̂

p
s,h} and X̂h = V̂ 0

f,v̂,h× L̂s,h× V̂ 0
f,û,Γ̂i,h

× V̂ 0
s,h×

L̂0
f,h × L̂0

s,h.

6.2.4 Stabilization for convection-dominated flows

In the case of higher Reynolds numbers the flow becomes convection dominated and
needs to be stabilized. Residual based stabilization is first introduced in Brooks and
Hughes [46] and is intensively analyzed in Wall [243]. Our method of choice is a rough
simplification of the streamline upwind Petrov-Galerkin (SUPG) method.
We start with a consistent formulation for the fluid problem that is given on the

continuous level in a time-dependent domain Ωf . Then, the stabilization term reads
(in which we omit for the moment the subscripts ‘h’ and ‘n’ in the equations):

Sstab(Unh )(Ψ) :=
∑
K∈Th

(ρf ∂̂tvf + ρf (vf − w) · ∇vf − divσf , δK,n(vf · ∇)ψvf )K

with

δK,n = δ0
h2
K

6νf + hK ||vnh ||K
, δ0 = 0.1.

For more details on the choice of these parameters, we refer the reader to [39].
From the computational point of view, the major disadvantage comes from the

necessity of computing second derivatives contained in the stress tensor σf , because
we must consider the strong formulation. Specifically, in the case of fluid-structure
interaction problems, this formulation is a serious drawback. To this end, we only use
a nonconsistent simplified version (in Ωf ):

Sstab(Unh )(Ψ) :=
∑
K∈Th

(ρfvf · ∇vf , δK,n(vf · ∇)ψvf )K .

This term can be rewritten in the reference configuration Ω̂f and reads:

Ŝstab(Ûnh )(Ψ̂) :=
∑
K̂∈Th

(ρ̂f (Ĵ F̂−1v̂f · ∇̂)v̂f , δK,n(F̂−1v̂f · ∇̂)ψ̂vf )K̂ . (151)

Problem 6.12. Let the semi-linear form be composed as shown in Problem 6.4. Find
Ûnh = {v̂nf,h, v̂ns,h, ûnf,h, ûns,h, p̂nf,h, p̂ns,h} ∈ X̂0

h,D, where X̂
0
h,D := {v̂Df,h + V̂ 0

f,v̂,h} × L̂s,h ×
{ûDf,h + V̂ 0

f,û,h} × {ûDs,h + V̂ 0
s,h} × L̂0

f,h × L̂0
s,h, for all n = 1, 2, . . . , N such that

Â(Ûnh )(Ψ̂h) + Ŝstab(Ûnh )(Ψ̂) = F̂ (Ψ̂h) ∀Ψ̂h ∈ X̂h,

with Ψ̂h = {ψ̂vf,h, ψ̂vs,h, ψ̂uf,h, ψ̂us,h, ψ̂
p
f,h, ψ̂

p
s,h} and X̂h = V̂ 0

f,v̂,h× L̂s,h× V̂ 0
f,û,Γ̂i,h

× V̂ 0
s,h×

L̂0
f,h × L̂0

s,h.

Remark 6.13. An elegant alternative has been investigated in [159] (and further ref-
erences of the same author) in recent years. This scheme belongs to flux-corrected
transport algorithms and can be applied to convection-dominated transport problems.
�
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6.3 Newton’s method

6.3.1 Classical Newton’s method

Let f ∈ C1[a, b] and x0 ∈ [a, b] be an intial value. The tangent (based for instance on
a Taylor expension) of f is given by

t(x) = f(xk) + (x− xk)f ′(xk), k = 0, 1, 2, . . . .

A root is then given by:

xk+1 = xk −
f(xk)

f ′(xk)
, k = 0, 1, 2, . . . . (152)

This is iteration terminates if a stopping criterium

|xk+1 − xk|
|xk|

< TOL, (153)

or
|f(xk)| < TOL. (154)

is fulfilled. This iteration is possible as long as f ′(xk) 6= 0.

f
x1 x0

Figure 45: Geometrical interpretation of Newton’s method.

Remark 6.14. Newton’s method belongs to fix-point iteration schemes with the iter-
action function:

F (x) := x− f(x)

f ′(x)
. (155)

For a fix-point x̂ = F (x̂) it holds: f(x̂) = 0 �
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The main results is given by:

Theorem 6.15 (Newton’s method). The function f ∈ C2[a, b] has a root x̂ in the
interval [a, b] and

m := min
a≤x≤b

|f ′(x)| > 0, M := max
a≤x≤b

|f ′′(x)|.

Let ρ > 0 such that

q :=
M

2m
ρ < 1, Kρ(x̂) := {x ∈ R : |x− x̂| ≤ ρ} ⊂ [a, b].

Then, for any starting point x0 ∈ Kρ(x̂), the sequence of iterations xk ∈ Kρ(x̂) con-
verges to the root x̂. Furthermore, we have the a priori estimate

|xk − x̂| ≤
2m

M
q2k

, k ∈ N,

and a posteriori estimate

|xk − x̂| ≤
1

m
|f(xk)| ≤ M

2m
|xk − xk+1|2, k ∈ N.

Often (and in particular for higher-dimensional problems such as fluid-structure
interaction), Newton’s method is formulated in terms of a defect-correction scheme.

Definition 6.16 (Defect). Let x̃ ∈ R an approximation of the solution f(x) = y. The
defect (or similarly the residual) is defined as

d(x̃) = y − f(x̃).

�

For the sake of presentation, let the right hand side be y = 0. For the approximation
xk, the defect dk := 0− f(xk) is given by and we write:

Definition 6.17 (Newton’s method as defect-correction scheme).

f ′(xk)δx = dk, dk := −f(xk),

xk+1 = xk + δx, k = 0, 1, 2, . . . .

The iteration is finished with the same stopping criterium as for the classical scheme.
�

6.3.2 Extension to higher-dimensional problems

Time and spatial discretization end at each single time step in a nonlinear quasi-
stationary problem

Â(Ûnh )(Ψ̂) = F̂ (Ψ̂) ∀Ψ̂ ∈ X̂h,
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which is solved with a Newton-like method. As done in the previous section, we can
express this relation in terms of the defect:

d := F̂ (Ψ̂)− Â(Ũnh )(Ψ̂) = 0 ∀Ψ̂ ∈ X̂h,

where Ũnh denotes an approximate solution at time step tn. Given an initial Newton
guess Ûn,0h , find for j = 0, 1, 2, . . . the update δÛnh of the linear defect-correction
problem

Â′(Ûn,jh )(δÛnh , Ψ̂) = −Â(Ûn,jh )(Ψ̂) + F̂ (Ψ̂), (156)

Ûn,j+1
h = Ûn,jh + λδÛnh . (157)

In this algorithm, λ ∈ (0, 1] is used as damping parameter for line search iterations.
A crucial role for (highly) nonlinear problems includes the appropriate determination
of λ. A simple strategy is to modify the update step in (156) as follows: For given
λ ∈ (0, 1) determine the minimal l∗ ∈ N via l = 0, 1, . . . , Nl, such that

R(Ûn,j+1
h,l ) < R(Ûn,jh,l ), (158)

Ûn,j+1
h,l = Ûn,jh + λlδÛnh . (159)

For the minimal l, we set
Ûn,j+1
h := Ûn,j+1

h,l∗ .

In this context, the nonlinear residual R(·) is defined as

R(Ûnh ) := max
i

{
Â(Ûnh )(Ψ̂i)− F̂ (Ψ̂i)

}
∀Ûnh ∈ X̂h,

where {Ψ̂i} denotes the nodal basis of X̂h.
The directional derivative Â′(Û)(δÛ , Ψ̂) that is utilized previously, is defined in the

same fashion as Gâteaux derivative. The definition of the directional derivative in
terms of a semi-linear form reads:

Â′(Û)(δÛ , Ψ̂) := lim
ε→0

1

ε

{
Â(Û + εδÛ)(Ψ̂)− Â(Û)(Ψ̂)

}
=

d

dε
Âh(Û + εδÛ)(Ψ̂)

∣∣∣
ε=0

.

Remark 6.18. If the directional derivative exists for all directions, we call the deriva-
tive Gateaux-derivative. Moreover, the Fréchet-derivative is a stronger concept of
derivatives; consequently, each Fréchet derivative is also a Gateaux-derivative. �
Let us explain the concepts in a bit more detail in the following. Given a function

f : X → Y and f ′(a) ∈ L(X,Y ) where L is as usually the space of linear and
continuous operators. Recall that L(X,R) =: X ′ is the dual space. The derivative
f ′(a) is computed as action on vectors ofX (see definition of the directional derivative),
i.e.,

f ′(a)δa = lim
ε→0

f(a+ εδa)− f(a)

ε
=

d

dε
f(a+ εδa)|ε=0 ∈ Y.

The element f ′(a)δa ∈ Y is called the directional derivative. In a Hilbert space, we
the special case:

f ′(a)(δa) = (∇f(a), δa) ∀δa ∈ X
where we denote ∇f(a) as the gradient.
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6.4 Evaluation of the directional derivatives
Due to the large size of the Jacobian matrix and the strongly nonlinear behavior of
fluid-structure interaction problems in the monolithic ALE framework, the calculation
of the Jacobian matrix can be cumbersome. Nevertheless, in this context, we use the
exact Jacobian matrix to identify the optimal convergence and accuracy properties of
the Newton method. The derivation of directional derivatives is also illustrated by
means of several examples presented elsewhere [81, 205, 250]. For more details on
the computation of the directional derivatives on the interface, we refer the reader to
[70, 207]. Evaluation of the directional derivatives for fluid-structure interaction with
help of automatic differentiation is demonstrated by Dunne [70].

6.4.1 First some simple examples

Recall that we need to differentiate in each direction.

Example 6.19. Let u be the solution variable for

A(u)(ϕ) = (∇u,∇ϕ)

be the residual. Then, the directional derivative in direction δu is given by:

A′(u)(δu, ϕ) = (∇δu,∇ϕ).

Example 6.20. Let p and u solution variables for

A(p, u)(ϕ) = (−pI + ρν(∇u+∇uT ),∇ϕ)

be the residual. Then, the directional derivative in direction {δp, δu} is given by:

A′(p, u)({δp, δu}, ϕ) = (−δpI + ρν(∇δu+∇δuT ),∇ϕ).

Remark 6.21. Hopefully you noticed that everything was linear so far. �

Example 6.22. Let v and u solution variables for

A(v, u)(ϕ) = (v∇u,∇ϕ)

be the residual. Then, the directional derivative in direction {δv, δu} is given by:

A′(v, u)({δv, δu}, ϕ) = (δv∇u+ v∇δu,∇ϕ)

using the chain rule.

