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Exercise 1

OPTIONAL: Preparation for the final exam.

Go into the lectures notes and

1. Choose one of the three codes provided in Chapter 13.

2. Copy and paste or simply re-implement the given code snippets on your
own computer.

3. Try to understand what is implemented, run the code, recapitulate what
I discussed in the lectures, and compare the results with what I presented
in the oral lectures and lecture notes in the corresponding sections.

4. Interprete your findings and recapitulate (with the help of my lectures
and the lecture notes) why they are as they are.

5. Play with the codes and change certain parameters, values or numbers
and see how the results change. Why do they change in that way?

• The final choice of the subsequent projects and groups will be
made in October. Each group of two (or three) must choose one
of the following projects (Exercises).

• Please see in particular Exercise 7 for those who have their own
ideas motivated through classes in the past or other classes in
their current curriculum.

• For those who have already specific wishes of Exercises, please
contact me.
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Exercise 2

Let the following ODE initial-value problem be given:

y′(t) = a(y(t)− g(t)) + g′(t), y(t0) = y0 (1)

on the time interval (t0, T ) where t0 = 0 and T = 100. In addition, let
g(t) = t and y0 = 1. Furthermore consider four different test cases with
a = −1,−10,−100.

1. Implement the Euler method, backward Euler method, and the Crank-
Nicolson method in octave or python.

2. Recapitulate the stability regions for these three numerical schemes and
compute the critical (time) step size for the (forward) Euler scheme.

3. Using the backward Euler method and the Crank-Nicolson method, an
implicit system arises. Formulate this system as root finding problem
and formulate Newton’s method (all details will be discussed in further
meetings) to solve these implicit systems.

4. Using different (time) step sizes, investigate and analyze the findings
(instability of the Euler method)

5. Compute the convergence order from the numerical results and compare
what the theory says (similar to the lecture notes; please see Computa-
tional Convergence Analysis).

6. Take g(t) = t2 and re-do some of the previous calculation.

7. (OPTIONAL): Implement time step control (materials would be given)
in which the time step sizes are chosen according to an error estimator re-
sulting in a non-uniform, but problem-adapted, temporal discretization.
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Exercise 3

Consider a basic model for the parachute problem in which the position x
or the velocity v is sought. This models the situation of a skydiver subject to
gravitational forces and air resistance. One possible model is a nonlinear IVP:
Find v for 0 ≤ t ≤ T , where T > 0 is the end time value, such that

mv′(t) = −mg + kv2, (2)

v(0) = 0, (3)

where m is the mass of the skydiver, g the gravity with g ≈ 9.81m/s2 and
k > 0 is the force due to air resistance. Specifically, k highly depends on the
different stages of a jump. Here, further materials and discussions will be made
once a first version of the code has been developed. For the first tests, we use
k = 0.5 ∗ ρ ∗ 1.95b0 with ρ = 1kg/m3 and b0 = 0.5m2.

1. Make a dimension check whether all the above equation makes sense from
the physical point of view.

2. Choosing T = 10s, implement the Euler method, backward Euler method,
and the Crank-Nicolson method in octave or python.

3. Using the backward Euler method and the Crank-Nicolson method, an
implicit system arises. Formulate this system as root finding problem
and formulate Newton’s method according to Chapter 10 of the lecture
notes.

4. Using different step sizes, investigate and analyze the findings and com-
pute the convergence order with the help of the formulas given in the
lecture notes.
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Exercise 4

In this project we consider a boundary-value problem. Let the Poisson prob-
lem in 1D be given:

−u′′(x) = f, in Ω = (0, 1),

u(0) = u(1) = 0,

where f = 1.

1. Recapitulate the finite element (FE) method in 1D using linear splines
(will be introduced in detail in the upcoming lectures).

2. Implement the above equation using finite elements in octave or python
(or another open-source software). This task comprises several sub-tasks:

• Write down the weak form

• Localize the weak form on each mesh element

• Derive the linear equation system

• Incorporate the Dirichlet boundary conditions

• Solve the linear system

• Visualize the final solution

3. Verification of correctness of the code

• Detect numerically the convergence order by carrying out compu-
tations on a sequence of refined meshes.

• For a given right hand side f , construct a manufactured solution
(for the general procedure, please see the lecture notes).

• Use the value of the right hand side f to re-run your code. Evaluate
the value of uh at x = 0.5 (here h indicates that u is obtained by the
numerical method. In general h is the so-called discretization pa-
rameter). Compare this value to the exact value, which is obtained
by evaluating the manufactured solution: u(0.5).

• Perform a quantitative convergence analysis via:

|uh(0.5)− u(0.5)|

for various values for h (i.e., different meshes). Perform the com-
putational convergence analysis as discussed in the lecture (see the
lecture notes).