Despite the fact that we later account on block system, let us explain what we
mean by taking all directional derivatives in the context of finite elements. Let Vh :=
{ϕ1, . . . , ϕN} a finite element space. The relation between derivatives and linear equa-
tion system is as follows. Given u ∈ Vh, the residual reads:

A(uh)(ϕh) = (∇uh,∇ϕh) ∀ϕh ∈ Vh.
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Now we build the derivative in direction δuh:

A′(uh)(δuh, ϕh) = (∇δuh,∇ϕh) ∀ϕh ∈ Vh.

Recall that δuh =
∑N
j=1 ujϕj . Now, we replace δuh by all test functions using its

property being a linear combination and for all test functions:

A′(uh)(ϕi, ϕj) =
∑
j

uj(∇ϕj ,∇ϕi)

Then, we obtain Ax = b with

A =


(∇ϕ1,∇ϕ1) . . . (∇ϕN ,∇ϕ1)

...

(∇ϕ1,∇ϕN ) . . . (∇ϕN ,∇ϕN )

 (160)

and x = (u1, . . . , uN )T .

Remark 6.23. Do not forget: the test function dictates the row! In symmetric prob-
lems like for Poisson problems this does not matter, but in non-symmetric problems
(transport, Navier-Stokes) this is important. �

6.4.2 Directional derivatives of fluid-structure

In this section, we apply the previous concepts to the evaluation of the directional
derivatives for fluid-structure interaction. We examin term by term. As before, let
the solution Ûnh = {v̂nf,h, v̂ns,h, ûnf,h, ûns,h, p̂nf,h, p̂ns,h} ∈ X̂h be given. Further, let δÛnh =

{δv̂nf,h, δv̂ns,h, δûnf,h, δûns,h, δp̂nf,h, δp̂ns,h} ∈ X̂h. In the following, we omit explicit notation
of ‘h’ and ‘n’.
The Jacobian Â′(Û)(δÛ , Ψ̂) is split up into fluid contributions and structure terms:

Â′(Û)(δÛ , Ψ̂) := Â′f (Ûf )(δÛf , Ψ̂f ) + Â′s(Û)(δÛs, Ψ̂s).

Using the previous arrangement (134), we deal with

Â′f (Ûf )(δÛf , Ψ̂f ) (161)

= Â′f,T (Ûf )(δÛf , Ψ̂f ) + Â′f,I(Ûf )(δÛf , Ψ̂f ) + Â′f,E(Ûf )(δÛf , Ψ̂f ) + Â′f,P (Ûf )(δÛf , Ψ̂f ),

(162)

and

Â′s(Ûs)(δÛs, Ψ̂s) (163)

= Â′s,T (Ûs)(δÛs, Ψ̂s) + Â′s,I(Ûs)(δÛs, Ψ̂s) + Â′s,E(Ûs)(δÛs, Ψ̂s) + Â′s,P (Ûs)(δÛs, Ψ̂s).

(164)

119



The concrete evaluation of each term on the fully discrete level is derived in the fol-
lowing.
Basic relations
In the sequel, we often use the short-hand-notation

∂bA(δz) :=
∂A

∂b
(δz),

for the derivative of a tensor A w.r.t. b in direction δz. We begin with the basic
relations that are required for each of the subproblems. For the deformation gradient
F̂ , it holds in a direction δẑ ∈ H1(Ω̂):

∂zF̂ (δẑ) = ∇̂δẑ, ∂zF̂
T (δẑ) = ∇̂δẑT . (165)

In the following, we recall the evaluation of the inverse relations (see, e.g., [139])

∂zF̂
−1(δẑ) = −F̂−1∇̂δẑF̂−1, ∂zF̂

−T (δẑ) = −F̂−T ∇̂δẑT F̂−T .

Finally, the derivative of the determinant Ĵ can be expressed as

∂zĴ(δz) = Ĵtr(F̂−1∇̂δz).

Fluid’s Cauchy stress tensor
In the fluid part, we are concerned with the evaluation of directional derivatives

in the three directions δv̂f , δp̂f and δûf . We start with the Cauchy stress tensor
σ̂f = σ̂f,vu + σ̂f,p:

∂vσ̂f,vu(δv̂f ) = 2ρ̂fνf (∇̂δv̂f F̂−1 + F̂−T ∇̂δv̂Tf ),

∂pσ̂f,p(δp̂f ) = −δp̂f Î ,

∂uσ̂f,vu(δûf ) = 2ρ̂fνf (∇̂v̂f (−F̂−1∇̂δûF̂−1) + (−F̂−T ∇̂δûT F̂−T )∇̂v̂Tf ).

Summarizing these contributions yields

∂U σ̂f,vu(δÛf ) = ∂vσ̂f,vu(δv̂f ) + ∂uσ̂f,vu(δûf ), ∂U σ̂f,p(δÛf ) = ∂pσ̂f,p(δv̂p).

Thus, the derivative of the transformed Cauchy stress tensor in the reference domain
reads:

∂U (Ĵ σ̂f F̂
−T )(δÛf ) = Ĵtr(F̂−1∇̂δûf )σ̂f F̂

−T + Ĵ∂U σ̂f (δÛf )F̂−T + Ĵ σ̂f (−F̂−T ∇̂δûTf F̂−T ).

The Cauchy stress tensor is decomposed by reason motivated in Problem 6.4. It is
obvious that this decomposition must be considered in the linearization process, too.
Fluid’s convection term
For the treatment of the convection term (also including the ALE convection term),

we use the relation ûf · ∇̂v̂f = ∇̂v̂f ûf and decompose the convection term as

ρ̂f Ĵ(F̂−1(v̂f − ŵ) · ∇̂)v̂f = ρ̂f Ĵ(∇̂v̂f F̂−1)v̂f − ρ̂f Ĵ(∇̂ŵF̂−1)v̂f .
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With the help of the previously introduced basic relations, the derivative of the first
part reads:

∂U (ρ̂f Ĵ(∇̂v̂f F̂−1)v̂f )(δÛf ) = ρ̂f Ĵtr(F̂−1∇̂δûf )(∇̂v̂f F̂−1)v̂f (166)

+ ρ̂f Ĵ(∇̂δv̂f F̂−1)v̂f (167)

+ ρ̂f Ĵ(∇̂v̂f (−F̂−1∇̂δûf F̂−1)v̂f (168)

+ ρ̂f Ĵ(∇̂v̂f F̂−1)δv̂f . (169)

In the second part, we cannot directly differentiate the fluid domain velocity ŵ. As
previously discussed this term is constructed (linear in time) with the help of the
displacements ûf . Thus, in Equation (166), we only must replace the second term.
Using the construction of ŵ = 1

k (ûf − ûn−1
f ) in which ûn−1

f denotes the solution of the
previous time step, we readily get

∂uŵ(δûf ) := ∂u
1

k
(ûf − ûn−1

f )(δûf ) =
1

k
δûf . (170)

With this, we obtain for the second equation on the right-hand-side in (166)

1

k
ρ̂f Ĵ(∇̂δûf F̂−1)v̂f .

In the remaining terms of (166), we replace ∇̂v̂f with ∇̂ŵ.
Fluid’s time derivative
We continue with the time derivative of the fluid term:

ρ̂f Ĵ∂tv̂f ≈ ρ̂f Ĵn,θ
v̂f − v̂n−1

f

k
,

where we employ (137) for the temporal discretization. First, we obtain

∂uĴ
n,θ(δûf ) = ∂u(θĴ + (1− θ)Ĵn−1)(δûf ) = θĴtr(F̂−1∇̂δûf ). (171)

Next, we get

∂v
1

k
(v̂f − v̂n−1

f )(δv̂f ) =
1

k
δv̂f .

With this equation, we compute for (171):

∂U
(
ρ̂f

1

k
Ĵn,θ(v̂f − v̂n−1

f )
)
(δÛf ) = ρ̂f

θ

k
Ĵtr(F̂−1∇̂δûf )(v̂f − v̂n−1

f ) + ρ̂f
1

k
Ĵn,θ(δv̂f ).

Fluid’s incompressibility
We proceed with the incompressibility term of the fluid. To compute the derivative,

we utilize a byproduct of the divergence relation of the Piola transformation:

d̂iv(Ĵ F̂−1v̂f ) = Ĵtr(∇̂v̂f F̂−1).
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Then, we get

∂vĴtr(∇̂v̂f F̂−1)(δv̂f ) = Ĵtr(∇̂δv̂f F̂−1),

∂uĴtr(∇̂v̂f F̂−1)(δûf ) = Ĵtr(F̂−1∇̂δûf )tr(∇̂v̂f F̂−1)− Ĵtr(∇̂v̂f F̂−1∇̂δûf F̂−1).

Fluid’s mesh motion
It remains to consider the derivative of the mesh motion equation. Using the har-

monic mesh motion model (see definition of σ̂mesh in (35)), we readily obtain

∂u(αu∇̂ûf )(δûf ) = αu∇̂δûf .

Using the linear-elastic mesh motion model (see definition of σ̂mesh in (38)), we get

∂u(αλ(tr ε̂)Î + 2αµε̂)(δûf ) = αλ
1

2
(tr (∇̂δûf + ∇̂δûTf )Î + αµ(∇̂δûf + ∇̂δûTf ).

Fluid’s do-nothing condition
Next, we consider the derivative of the boundary term ĝf := −ρ̂fνf F̂−T ∇̂v̂Tf on

Γ̂f,N (see (31)):

∂U (−ρ̂fνf F̂−T ∇̂v̂Tf )(δÛf ) = ρ̂fνf (F̂−T ∇̂δûTf F̂−T )∇̂v̂Tf + ρ̂fνf F̂
−T ∇̂δv̂Tf .

Fluid’s stabilization
Finally, we explain the differentiation of the stabilization term. In this expression,

we only differentiate the first argument although the second argument also depends on
the solution variable. Using the derivative of the convection term, we readily obtain

Ŝ′stab(Ûf )(δÛf , Ψ̂f ) = (∂U (ρ̂f Ĵ(∇̂v̂f F̂−1)v̂f )(δÛf ), δK,n(F̂−1v̂f · ∇̂)ψ̂vf )K̂f
, (172)

on each cell K̂f ∈ Th.
Structure’s constitutive tensors
We continue with the description for the derivatives of the structure subproblem.

Using standard elasticity (i.e., the damping terms are omitted) with the STVK model,
we only must compute the derivatives with respect to ûs. In the presence of incom-
pressible materials, we also account for the pressure p̂s. Finally, the consideration of
strong damping makes it necessary to compute derivatives with respect to v̂s.
Let us begin with the Green-Lagrange tensor (defined in (73)) that is employed to

formulate the STVK material:

∂uÊ(δûs) =
1

2
(∇̂δûTs F̂ + F̂T ∇̂δûs).

Then, the constitutive tensor Σ̂ := Σ̂(ûs) reads

∂uΣ̂(δûs) = λs
1

2
tr(∇̂δûTs F̂ + F̂T ∇̂δûs)Î + µs(∇̂δûTs F̂ + F̂T ∇̂δûs).
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For the incompressible IMR material, we obtain

∂pσ̂IMR(δp̂s) = −δp̂sÎ ,

∂uσ̂IMR(δûs) = µ1(δûsF̂
T + F̂ δûTs )− µ2(F̂−T ∇̂δûTs F̂−T F̂−1 + F̂−T F̂−1∇̂δûsF̂−1,

and from this, we readily deduce

∂pσ̂INH(δp̂s) = −δp̂sÎ ,

∂uσ̂INH(δûs) = µ1(δûsF̂
T + F̂ δûTs ).

Structure’s damping terms
Finally, using strong damping, we compute the derivatives in the direction δv̂s of

ε̂(v̂s). Then,

∂v ε̂(v̂s)(δv̂s) =
1

2
(∇̂δv̂s + ∇̂δv̂Ts ).

Proposition 6.24. At each Newton step (156), we solve a linear system, where (an
example of) its residual Â(Û)(Ψ̂)− F̂ (Ψ̂) on the continuous level is defined in Problem
6.1. The Jacobian of this problem is split into

Â′(Û)(δÛ , Ψ̂) := Â′f (Ûf )(δÛf , Ψ̂f ) + Â′s(Ûs)(δÛs, Ψ̂s).

Using the arrangements (161) and (163), we deal with the following expressions:

Â′f,T (Ûf )(δÛf , Ψ̂f ) = ρ̂f
θ

k
(Ĵtr(F̂−1∇̂δûf )(v̂f − v̂n−1

f ), ψ̂vf )Ω̂f
+ ρ̂f

1

k
(Ĵn,θ(δv̂f ), ψ̂vf )Ω̂f

+ ρ̂f (Ĵ(∇̂v̂f F̂−1)(δv̂f − k−1δûf ), ψ̂vf )Ω̂f
,

Â′f,E(Ûf )(δÛf , Ψ̂f ) = ρ̂f (Ĵtr(F̂−1∇̂δûf )(∇̂v̂f F̂−1)(v̂f − ŵ), ψ̂vf )Ω̂f

+ ρ̂f (Ĵ(∇̂δv̂f F̂−1)(v̂f − ŵ), ψ̂vf )Ω̂f

+ ρ̂f (Ĵ(∇̂v̂f (−F̂−1∇̂δûf F̂−1)(v̂f − ŵ), ψ̂vf )Ω̂f

+ (∂U (Ĵ σ̂f,vuF̂
−T )(δÛf ), ψ̂vf )Ω̂f

+ 〈∂Ugf (δÛ), ψ̂vf 〉Γ̂N

− (ρf Ĵtr(F̂−1∇̂δûf )f̂f , ψ̂
v
f )Ω̂f

,

Â′f,I(Ûf )(δÛf , Ψ̂f ) = (αu∇̂δûf , ∇̂ψ̂uf )Ω̂f

+ (Ĵtr(∇̂δv̂f F̂−1), ψ̂pf )Ω̂f
+ (Ĵtr(F̂−1∇̂δûf )tr(∇̂v̂f F̂−1), ψ̂pf )Ω̂f

− (Ĵtr(∇̂v̂f F̂−1∇̂δûf F̂−1), ψ̂pf )Ω̂f
,

Â′f,P (Ûf )(δÛf , Ψ̂f ) = (∂U (Ĵ σ̂f,pF̂
−T )(δÛf ), ∇̂ψ̂vf )Ω̂f

,

Ŝ′stab(Ûf )(δÛf , Ψ̂f ) = (∂U (ρ̂f Ĵ(∇̂v̂f F̂−1)v̂f )(δÛf ), δK,n(F̂−1v̂f · ∇̂)ψ̂vf )K̂f
,
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and

Â′s,T (Ûs)(δÛs, Ψ̂s) = k−1(ρ̂sδv̂s, ψ̂
v
s )Ω̂s

+ k−1(ρ̂sûs, ψ̂
u
s )Ω̂s

− (ρ̂sδv̂s, ψ̂
u
s )Ω̂s

+ (∂U P̂ (δÛs, ψ̂
p
s )Ω̂s

,

Â′s,E(Ûs)(δÛs, Ψ̂s) = (∂u(F̂ Σ̂)(δûs), ∇̂ψ̂vs )Ω̂s

+ γw(δv̂s, ψ̂
v
s )Ω̂s

+ γs(∂v ε̂(v̂s)(δv̂s), ψ̂
v
s )Ω̂s

,

Â′s,I(Ûs)(δÛs, Ψ̂s) = (∂U P̂ (δÛs), ψ̂
p
s )Ω̂s

,

Â′s,P (Ûs)(δÛs, Ψ̂s) = (∂U (Ĵ σ̂s,pF̂
−T )(δÛs), ∇̂ψ̂vs )Ω̂f

.
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6.5 Solution of linear equations
In this final subsection, we discuss solution methods for fluid-structure interaction
problems. Specific realizations are closely related to the FSI coupling algorithms de-
pending a partitioned or monolithic approach is employed.

• Monolithic solution [11, 15, 16, 63, 104, 128, 129, 141, 231, 238, 263];

• Partitioned: [10, 67, 155, 158, 160, 165, 230].

Let us briefly show the structure. For spatial discretization, we use the previously
introduced spaces Vh ×Wh × Lh with vector valued basis

{ψi |i = 1, . . . , N},

where the basis functions are primitive (they are only non-zero in one component),
so we can separate them into velocity, displacement, and pressure basis functions and
sort them accordingly:

ψi =

χvi
0

0

, for i = 1, . . . , Nv,

ψ(Nv+i) =

 0

χui
0

, for i = 1, . . . , Nu,

ψ(Nv+u+i) =

 0

0

χpi

, for i = 1, . . . , Np,

where Nv +Nu +Np = N . This is now used to transform into a system of the form

Mx = F, (173)

where M is a block matrix (the Jacobian) and F the right hand side consisting of
the residuals. The block structure for ALE-FSI with harmonic or linear-elastic mesh
motion is

M =

Mvv Mvu Mvp

Muv Muu Mup

Mpv Mpu Mpp

, F =

F v

Fu

F p

,
In the matrix, the degrees of freedom that belong to Dirichlet conditions (here only

displacements since we assume Neumann conditions for the phase-field) are strongly
enforced by replacing the corresponding rows and columns as usual in a finite element
code.
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6.6 A useful example of finite-difference-in-time,
Galerkin-FEM-in-space-discretization and linearization in a
Newton setting

I believe that the discretization of nonlinear time-dependent partial differential equa-
tions is finally very similar to solving Poisson’s problem. Hopefully, I convince the
reader in this section.
We are given the following example:

Problem 6.25. Let the following PDE be given (we omit any ‘hats’): Find v and u,
for allmost all times, such that

∂2
t u− J∇ · σ(v)F−T = f, in Ω, plus bc. and initial cond.,

and where (as before) J := J(u), F := F (u) and σ(v) = (∇v +∇vT ).

6.6.0.1 Time discretization We aim to apply a One-Step-θ scheme applied to the
mixed problem:

∂tv − J∇ · σ(v)F−T = f,

∂tu− v = 0.

One-Step-θ discretization with time step size k, and θ ∈ [0, 1], leads to

v − vn−1

k
− θJ∇ · σ(v)F−T − (1− θ)Jn−1∇ · σ(vn−1)(F−T )n−1 = θf + (1− θ)fn−1,

u− un−1

k
− θv − (1− θ)vn−1 = 0.

6.6.0.2 Spatial pre-discretization: weak form on the continuous level We multiply
by the time step k, apply with test functions from suitable spaces V andW and obtain
the weak formulations

(v − vn−1, ϕ) + kθ(Jσ(v)F−T ,∇ϕ) + k(1− θ)(Jn−1σ(vn−1)(F−T )n−1, ϕ)

=kθ(f, ϕ) + k(1− θ)(fn−1, ϕ) ∀ϕ ∈ V,
(u− un−1, ψ) + kθ(v, ψ) + k(1− θ)(vn−1, ψ) = 0 ∀ψ ∈W.

Sorting terms on left and right hand sides:

(v, ϕ) + kθ(Jσ(v)F−T ,∇ϕ)

=(vn−1, ϕ)− k(1− θ)(Jn−1σ(vn−1)(F−T )n−1, ϕ)

+ kθ(f, ϕ) + k(1− θ)(fn−1, ϕ) ∀ϕ ∈ V,
(u, ψ) + kθ(v, ψ) = (un−1, ψ)− k(1− θ)(vn−1, ψ) ∀ψ ∈W.

126



6.6.0.3 A single semi-linear form - first step towards Newton solver Now, we build
a single semi-linear form A(·)(·) and right hand side F (·). Let21 U := {v, u} ∈ V ×W
and Ψ := {ϕ,ψ} ∈ V ×W : Find U ∈ V ×W such that:

A(U)(Ψ) = (v, ϕ) + kθ(Jσ(v)F−T ,∇ϕ) + (u, ψ) + kθ(v, ψ)

F (Ψ) = (vn−1, ϕ)− k(1− θ)(Jn−1σ(vn−1)(F−T )n−1, ϕ) + kθ(f, ϕ)

+ k(1− θ)(fn−1, ϕ)(un−1, ψ)− k(1− θ)(vn−1, ψ)

for all Ψ ∈ V ×W .

6.6.0.4 Evaluation of directional derivatives - second step for Newton solver We
follow Section 6.4.1. Let δU := {δv, δu} ∈ V ×W . Then the directional derivative of
A(U)(Ψ) is given by:

A′(U)(δU,Ψ) = (δv, ϕ) + kθ
(
J ′(δu)σ(v)F−T + Jσ′(δv)F−T + Jσ(v)(F−T )′(δu),∇ϕ

)
+ (δu, ψ) + kθ(δv, ψ),

where we applied the chain rule for the term Jσ(v)F−T . Here, in the ‘non-prime’
terms in the nonlinear part; namely J, F−T and σ(v), the previous Newton solution is
inserted. We have now all ingredients to perform the Newton step (156).

6.6.0.5 Spatial discretization in finite-dimensional spaces and linear system In
the final step, we assume conforming finite-dimensional subspaces Vh ⊂ V and Wh ⊂
W with Vh := {ϕ1, . . . , ϕN} and Wh := {ψ1, . . . , ψM}. Then, the update solution
variables in each Newton step are given by:

δvh :=

N∑
j=1

vjϕj , and δuh :=

M∑
j=1

ujψj .