4. Implement the previous steps for solving the PDE:

−εu′′(x) + u′(x) = 1, in Ω = (0, 1),

u(0) = u(1) = 0,

where ε is a small but positive parameter, e.g., take ε = 1, 10−2, 10−4.
What do you observe in the numerical results with respect to ε?
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Exercise 5

Let Ω be an open, bounded subset of Rd, d = 1 and I := (0, T ] where T > 0
is the end time value. The IBVP (initial boundary-value problem) reads: Find
u := u(x, t) : Ω× I → R such that

ρ∂tu−∇ · (α∇u) = f in Ω× I,
u = a on ∂Ω× [0, T ],

u(0) = g in Ω× t = 0,

where f : Ω × I → R and g : Ω → R and α ∈ R and ρ > 0 are material
parameters, and a ≥ is a Dirichlet boundary condition. More precisely, g is the
initial temperature and a is the wall temperature, and f is some heat source.

1. Using finite differences in time and finite elements in space, implement
the heat equation in octave or python (Hint: Try to implement a general
One-Step-θ scheme with θ ∈ [0, 1] for temporal discretization and linear
finite elements for spatial discretization).

2. Set Ω = (−10, 10), f = 0, α = 1, ρ = 1, a = 0, T = 1, and

g = u(0) = max(0, 1− x2).

and carry out simulations for θ = 0, 0.5, 1. What do you observe? Why
do you make these observations?

3. Justify (either mathematically or physically) the correctness of your find-
ings.

4. (Optional) Why do you observe difficulties using θ < 0.5. What is the
reason and how can this difficulty be overcome?

5. Detecting the order of the temporal scheme: Choose a sufficiently fine
spatial discretization (that is make the spatial discretization parameter
h be sufficiently small) and compute with different time step sizes δt the
value of the point u(x0, T ) := u(x = 0;T = 1). Compute the error

|uδtl(x = 0;T = 1)− uδtfine
(x = 0;T = 1)|, l = l0, l0/2, l0/4, . . .

How does the error behave with respect to different θ?

6. (Optional) Detecting the order of spatial discretization: Choose a small
δt and compute a sequence of solutions for various h, e.g., h = h0, h0/2, h0/4, . . ..
Observe again the point u(x0, T ) := u(x = 0;T = 1). How does the error
behave? What order of the spatial scheme do you detect?
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Exercise 6

Develop a Newton scheme in R2 to find the root of the problem:

f : R2 → R2, f(x, y) =
(

2xay2, 2(x2 + κ)ay
)T
,

where κ = 0.01 and a = 5.

1. Justify first that integration of f yields F (x, y) = (x2 + κ)ay2. What is
the relation between f and F?

2. Compute the root of f by hand. Derive the derivative f ′ and study its
properties.

3. Finally, design the requested Newton algorithm. As initial guess, take
(x0, y0) = (4,−5).

4. What do you observe with respect to the number of Newton iterations?

5. How could we reduce the number of Newton steps?

6. Implement a simplified Newton scheme (i.e., the matrix is only build at the
beginning or just at every other step). How does the number of iterations
change?
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Exercise 7

Search for a partner in class and realize your own idea. This was done by
some of the previous students, for example for a load-flow analysis problem in
winter 2016/2017, which finally led to a nonlinear system of equations, which we
simplified in a proper way and which was then solved using Newton’s method;
Chapter 10 of the lecture notes.

• It is important that we try to simplify as much we can complicated equa-
tions from other disciplines that we are still able to implement them.

• Please contact me as early as possible if you have your own idea.

• The focus should then be on computational aspects:

• What happens if you refine or enlarged the step size? How do the results
then change?

• Can you construct a manufactured solution for this problem?

• How do different methods (in case of initial-value problems for example
Euler, backward Euler, and Crank-Nicolson) compare?
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Evaluation (December 2018: 8.30 - 13.00h):

The final exam consists of

• A report (word or latex) of your task, which contains the problem state-
ment, the numerical approach(es), set-up of the numerical example(s),
analysis/interpretation of the numerical results;

• A 15-20 minutes presentation (with blackboard or beamer/PowerPoint).

Remarks to all exercises:

• The above exercises should not be understand as in a typical exam; namely
that ALL tasks need to be worked through!

• Each group chooses their exercise and works through the first tasks.

• Then we decide TOGETHER which further tasks shall be done.

• In the past, often own ideas went into the exercises and each group had
a final individual character even if they started originally from the same
exercise.

• There is no problem to search on the Internet to find code snippets or to
use other programs for the solution of the above projects.

• For me it is important that I get the impression during the exam that you
have really understood what you implemented/analyzed and how you can
interpret your results.

• The goal of this class is to teach you various numerical schemes but also
to get a feeling about their differences in using them and that different
numerical schemes yield different results and one has to be careful when
to use which scheme.

In case you have concerns or questions, please write me an email:
thomas.wick@polytechnique.edu

This offer holds in particular true if you have specific questions of whatever
kind to the lecture or to your chosen project.
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