For the linearized semi-linear form A′(U)(δU,Ψ), we have:

A′(Uh)(δUh,Ψh)

and with this (Aij representing the entries of the Jacobian):

Aij := A′(Uh)(Ψj ,Ψi) =

N∑
j=1

vj(ϕj , ϕi)

+ kθ
( M∑
j=1

ujJ(ψj)σ(v)F−T + J(

N∑
j=1

vjσ
′(ϕj))F

−T + Jσ(v)(

M∑
j=1

uj(F
−T )′(ψj)),∇ϕi

)

+

M∑
j=1

uj(ψj , ψi) + kθ

N∑
j=1

vj(ϕj , ψi)

for all test functions running through i = 1, . . . , N,N + 1, . . . ,M .
21Of course, the solution spaces for ansatz- and test functions might differ.
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6.7 Hands-on: implementation of benchmark examples in
ANS/deal.II and DOpElib; based on C++

To supplement our algorithmic discussion with some practical aspects, the reader
is invited to test him/her-self some concepts presented so far. Implementations are
present in two software packages deal.II [13] (source code [256] in ANS22) and DOpElib
[115, 116]:

• ALE-FSI in deal.II (ANS) with biharmonic mesh motion
http://www.archnumsoft.org/ [256] solving FSI benchmark problems [142]

• Nonstationary Navier-Stokes benchmark problems [217] at
http://www.dopelib.uni-hamburg.de/ Examples/PDE/InstatPDE/Example1

• ALE-FSI benchmark problems [142] with biharmonic mesh motion at
http://www.dopelib.uni-hamburg.de/ Examples/PDE/InstatPDE/Example2

• Biot-Lame-Navier system: augmented Mandel’s benchmark at
http://www.dopelib.uni-hamburg.de/ Examples/PDE/InstatPDE/Example6

• Stationary FSI optimization at
http://www.dopelib.uni-hamburg.de/ Examples/OPT/StatPDE/Example9

We notice that the implementation is performed in a very practical monolithic way
that has two assumptions; namely, displacements and velocity are taken from globally-
defined Sobolev spaces rather than restricting them to the sub-domains and one (ma-
jor) limitation (the development of an iterative linear solver and preconditioners might
be challanging since we do not distuingish the sub-problems in the system matrix).
Putting these two limitations aside, the idea results in a fascinating easy way to im-
plement multiphysics problems in non-overlapping domains.

Remark 6.26. It has been appeared that the basic program structure could be eas-
ily generalized and extended to other complex multiphysics problems such as moving
boundary problems with chemical reactions as well as pressure-elasticity-phase-field
coupling. �

22ANS = Archive of Numerical Software, http://www.archnumsoft.org/
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Figure 46: Reference [256] at http://www.archnumsoft.org/

The structure of such a program for time-dependent nonlinear problems is as follows:

• Input of all data: geometry, material parameters, right hand side values

• Sorting and associating degrees of freedom

• Assembling the Jacobian

• Assembling the right hand side residual

• Newton’s method

• Solution of linear equations

• Postprocessing (output, a posteriori error estimation, mesh refinement)

• Main routine including time step loop
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7 Sensitivity Analysis

In this final chapter, we leave forward modeling and concentrate on further aspects
beyond:

• Error estimation and mesh adaptivity;

• Sensitivity analysis;

• Optimization.

All these topics have in common that either implicitly or explicitly, a quantity of
interest J is subject of our investigation. Often, this quantity of interest is associated
with calculating derivatives of solutions to FSI problems with respect to the given data.
Such derivatives with respect to given data such as volume forces or boundary values
have been used excessively in numerical papers concerned with sensitivity calculations
or derivative based minimization problems, see, e.g., [4, 171, 193, 208, 216, 239]. In
addition, sensitivity calculations are required for certain a posteriori error estimation
techniques, such as the DWR-method [14, 26, 27]. Studies with a particular emphasize
on FSI problems are carried out, for instance in [71, 118, 205, 242, 252]. Steps of
optimization-related problems subject to FSI have been tackled in, e.g., [32, 47, 193,
208].

7.1 A differentiable solution map for stationary FSI
We discuss a result from theoretical fluid-structure interaction; namely the proof that
there is at least one locally unique solution that is Fréchet-differentiable with respect
to the boundary data and volume forces. Consequently, the following result is an
extension of [117].

Proposition 7.1. Suppose, we are given Problem 5.22. Let ĝf ∈W 2−1/p,p(Γ)/R, and
f̂s ∈ Lp(Ω̂s) be given with 3 < p < ∞. Assuming that ĝf , and f̂s are small enough,
then there exists a solution Û = (v̂f , p̂f , ûs) ∈W 2,p∩H1

0 +(gf , 0, 0)×W 1,p×W 2,p∩H1
0

to the coupled Problem (5.22). Furthermore, there is a constant M , such that there is
a locally unique solution satisfying the additional condition:

‖(v̂f , p̂f )‖F + ‖ûs‖S ≤M. (174)

In addition, the herewith defined mapping S : W 2−1/p,p(Γ)/R×Lp(Ω̂s)→W 2,p∩H1
0 +

(ĝf , 0, 0)×W 1,p ×W 2,p ∩H1
0

(ĝf , f̂s) 7→ (v̂f , p̂f , ûs),

is continuously differentiable in a neighborhood of (0, 0).

Proof. See [258].
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7.2 Dynamic-in-time interface-oriented mesh adaptivity applied to
Eulerian-ALE coupling

Before we go into more detail on accurate a posteriori error estimation, we discuss
dynamic-in-time mesh adaptivity according to the FSI interface. Our goal is explained
in Figure 47 in which we consider a growing interface (in fact a discontinuity) and we
wish to have a fine mesh around this discontinuity.

Figure 47: Dynamic-in-time mesh refinement with hanging nodes around a propagat-
ing discontinuity/interface.

As demonstration, we apply the EALE (FSITICT) technique to compute valve flap-
ping. To enhance the quality of the numerical approximation, a sufficiently high mesh
resolution is required in particular in the neighborhood of the FSI-interface; specifi-
cally for FSI formulated in fully Eulerian coordinates using a non-fitted finite element
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method. It is clear that we are not interested in global mesh refinement since this is too
expensive. The easiest way is, to locally refine the mesh at the beginning of the sim-
ulation. This however, requires a priori knowledge about the movement of the elastic
structure. Imagine that we have a ball that moves throughout the whole domain (for
example like Richter [204]). This would finally result in global mesh refinement. Even
in less drastic cases, a priori refinement is quite unsatisfactory. Here, a big portion of
the domain has to be refined in the region where we expect the beam to move. A much
better idea is proposed in this study using interface-oriented mesh refinement. Not
only does this procedure perform mesh refinement around the interface but it does also
coarsen the mesh if the interface moved further. Illustrations are provided in Figure
47 and 49.
In fact, the second step is important to control the computational cost. It would

be very easy to set all times new refinement flags. Without any coarsening, we would
end up in a very fine mesh even in regions where the interface moved away (recall
Richter’s moving ball). Summarizing, the mesh adaptation algorithm consists of two
major steps:

• Mesh refinement and

• Mesh coarsening,

leading to

Algorithm 7.2 (Interface-oriented mesh adaptivity). In detail, the following steps
are performed:

• Set maximum number of (total) refinement levels Lmax

• Set minimum number of (total) refinement levels Lmin

• At each time tn, n = 1, 2, 3, . . .: Identification of the interfaces

– Mesh refinement:

∗ Mark all interface cells (as shown in [255], Figure 6). On each of those
cells:

∗ Check if maximum refinement level Lmax is already reached

∗ If present level L < Lmax, then set refinement flag

– Mesh coarsening:

∗ Mark all refined cells (with L > Lmin) without interface. On each of
those cells:

∗ If present level L > Lmin, then set coarsening flag

With the help of an example, let us briefly explain the meaning of Lmax and Lmin.
Set Lmax = 5 and Lmin = 1. A two-times globally refined mesh corresponds to L = 2.
Then, the regions including the interface are three times locally refined, leading to
the maximal refinement level Lmax = 5. Regions without interface are coarsend once,
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because we start with L = 2 and the minimum level is Lmin = 1. To illustrate the
outcome of Algorithm 7.2, resulting meshes are shown in Figure 49.
The data for the material parameters and the geometry are partially based on ex-

perimental data 1 (in collaboration with the cardiologist Mizerski [178]) and are sup-
plemented with literature values [97, 197].
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Figure 48: Configuration and inflow profile of the flap test with contact.

Figure 49: Flap dynamics with contact: Local mesh adaptivity for the closing and
opening of the flaps. Cells indicated in blue denote elastic structures and
interface elements.
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Figure 50: Flap dynamics with contact: Zoom-in to the tips of the two flaps. Devel-
opment of the contact and re-opening for a sequence of four time steps. A
minimal distance of one mesh cell is observed when the two flaps meet (bot-
tom left). This is reasonable because otherwise the fluid equations would
become invalid.

Figure 51: Flap dynamics with contact: ALE computation to highlight its drawback.
Achieving contact is very sophisticated because too many mesh cells are
located between both flaps in the moment of closing (top). Very large
deformations cause the fluid mesh to distort at the tips of the flaps as
shown in the bottom figure.

134



7.3 A partition-of-unity-based variational localization technique
for a posteriori error estimation with the dual-weighted
residual method

The goal of this section is

• To introduce a novel variational localization technique [210, 211]23 for the dual-
weighted residual (DWR) method and highlighting why this formulation is pre-
ferrable (at least for coupled multiphysics problems such as fluid-structure inter-
action) compared to the classical method [26].

The DWRmethod goes back to Becker & Rannacher [26, 27] and is based on pioneering
work by Eriksson, Estep, Hansbo and Johnson [75]. It has been further developed in
[2, 108, 192]. A summary is provided in [14]. Applications include fluid-dynamics [24,
148], structural dynamics [201, 202], and further to complex multiphysics problems
like chemically reactive flows [40]. We are specifically interested in fluid-structure
interaction references [84, 118, 205, 252, 264].
The DWR method allows for estimating the error u−uh between the exact solution

u ∈ V (for a function space V ) to the PDE and the Galerkin solution uh ∈ Vh ⊂ V in
general functionals J : V → R. These functionals can be norms but also more general
expressions, like point-values, (local) averages or technical expressions like (in the
case of fluid dynamics) lift- or drag-coefficients. Error estimators based on the DWR
method always consist of residual evaluations, that are weighted by adjoint sensitivity
measures. These sensitivities are the solution to adjoint problems that measure the
influence of the error functional J . For adaptive mesh refinement, we need to localize
the error estimator η(uh, zh) ≈ J(u) − J(uh) (for its definition see Equation (183)).
The quality of this approximation procedure can be measured by the effectivity index
effh, defined as

effh :=
η(uh, zh)

J(u)− J(uh)
. (175)

Similar to the effectivity index (175), we define the indicator index to measure the
quality of the localization process:

indh :=

∑
i |ηi|

|J(u)− J(uh)|
. (176)

It is not possible to reach strict effectivity with indh → 1 in the context of goal-
oriented errors. The functional error J(u) − J(uh) has a sign, and hence the error
can vanish, although the solution shows a very large approximation error, e.g. by
symmetry reasons. The local estimator values ηi may have changing sign, such that∑
i |ηi| may be a strong over-estimation. However, we will aim at strategies, where

indh is uniformely bounded in h.
Let us again concentrate on stationary formulations in order to learn the tech-

niques. The Galerkin approximation to Equation (120) (neglecting the time deriva-
tives and stabilization terms), reads: Find Ûh = {v̂f,h, v̂s,h, ûf,h, ûs,h, p̂f,h} ∈ X̂0

h,D,

23Another variational technique based on filtering was introduced in [41].
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where X̂0
h,D := {v̂Df,h+ V̂ 0

f,v̂,h}× L̂s,h×{ûDf,h+ V̂ 0
f,û,h}×{ûDs,h+ V̂ 0

s,h}× L̂0
f,h, such that

Â(Ûh)(Ψ̂h) = F̂ (Ψ̂h) ∀Ψ̂h ∈ X̂h. (177)

The solution Ûh is used to calculate an approximation J(Ûh) of the goal-functional
J(Û) : X̂ → R. This functional is assumed to be sufficiently differentiable. Concretely,
it is used for the evaluation of point values (the deflection of the valve), line integrals
(the computation of the stresses), or domain integrals (L2-norm of the velocity).

Example 7.3. The error of a deflection ûs in y-direction at some point p̂ ∈ Ω̂ can be
estimated using the following (regularized) functional:

J(ûs,y) := |Bε|−1

∫
ε

ûy,s dx̂ = ûy,s(p̂) +O(ε2),

where Bε is the ε-ball around the point p̂.

Example 7.4. The error of mean normal fluxes over lower-dimensional manifolds.
For example, we compute the error of wall stresses in y-direction along the interface
between the fluid and the structure, which can be estimated with

J(Û) :=

∫
Ŝ

Ĵ σ̂f F̂
−T n̂f d̂ dŝ,

where d̂ is a unit vector perpendicular to the mean flow direction. Later, we compute
the wall stresses along the interface of the aorta Ŝ := Γ̂aorta. In particular, accurate
wall stress measurement is important for clinical applications.

We use the (formal) Euler-Lagrange method, to derive a computable representation
of the approximation error J(Û)− J(Ûh). Concretely, the task is

min{J(Û)− J(Ûh)} s.t. Â(Û)(Ψ̂) = F̂ (Ψ̂) ∀Ψ̂ ∈ X̂.

As usual for optimization problems, we introduce a dual variable Ẑ (usually referred
to as sensitivity) to formulate the Lagrangian functional

L(Û , Ẑ) = J(Û) + F̂ (Ẑ)− Â(Û)(Ẑ).

We obtain the optimality system

L′
Ẑ

(Û , Ẑ)(δẐ) = F̂ (δẐ)− Â(Û)(δẐ) = 0 δẐ ∈ X̂,

L′
Û

(Û , Ẑ)(δÛ) = J ′(Û)(δÛ)− Â′
Û

(Û)(δÛ , Ẑ) = 0 δÛ ∈ X̂.

In this context, we deal with a primal problem and a dual problem. The primal
problem corresponds to the original equation. In an appropriate discrete space X̂h ⊂
X̂, the discrete problem reads:

L′
Ẑ

(Ûh, Ẑh)(δẐh) = F̂ (Ẑh)− Â(Ûh)(δẐh) = 0 δẐh ∈ X̂h, (178)

L′
Û

(Ûh, Ẑh)(δÛh) = J ′(Ûh)(δÛh)− Â′
Û

(Ûh)(δÛh, Ẑh) = 0 δÛh ∈ X̂h. (179)
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For given solutions {Û , Ẑ} and {Ûh, Ẑh} we obtain the following identity for the ap-
proximation error:

J(Û)− J(Ûh) = L(Û , Ẑ)− L(Ûh, Ẑh).

To compute this relation, we use the results of [27] and we obtain:

Theorem 7.5. For any solution of the Problem 177, we obtain the error representation

J(Û)− J(Ûh) =
1

2
ρ(Ûh)(Ẑ − Ψ̂h) +

1

2
ρ∗(Ûh, Ẑh)(Û − Φ̂h) +R(3)

h , (180)

for all {Φ̂h, Ψ̂h} ∈ X̂h × X̂h and with the primal and dual residuals:

ρ(Ûh)(Ẑ − Ψ̂h) := −A(Ûh)(·), (181)

ρ∗(Ûh, Ẑh)(Û − Φ̂h) := J ′(Ûh)(·)−A′(Ûh)(·, Ẑh). (182)

The remainder term is R(3)
h is cubic in the primal and the dual errors. This error

identity can be used to drive an automatic mesh refinement process and/or can be
adopted to estimate the error.

Proof. We refer to [27] for a proof of this theorem.

Neglecting the remainder results in the error estimator

η(uh, zh) =
1

2
ρ(Ûh)(Ẑ − Ψ̂h) +

1

2
ρ∗(Ûh, Ẑh)(Û − Φ̂h). (183)

The dual variable Ẑ = {ẑvf , ẑvs , ẑuf , ẑus , ẑ
p
f} is computed with the corresponding (lin-

earized) dual problem (obtained as first equation in (178))

A′(Ûh)(Ψ̂h, Ẑh) = J ′(Ψ̂h), ∀Ψ̂h ∈ X̃h, (184)

where not necessarily X̃h = X̂h. The matrix Â′ denotes the transposed matrix of the
primal problem and it is assembled as one further Newton Jacobian in the nonlinear
solution process; we refer to [14]. The dual Problem (184) can be solved with a
global higher approximation or local higher interpolation. With these solutions, we
obtain approximations of the differences Ẑ−Ψ̂h in the error representation (180). The
solvability of the primal problem and the dual problem is not for granted, we refer for
a deeper discussion to [71].

7.3.1 The classical DWR localization for simplified fluid-structure interaction

Proposition 7.6. With the previous assumptions, we have for stationary fluid-structure
interaction the error representation

J(Û)− J(Ûh) ≈ ηfh + ηsh + ηih, (185)
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where we split the local error indicators into fluid ηfh, structure η
s
h, and interface con-

tributions ηih. In detail, we have

ηfh :=
∑
K̂∈T̂h

{
(−ρ̂f Ĵ(F̂−1v̂f · ∇̂)v̂f + ∇̂ · σ̂appr − ∇̂p̂f , ẑvf − ψ̂vh)K̂f

(186)

+
1

2
([Ĵ σ̂f F̂

−T n̂f ], ẑvf − ψ̂vh)∂K̂f\∂Ω̂∪Γ̂i
+ (d̂iv (Ĵ F̂−1v̂f ), ẑpf − ψ̂

p
h)K̂f

(187)

+ (∇̂ · σ̂mesh, ẑ
u
f − ψ̂uh)K̂f

+
1

2
([σ̂meshn̂f ], ẑuf − ψ̂uh)∂K̂f\∂Ω̂∪Γ̂i

}
(188)

(189)

and

ηsh :=
∑
K̂∈T̂h

{
(∇̂ · Σ̂appr, ẑ

v
s − ψ̂vh)K̂s

+
1

2
([F̂ Σ̂apprn̂s], ẑ

v
s − ψ̂vh)∂K̂s\∂Ω̂∪Γ̂i

}
, (190)

and

ηih :=
∑
K̂∈T̂h

{1

2
([Ĵ σ̂f F̂

−T n̂f ], ẑvf − ψ̂vh)Γ̂i
+

1

2
([σ̂meshn̂f ], ẑuf − ψ̂uh)Γ̂i

(191)

+
1

2
([F̂ Σ̂apprn̂s], ẑ

v
s − ψ̂vh)Γ̂i

}
, (192)

where σ̂mesh was defined in Section 5.3.4 and where [·] denotes the jump across inter-
cell boundaries.

The previous declared error representation consists of the cell residuals (measuring
the consistency of the discrete solution Ûh) and the edge terms [·] (measuring the
discrete smoothness). The latter one has similar properties to the smoothness-based
refinement indicators as introduced before. The residuals terms are weighted with
so-called sensitivity factors

ẑvf,s − ψ̂vh, ẑuf,s − ψ̂uh , ẑpf − ψ̂
p
h,

that are obtained by solving the dual Problem (184).

Proposition 7.7. From the previous error representation, we derive the following
approximate error estimate

|J(Û)− J(Ûh)| ≈
∑
K̂∈T̂h

ηK̂ , ηK̂ :=

8∑
i=1

ρ
(i)
K ω

(i)
K ,
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with the residual terms and the weights

ρ
(1)
K := || − ρ̂f Ĵ(F̂−1v̂f · ∇̂)v̂f + ∇̂ · σ̂appr − ∇̂p̂f ||K̂ , ω

(1)
K := ||ẑvf − ψ̂vh||K̂ ,

ρ
(2)
K := ||∇̂ · Σ̂appr||K̂ , ω

(2)
K := ||ẑvs − ψ̂vh||K̂ ,

ρ
(3)
K := ||∇̂ · σ̂mesh||K̂ , ω

(3)
K := ||ẑuf − ψ̂uh ||K̂ ,

ρ
(4)
K := ||d̂iv (Ĵ F̂−1v̂f )||K̂ , ω

(4)
K := ||ẑpf − ψ̂

p
h||K̂ ,

ρ
(5)
K :=

1

2
ĥ
−1/2
K ||[Ĵ σ̂f F̂−T n̂f ]||∂K̂∪Γ̂i

, ω
(5)
K :=

1

2
ĥ

1/2
K ||ẑ

v
f − ψ̂vh||∂K̂∪Γ̂i

,

ρ
(6)
K :=

1

2
ĥ
−1/2
K ||[F̂ Σ̂apprn̂s]||∂K̂∪Γ̂i

, ω
(6)
K :=

1

2
ĥ

1/2
K ||ẑ

v
s − ψ̂vh||∂K̂∪Γ̂i

,

ρ
(7)
K :=

1

2
ĥ
−1/2
K ||[σ̂meshn̂f ]||∂K̂∪Γ̂i

, ω
(7)
K :=

1

2
ĥ

1/2
K ||ẑ

u
f − ψ̂uh ||∂K̂∪Γ̂i

.

The weights ω(i) are approximated by post-processing of the discrete dual solution.

A mesh adaptation algorithm
Let an error tolerance TOL be given. Local error indicators from an a posteriori

error estimate on the mesh T̂h are extracted to realize the mesh adaption:

|J(Û)− J(Ûh)| ≤ η :=
∑
K̂∈Th

ηK̂ for all cells K̂ ∈ T̂h.

This information is used to adapt the mesh using the following strategy:

1. Compute the primal solution Ûh and the dual solution Ẑh on the present mesh
T̂h.

2. Determine the cell indicator ηK̂ at each cell K̂.

3. Compute the sum of all indicators η :=
∑
K̂∈T̂h ηK̂ .

4. Check, if the stopping criterion is satisfied: |J(Û) − J(Ûh)| ≤ η ≤ TOL, then
accept Ûh within the tolerance TOL. Otherwise, proceed to the following step.

5. Mark all cells K̂i that have values ηK̂i
above the average αη

N (where N denotes
the total number of cells of the mesh Th and α ≈ 1).

Other mesh adaption strategies are discussed in [14, 27].

Remark 7.8 (Drawbacks of the classical approach). Partial integration (similar to
[40]) is not required. Consequently, we neither need to evaluate a strong form nor face
terms in the inner part of the domain. Consequently, lengthy terms and computational
costly evaluations are avoided. �
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7.3.2 A new PUM-based localization for fluid-structure interation

What are now the key features?

• In addition to Remark 7.8, it is the ease of implementation and accuracy (in
particular for situations as shown before: fluid-structure solid growth, reactive
flow coupled to Navier-Stokes);

• this is achieved by keeping the weak form and introducing a partition-of-unity
(PU), which can be of lowest order (e.g., Q1 elements);

• Straightforward to employ;

• Does not require patched meshes.

7.3.2.1 Formulation for Poisson’s problem Let the PU be denoted by V (1)
h (with-

out restrictions on Dirichlet boundaries) and with its usual nodal basis {ψih, i =
1, . . . , N (1)}. The local error indicator for Poisson’s problem,

(∇u,∇ϕ) = (f, ϕ) ∀ϕ ∈ V,

is then given by [211]

ηPU
i =

N(r)∑
j=1

{
(f, (φ

(2),j
2h − φjh)ψih)Ω −

(
∇uh,∇((φ

(2),j
2h − φjh)ψih)

)
Ω

}
~zj , (193)

and it can be efficiently computed in an element-wise manner, as only few test-functions
φjh, φ

(2),j
2h and ψih overlap on every element K ∈ Ωh.

For the application, we only need evaluations of the right hand side and the residual
with modified test-function. This localization technique can be readily applied to
general meshes in two and three dimensions. In contrast to the filtering approach,
we do not require special mesh structures, such as patches. In particular for three
dimensional simulations, the use of patched meshes can substantially increases the
problem size. However, the problem of obtaining good approximations to the weights
z − ihz and u − ihu remains and here, using reconstruction of patches still is one of
the most efficient strategies.
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7.3.2.2 Formulation for FSI Extending from Poisson’s to FSI, the primal DWR
estimator for stationary fluid-structure interaction reads [210]:

Proposition 7.9.

ηPU
i =

N(r)∑
j=1

−(ρ̂f Ĵ(F̂−1v̂f · ∇̂)v̂f ), ψ̂v)Ω̂f
− (Ĵ σ̂f F̂

−T , ∇̂ψ̂v)Ω̂f
+ 〈ĝf , ψ̂v〉Γ̂N

− (F̂ Σ̂, ∇̂ψ̂v)Ω̂s
− (σ̂mesh, ∇̂ψ̂u)Ω̂f

− (d̂iv (Ĵ F̂−1v̂f ), ψ̂p)Ω̂f

where the weighting functions are defined as

ψ̂v := (φ
(2),j
2h,v − φ

j
h,v)ψ

i
h,

ψ̂u := (φ
(2),j
2h,u − φ

j
h,u)ψih,

ψ̂p := (φ
(2),j
2h,p − φ

j
h,p)ψ

i
h
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Figure 52: FSI 1-benchmark: Error plots for point value uy error estimation.
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Figure 53: FSI 1-benchmark: locally-refined meshes. Whole mesh and zoom-in to the
point estimation uy.

Table 2: Effectivity indices: FSI 1-benchmark
DoF uy Eff(global) DoF uy Eff(dwr)

17504 8.96e− 04 2.92e− 1 14572 8.95e− 4 3.43e− 1

68736 8.40e− 04 3.70e− 1 48420 8.47e− 4 3.13e− 1

272384 8.24e− 04 6.06e− 1 170416 8.22e− 4 9.55e− 1
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7.4 Gradient-based optimization
Likewise to Section 7.3, we concentrate on stationary FSI-problems. We first describe
general concepts and then proceed with optimal control and parameter estimation
problems for Navier-Stokes and FSI. General and nicely-written introductions can be
found e.g., in [136, 186, 236, 241].

• For optimization we consider the following setting: by J : X → R we denote a
given functional of interest. We assume, that J is two times continuously Fréchet
differentiable.

Example 7.10. Such a functional can be the measurement of wall-stresses, flow rates
or a bending moment.

Furthermore, by Qd we denote a finite dimensional set of control parameters that
enter the state problem. We notice that the developed algorithms of this study could
also be used for infinite control spaces; for optimization with parabolic equations we
refer the reader to [175]. Among endless possibilities for the control q ∈ Qd, common
examples are material parameters, inflow rates or pressure-drops. For a given q ∈ Qd,
the controlled state-equation is split into the (nonlinear) state part and a control term
which linearly depends on the control q ∈ Qd:

U ∈ vD + X : A(U)(Φ) +B(U)(q,Φ) = 0 ∀Φ ∈ X , (194)

where the exact definition of the control form B(·)(·, ·) depends on the particular choice
of the control type. To keep the notation easy in the present section, we combine the
state operator and the control operator into one common semi-linear form:

A(q, U)(Φ) := A(U)(Φ) +B(U)(q,Φ).

The goal of our optimization problem is to determine the optimal parameters q ∈ Qd
such that the functional of interest J(·) gets minimal. This quantity of interest is
completed by a regularization term of Tikhonov type, which involves a corresponding
regularization parameter α. Then, the cost functional reads:

J(q, U) := J(U) +
α

2
||q − q̄||2Q, (195)

with a reference control q̄ ∈ Qd and a suitable norm || · ||Q in the control-space. We
consider the following optimization problem:

Problem 7.11 (Constrained optimization). Minimize the cost functional J(q, U) sub-
ject to the state equation A(q, U)(Φ) = 0 (as defined in (194)) for (q, U) ∈ Q× {vD +
X}.
The constrained optimization problem on the space Qd × X is reformulated into

an unconstrained optimization problem on the space Qd. Therefore, we assume the
existence of the solution operator S : Qd → vD + X with a unique solution U = S(q).
Herewith, we define the reduced cost functional j : Qd → R by

j(q) := J(q, S(q)). (196)

Thus, the constrained optimization problem can be formulated by means of

143



Problem 7.12 (Unconstrained optimization). Minimize j(q) for q ∈ Qd.

Remark 7.13. Because of the nonlinear structure of the state equation (194), the
reduced cost functional is in general not convex (even if the cost functional J(q, U)
would be so). �

Using the reduced formulation of Problem 7.12, the existence of the optimization
problem could be shown with the help of calculus of variations (see, e.g., [167]). A
detailed analysis of theoretical results discussing the well-posedness of this general
optimality system as well as the existence and uniqueness of possible optimal solutions
are found in the literature, see e.g. [136, 236].
Then:

Problem 7.14.

j(q) := J(q, S(q)) → min, A(q, S(q))(Ψ) = 0 ∀Ψ ∈ V. (197)

The local existence and sufficient regularity of S is assumed.

The solution to the unconstrained Problem 7.14 is characterized by the first-order
necessary-optimality condition:

j′(q)(δq) = 0 ∀δq ∈ Qd. (198)

The second-order necessary-optimality which guarantees a (local) minimum reads:

j′′(q)(δq, δq) ≥ 0 ∀δq ∈ Qd. (199)

In the following, we concentrate on the (formal) computation of the optimality
conditions that are employed for the implementation. The most easy way to express
them is done by means of the Lagrangian L : Qd ×X × X → R:

L(q, U, Z) := J(q, U)−A(q, U)(Z). (200)

With the help of the Lagrangian, we derive the optimality system (Karush-Kuhn-
Tucker - KKT system) for a triple (q, U, Z) ∈ Qd ×X × X :

L′Z(q, U, Z)(Φ) = 0 ∀Φ ∈ X (State Equation),
L′U (q, U, Z)(Φ) = 0 ∀Φ ∈ X (Adjoint Equation),
L′q(q, U, Z)(δq) = 0 ∀δq ∈ Qd (Gradient Equation),

or equivalently
A(q, U)(Φ) = 0 ∀Φ ∈ X ,

A′U (q, U)(Φ, Z) = J ′U (q, U)(Φ) ∀Φ ∈ X ,
A′q(q, U)(δq, Z) = J ′q(q, U)(δq) ∀δq ∈ Qd.

(201)

Remark 7.15. The KKT system is equivalent to the first-order necessary-optimality
condition stated before, if the linearization of the semi-linear form is regular enough.
We note that this system could be directly discretized with a Galerkin finite element
method. Another approach (see [22, 25, 175]) that uses the reduced formulation is
discussed in the following. �
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7.4.1 Solution process of the reduced formulation

In the following, we discuss the solution process of the unconstrained optimization
problem. The philosophy of this section follows [22, 25, 175]; their results have been
built upon the earlier studies elsewhere [135, 235]. The algorithms are still general
enough to be independent from fluid-structure interaction.
We use the standard Newton method to solve the optimization problem. On this

level, because we need to work with the discretized control space Qd, we introduce its
basis {

τqi | i = 1, 2, 3, . . . ,dimQd
}
.

Specifically, the control space Qd in this work is always finite dimensional with one or
two parameters:

span{q1, q2} =: Qd = R2,

i.e., dimQd = 2.
With these preliminaries, Newton’s method to solve Problem 7.12 reads: For l =

0, 1, . . . , solve
j′′(ql)(δq, τq) = −j′(ql)(δq) ∀τq ∈ Qd,

ql+1 = ql + ωδq,
(202)

with a line search parameter ω ∈ (0, 1] which will be specified in Algorithm 7.18.
Specifically, the residual and the Hessian of Newton’s method (202) can be computed
with the help of the following two results:

Proposition 7.16 (Residual of Newton’s method). Let q ∈ Qd, U = S(q) ∈ X and
Z ∈ X the dual solution be obtained after solving the first and second equation of the
KKT system (201). Then the residual of Newton’s method (202) is defined as

j′(q)(δq) := L′q(q, U, Z)(δq),

i.e., in explicit representation

j′(q)(δq) := αT (q, τq)Q −A′q(q, U)(τq, Z).

Proof. The proof uses standard techniques. Details can be found in [25].

Proposition 7.17 (Hessian of Newton’s method). Let q ∈ Qd, U = S(q) ∈ X and
Z ∈ X and δq ∈ Qd be given. Further, let δU ∈ X be the solution of the tangent
problem

δU ∈ X , A′U (q, U)(δU,Φ) = −A′q(q, U)(δq,Φ) ∀Φ ∈ X ,

and δZ ∈ X the solution of the adjoint Hessian problem

A′U (q, U)(Φ, δZ) = J ′′UU (q, U)(δU,Φ)−A′′UU (q, U)(δU,Φ, Z)−A′′qU (q, U)(δq,Φ, Z) ∀Φ ∈ X .

Then it holds for all τq ∈ Qd:

j′′(q)(δq, τq) := αT (δq, τq)Q−A′′qq(q, U)(δq, τq, Z)−A′′Uq(q, U)(δU, τq, Z)−A′q(q, U)(τq, δZ).
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This is equivalent to

j′′(q)(δq, τq) = L′′qq(q, U, Z)(δq, τq)

+ L′′Uq(q, U, Z)(δU, τq)

+ L′′Zq(q, U, Z)(δZ, τq) for τq ∈ Q.

Proof. For the proof this statement (including its time-dependent version), we refer
to Becker et al. [25]. The stationary version of this proposition is easily derived by
neglecting all time derivatives, which concludes the assertion.

Let us summarize the important equations.
Lagrangian

L(q, u, z) = J(q, u)−A(q, u)(z)

State Equation

a(q, u)(φ) = 0

Dual Equation

L′u(q, u, z)(φ) = 0

⇔ a′u(q, u)(φ, z) = J ′u(q, u)(φ)

Tangent Equation

L′′qz(q, u, z)(δq, φ) + L′′uz(q, u, z)(δu, φ) = 0

⇔ a′u(q, u)(δu, φ) + a′q(q, u)(δq, φ) = 0

Dual Hessian Equation

L′′qu(q, u, z)(δq, φ) + L′′uu(q, u, z)(δu, φ)

+ L′′zu(q, u, z)(δz, φ) = 0

⇔ a′u(q, u)(φ, δz) + a′uu(q, u)(δu, φ, z)

+ a′qu(q, u)(δq, φ, z) = J ′′uu(q, u)(·, ·)

Newton left hand side: first derivative

j′(q)(δq) = L′q(q, u, z)(δq) (Gradient equation)

⇔ j′(q)(δq) = −a′q(q, u)(δq, z) + J ′q(q, u)(δq)

Newton right hand side: second derivative
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j′′(q)(δq, δr) = L′′qq(q, u, z)(δq, δr) + L′′uq(q, u, z)(δu, δr)
+ L′′zq(q, u, z)(δz, δr)

⇔ j′′(q)(δq, δr) = J ′′qq(q, u)(δq, δr)− a′′qq(q, u)(δq, δr, z)

− a′′uq(q, u)(δu, δr, z)− a′q(q, u)(δr, δz).

The two previously mentioned propositions form the basis of the following optimiza-
tion algorithm:

Algorithm 7.18 (Optimization loop). Given an initial control q0 ∈ Qd iterate for
l = 0, 1, . . . :

1. Compute the state solution U l = {vl, pl, ul}:

U l ∈ vD + X , A(ql, U l)(Φ) = 0 ∀Φ ∈ X .

2. Compute adjoint solution Zl = {zlv, zlp, zlu}:

Zl ∈ X , A′U (ql, U l)(Φ, Zl) = J ′U (ql, U l)(Φ) ∀Φ ∈ X .

3. Evaluate Newton’s right hand side (Proposition 7.16) for Qd 3 τq = τqi, (i =
1, 2, . . .dimQd):

j′(ql)(δqi) := αT (ql, τqi)Q −A′q(ql, U l)(τ q̂i, Zl), i = 1, 2, . . .dimQd.

4. Assemble the coefficient vector f ∈ RdimQd (as representation for the right hand
side ∇j(ql) ∈ Qd of Newton’s method):

Gf = (j′(ql)(τqi))
dim(Qd)
i=1 , Gij = (τqj , τqi)Q,

where j′(ql)(τqi) = (∇j(ql), τqi) =
∑dimQd

j=1 fj(τqj , τqi)Q.

5. Compute the tangent solution δU l = {δvl, δpl, δul}:

δU l ∈ X , A′U (ql, U l)(δU l,Φ) = −A′q(ql, U l)(δq,Φ) ∀Φ ∈ X .

6. Compute the adjoint for Hessian solution δZl = {δzlv, δzlp, δzlu}:

δZl ∈ X , A′U (ql, U l)(Φ, δZl) = J ′′UU (ql, U l)(δU l,Φ)

−A′′UU (ql, U l)(δU l,Φ, Zl)−A′′qU (ql, U l)(δq,Φ, Zl) ∀Φ ∈ X .

7. Evaluate Newton’s left hand side (Proposition 7.17) for Qd 3 τq = τqi, (i =
1, 2, . . .dimQd):

j′′(ql)(δq, τqi) := αT (δq, τqi)Q −A′′qq(ql, U l)(δq, τqi, Zl)
−A′′Uq(ql, U l)(δU l, τqi, Zl)−A′q(ql, U l)(τqi, δZl) ∀δq ∈ Qd.
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8. Assemble the coefficient vector h ∈ Rdim(Qd) (as representation of the left hand
side j′′(ql)(δq, τqi) of Newton’s method):

Gh = (j′′(ql)(δq, τqi))
dim(Qd)
i=1

where j′′(ql)(δq, τqi) = (∇2j(ql)(δq, τqi)Q)dimQd

i=1 =
∑dimQd

j=1 hj(τqj , τqi)Q.

9. Solve: j′′(ql)(δq, τqi) = −j′(ql)(τqi) with τqi ∈ Qd via

Minimize j(ql) + 〈f, d〉+
1

2
〈Hd, d〉,

with 〈a, b〉 := aTGb and H := G−1K. Furthermore, Kij = ∇2j(ql)(δqj , τqi)Q)Q
denotes the coefficient matrix of the Hessian ∇2j(ql) and d ∈ RdimQd represents
the coefficient vector of δq. The solution is obtained by a CG-solver that requires
matrix-vector products only.

10. Correction step:
ql+1 = ql + ωδq,

with ω ∈ (0, 1] as large as possible, such that

j(ql + δq) ≤ j(ql) + ω · ∇j(ql)δq.

The parameter ω is determined via the Armijo-backtracking strategy. For details
we refer the reader to [185, 186].

11. Increment l→ l + 1.

12. Repeat all steps until: |f | = ‖∇j(ql)‖ < TOL.

This section is devoted to the application of the presented scheme to fluid-structure
interaction systems. First, we need to evaluate all derivatives necessary to assemble the
systems required to carry out Algorithm 7.18. While an approximation of the deriva-
tives would in principle be possible by using finite differences [118] or by automatic
differentiation, see [70] in the context of fluid-structure interaction, we analytically
calculate all these derivatives as shown in Section 6.4.

7.4.1.1 State and adjoint equations In steps 1, 2, 5 and 6 of the algorithm, we need
to solve problems given in a variational formulation using the test- and trial-space X .
These infinite dimensional problems will be discretized using the finite element method.
All these variational problems are surface-coupled problems with different equations
in the fluid and the structure domain. All four problems include balancing conditions
on the common interface Γi, where in the case of the state-equation in Step 1 these
balancing conditions are standard conditions of continuous velocity and the dynamic
coupling conditions of the interface stresses:

vf = 0 on Γi.

Jσ̂fF
−Tnf + FΣsns = 0 on Γi.

(203)
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In [208] we provide details on all derived variational formulations appearing in Algo-
rithm 7.18. For solving the nonlinear state equation, we employ a Newton method
that requires the Jacobian of the semilinear-form A(·)(·). This linearized equation
utilizes the same bilinear form as the tangent equation in Step 5 of the algorithm. The
coupling condition given by variational manners are the linearization of (203). Let
W = {wv, wp, wu} ∈ X be the unknown solution. Then, it holds on Γi:

J

{
dσ̂f
dvf

(wv) +
dσ̂f
dpf

(wp) +
dσ̂f
du

(wu) + tr(F−1∇wu)σ̂f − σ̂fF−1∇wu

}
nf

+

{
∇wuΣs + F

dΣs
du

(wu)

}
ns = 0, wf = 0. (204)

Once the Jacobian is implemented, the adjoint form is given by transposing the
system matrix. Hence, the effort for solving the adjoint equations is comparable to
an additional step of the state equation’s Newton scheme. The balancing condition
inherent in the adjoint equation is given by variational principles and is of Robin-
type coupling all three adjoint variables zv, zp and zu. The derivation of the strong
formulation of this coupling condition is cumbersome. In Figure 54 we show the veloc-
ity, displacement and pressure of the optimal state solution and their corresponding
adjoint solutions. These visualizations are taken from [208].

Figure 54: FSI-1 optimal control benchmark problem taken from [208]. Left: primal so-
lutions of the optimal state for velocity, displacement, and pressure. Right:
adjoint solutions for velocity, displacement and pressure at the right. Note,
that velocity and pressure components are defined in the fluid domain only.
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7.4.2 Implementation structure in DOpElib

The implementation is based on DOpElib and was initially inspired 24 by Gascoigne
[23] and RoDoBo [212].

CellEquation (state) ⇔ A(q, u)(φ) (205)
CellEquationU (adjoint) ⇔ A′u(q, u)(φ, z) (206)

CellEquationUT (tangent) ⇔ A′u(q, u)(δu, φ) (207)
CellEquationUTT (adjoint hessian) ⇔ A′u(q, u)(φ, δz) (208)

CellEquationQ (gradient) ⇔ A′q(q, u)(δq, z) (209)

CellEquationQT (tangent) ⇔ A′q(q, u)(δq, φ) (210)

CellEquationQTT (hessian) ⇔ A′q(q, u)(δq, δz) (211)

CellEquationUU (adjoint hessian) ⇔ A′′uu(q, u)(δu, φ, z) (212)
CellEquationQU (adjoint hessian) ⇔ A′′qu(q, u)(δq, φ, z) (213)

CellEquationUQ (hessian) ⇔ A′′uq(q, u)(δu, δr, z) (214)

CellEquationQQ (hessian) ⇔ A′′qq(q, u)(δq, δr, z) (215)

CellRightHandSide (state) ⇔ f(φ) (216)
CellMatrix (all) ⇔ A′(q, u)(δu) (217)

ControlCellEquation (gradient or hessian) ⇔ L′q(q, u, z)(δq) (218)

ControlCellMatrix (all) ⇔ A(q, u)(φ) (219)

Functionals

Value (all) ⇔ J(q, u) (220)
ValueU (all) ⇔ J ′u(q, u)(φ) (221)
ValueQ (all) ⇔ J ′q(q, u)(φ) (222)

ValueUU (all) ⇔ J ′′uu(q, u)(ψ, φ) (223)
ValueQU (all) ⇔ J ′′qu(q, u)(ψ, φ) (224)

ValueUQ (all) ⇔ J ′′uq(q, u)(ψ, φ) (225)

ValueQQ (all) ⇔ J ′′qq(q, u)(ψ, φ) (226)

(227)

24Actually in the years 2009/2010 when the project started.
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7.4.3 Boundary control of stationary fluid flow

Let us see whether we understood the concepts and compute a numerical test. The
following example has been proposed by Roland Becker [21, 22].

(22, 0)

(22, 4.1)(0, 4.1)

Ω̂

(0, 0)

A=(6.0,2.0)

ΓQ

ΓQ

Figure 55: Flow around cylinder with elastic flag with circle-center (2, 2) and radius
r = 0.5. Structure material: ‘compressible St. Venant-Kirchhoff’.

7.4.3.1 Configuration Goal of optimization is drag minimization around the cylin-
der:

(JDrag(U), 0) := (FD, 0) =

∫
S

σf · nf e1 ds. (228)

As usually, the stress tensor is given by

σf = −pI + ρν(∇v +∇vT ).

The Neumann control acts at the boundary ΓQ and is given by a piecewise constant
control q = {q1, q2} ∈ R2. The initial values can be chosen as q = 0.0 or q = 0.1 for
both components. The physical unknowns are a vector-velocity field v and as scalar
pressure field p. The semi-linear form of the problem reads:
Find u = {v, p} ∈ {vin + V } × L2 and q ∈ R2 such that

A(q, u)(φ) = ρν(∇v +∇vT ,∇φv)Ωf
+ (∇v v, φv)Ωf

− (p,∇ · φv)Ωf
+ (∇ · v, φp)Ωf

− (q, n · φv)ΓQ
= 0.

for all test functions φ = {φv, φp} ∈ V . Please note that the convection term differs
from standard notation:

∇v v := (∇v)v = v · ∇v.
Further the pressure term can be rewritten as

−(p,∇ · φv)Ωf
= −(pI,∇φv)Ωf

where I denotes the identity matrix in 2D.
The target functional is considered as

j(v, p) =

∫
ΓO

n · σ(v, p) · d ds,
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where ΓO denotes the cylinder boundary, and d is a vector in the direction of the mean
flow. For theoretical and numerical reasons, this functional needs to be regularized,
including the control variable q, such that

J(q, v, p) = j(v, p) +
α

2
||q − q0||,

where α is the Tikhonov parameter and q0 some reference control.
The rest of the program is similar to the previous optimization problems where we

formulate the state equation in a weak form a(v, p)(φ) such that the final problem
reads

J(q, v, p)→ min s.t. A(q, v, p)(φ) = 0.

7.4.3.2 Equations for gradient-based optimization The following terms are required
for the optimization process:
CellEquation (state): Compute

A(q, u)(φ) = ρν(∇v +∇vT ,∇φv)Ωf
+ (∇v v, φv)Ωf

− (p,∇ · φv)Ωf
+ (∇ · v, φp)Ωf

.

CellMatrix (all): Compute

A(q, u)(φi, φj) = ρν(∇φvj +∇(φvj )
T ,∇φvi )Ωf

+ (∇φvj v +∇v φvj , φvi )Ωf

− (φpj ,∇ · φ
v
i )Ωf

+ (∇ · φvj , φ
p
i )Ωf

where the velocity v of fluid’s convection term depends the type of equation under
investigation:

v = vn−1 (Previous Newton step for state matrix)

v = vstate (Actual state solution for adjoint, gradient, etc.)

CellEquationU (adjoint): Compute

a′u(q, u)(φ, z) = ρν(∇φv +∇(φv)T ,∇zv)Ωf
+ (∇φv vstate +∇vstateφv, zv)Ωf

− (φpI,∇zv)Ωf
+ (∇ · φv, zp)Ωf

CellEquationUT (tangent): Compute

a′u(q, u)(δu, φ) = ρν(∇δuv +∇(δuv)T ,∇φv)Ωf
+ (∇δuv vstate +∇vstateδuv, φv)Ωf

− (δupI,∇φv)Ωf
+ (∇ · δuv, φp)Ωf

CellEquationUTT (adjoint hessian): Compute

a′u(q, u)(φ, δz) = ρν(∇φv +∇(φv)T ,∇δzv)Ωf
+ (∇φv vstate +∇vstateφv, δzv)Ωf

− (φpI,∇δzv)Ωf
+ (∇ · φv, δzp)Ωf
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CellEquationUU (adjoint hessian): Compute

a′′uu(q, u)(δu, φ, z) = (∇φv δuv,state +∇δuv,stateφv, zv)Ωf

Here: zv are the adjoint values as already shown before, and δuv,state are the tangent
values which are already computed.
BoundaryEquation (state): Compute

A(q, u)(φ) = −ρν(∇vT · n, φv)Γout
− (q0, n · φv)Γq0

− (q1, n · φv)Γq1

BoundaryMatrix (all): Compute

A(q, u)(φi, φj) = −ρν(∇(φvj )
T · n, φvi )Γout

BoundaryEquationQ (gradient): Compute

A′q(q, u)(δq, z)[0] = −(1, n · zv)Γq0

A′q(q, u)(δq, z)[1] = −(1, n · zv)Γq1

where δq = 1 since q has been chosen constant.
BoundaryEquationQT (tangent): Compute

A′q(q, u)(δq, φ) = −(δq0, φ
v · n)Γq0

− (δq1, φ
v · n)Γq1

BoundaryEquationQTT (hessian): Compute

A′q(q, u)(δq, δz)[0] = −(1, n · zv)Γq0

A′q(q, u)(δq, δz)[1] = −(1, n · zv)Γq1

where δq = 1 since q has been chosen constant.
BoundaryEquationU (adjoint): Compute

A′u(q, u)(φ, z) = −ρν(∇(φv)T · n, zv)Γout

BoundaryEquationUT (tangent): Compute

A′u(q, u)(δu, φ) = −ρν(∇(δuv)T · n, φv)Γout

BoundaryEquationUTT (adjoint hessian): Compute

A′u(q, u)(φ, δz) = −ρν(∇(φv)T · n, δzv)Γout

ControlCellEquation (gradient or hessian):
ControlCellMatrix (all):
We turn now to the computation of the cost functional including the regularization

term.
BoundaryValue:

J(q, u) = cD

∫
S

σf (v, p) · n e1 ds+
α

2
||q||2Γq
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where cD = 500 and α > 0
BoundaryValueU:

J ′u(q, u)(φ) = cD

∫
S

σf (φv, φp) · ne1 ds

BoundaryValueQ:

J ′q(q, u)(φ) = α(q, φ)Γq

BoundaryValueQQ:

J ′′qq(q, u)(δq, φ) = α(δq, φ)Γq

7.4.3.3 Numerical results We consult our source code from [116]
Examples/OPT/StatPDE/Example3 (in version dopelib-2.0).
As starting values for q we choose in a first run q = 0 and also q = 0.1 in order to

see if we converge to the same optimal solution.

DoF qstart qtop qbottom Jopt Dragopt Jstart Dragstart

6000 0.0 0.312 0.309 2.5595 2.46292 4.144 4.1443
6000 0.1 0.312 0.309 2.5595 2.46292 3.083 3.0731

Figure 56: Stationary flow control: primal solution at the beginning and end of the
optimization (top) and corresponding adjoint solution (bottom). For all
solutions, we plot the x-velocity field.

7.4.4 FSI-1 parameter estimation benchmark

This second test is taken from [208] and we consider another extension of the FSI-
1 benchmark problem and define a parameter identification test-case. We aim at
identifying the Lamé coefficient µs in such a way, that the tip of the beam undergoes
a given deformation uy(A) = 8.2 · 10−4 (i.e., close to the solution of the uncontrolled
configuration in the original FSI-1 benchmark problem). All material parameters as
well as the boundary data is chosen as in the previous section. For identifying the
parameter we choose the following regularized functional:

J(q, U) = ‖uy − ūy‖2 +
α

2
‖q − q̄‖2,

154



DoF ux(A) uy(A) q
5 032 2.38095e− 05 0.000920281 471742

19 488 2.37664e− 05 0.000844817 477626
76 672 2.35301e− 05 0.000837236 481284

Uncontrolled
76 672 218.332e− 05 0.001999470 500

FSI-1 benchmark results (without any control)
76 672 2.27036e− 05 0.000822894 500000

Table 3: FSI-1 parameter estimation problem. Initial control qinitial = 500, q̄ = 5 · 105

and α = 10−5.

with q = µs (the Lamé coefficient) and ūy = 8.2 · 10−4. Furthermore, we choose
q̄ = 5 · 10−5 and a small Tikhonov parameter α = 10−5.
The initial control value is given by qinitial = µinitial = 500, far away from the optimal

state. In Table 3 we indicate the results of the optimization algorithm. In Figure 57
we show plots of the state and adjoint solution for this optimization problem.

Figure 57: FSI parameter estimation: x-velocity profile (top) and corresponding ad-
joint solution in vx direction (middle) and adjoint solution in vy direction
(bottom).
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7.4.5 Monolithic versus partitioned coupling in Newton’s optimization loop

We want to draw our attention to an interesting study in comparing monolithically-
coupled fluid-structure interaction and partitioned coupling on the level of the outer
optimization loop. This is achieved by neglecting the ALE-transformation in the ad-
joint, tangent and additional Hessian. Then, we clearly observe that monolithic cou-
pling allows for higher accuracy as shown in Figure 7.4.5. This is in perfect agreement
with partitioned (weak and strong) coupling and a monolithic approach for the for-
ward problem. If you wish to satisfy a good tolerance for the coupling conditions, you
either need to use a partitioned algorithm with strong coupling (i.e., possibly many
subiterations in each time step) or you should use a monolithically-coupled scheme.
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Figure 58: Convergence of the Newton iteration considering exact adjoint equations
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