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Abstract. In this study, we consider phase-field-based fracture propagation in solid mechanics. The phase-
field model is based on a thermodynamically-consistent version proposed by Miehe, Welschinger, Hofacker. The
main focus is on goal-oriented functional evaluations using a partition-of-unity dual-weighted residual estimator
for accurate measurement of, for example, stresses or fluxes over parts of the boundary. Our developments are
substantiated with a numerical test.
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1 INTRODUCTION
The purpose of this study is on a posteriori error analysis accompanied with local mesh adaptivity for quasi-static
phase-field-based fracture propagation problems. Specifically, we concentrate on goal-oriented error estimation with
the dual-weighted residual (DWR) method [1, 2]. Here, a novel variational-based DWR localization technique is ap-
plied [3] that uses a partition-of-unity and avoids evaluation of strong forms (similar to [4]). A variational framework
for brittle fracture was first proposed by Francfort and Marigo [5] (supplemented with numerical simulations in [6])
and later modified by Miehe et al. [7, 8] in order to obtain a thermodynamically-consistent phase-field model for
brittle fracture. Numerical realization of such variational techniques for fracture are based on Ambrosio-Tortorelli
approximations [9, 10] in which discontinuities in the displacement field across the lower-dimensional crack surface
are approximated by an auxiliary function ϕ. The latter one can be viewed as an indicator function, which intro-
duces a diffusive transition zone between the broken and the unbroken material. This zone has half bandwidth ε, the
so-called model regularization parameter. Specifically, the resulting problem is a variational inequality because of
a fracture irreversibility constraint. Consequently, while combining phase-field fracture with the DWR method, we
borrow ideas from Rannacher and Suttmeier [11, 12, 13] who formulated DWR techniques for elasto-plasticity with
similar challenges. The outline is as follows: In Section 2, the forward problem is formulated. Next in Section 3, the
DWR estimator is derived. Finally in Section 4, a numerical example substantiates the algorithmic developments.
This example is coded in deal.II [14].

2 THE FORWARD AND ADJOINT PROBLEMS
We are interested in the following system: Let the function spaces we work with be

V := H1
0 (Ω) and Win := {w ∈ H1(Ω)|w ≤ ϕn−1 ≤ 1 a.e. on Ω},

where ϕn−1 denotes the previous time step solution. For later purposes we also need W := H1(Ω). For simplic-
ity we consider in this entire study scalar-valued displacements (i.e., a modified version of Poisson’s problem as
displacement equation).
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Formulation 1 (Euler-Lagrange system of phase-field fracture propagation) Find scalar-valued displacements
u and a scalar-valued phase-field variable ϕ, i.e., (u, ϕ) ∈ V ×W such that((

(1− κ)ϕ2 + κ
)
σ(u), e(w)

)
= 0 ∀w ∈ V, (1)

and

(1− κ)(ϕ σ(u) : e(u), ψ−ϕ) +Gc

(
−1

ε
(1− ϕ,ψ−ϕ) + ε(∇ϕ,∇(ψ − ϕ))

)
≥ 0 ∀ ψ ∈Win ∩ L∞(Ω), (2)

and the crack irreversibility constraint
∂tϕ ≤ 0.

The time t might enter through time-dependent boundary conditions, e.g., u = u(t) = g(t) on ∂ΩD with a pre-
scribed boundary function g(t) of Dirichlet-type or time-dependent traction conditions (Neumann).
In Formulation 1, κ is a positive regularization parameter for the elastic energy, with κ � ε, and Gc is the critical
energy release rate. Linear elasticity with the standard stress-strain relationship is defined as

σ := σ(u) = 2µe(u) + λ tr(e(u))I.

Here, µ and λ are material parameters, e(u) = 1
2 (∇u+∇uT ) is the strain tensor, and I the identity matrix.

The primal problem is then formulated in terms of a semi-linear form:

Formulation 2 (Primal form of coupled elasticity phase-field) Find U := {u, ϕ} ∈ V ×W such that

A(U)(Ψ) = 0 ∀Ψ := {w,ψ} ∈ V ×W. (3)

Here, A(U)(Ψ) is obtained as usually by summing up (1) and (2). In addition, the variational inequality is treated
with a penalization term (a discussion as well as suggestion of a more sophisticated scheme are provided in [15]).

The dual form (that is required for DWR error estimation) is obtained by switching test and ansatz functions in the
linearized Formulation of 2:

Formulation 3 (Dual form of coupled elasticity phase-field) Find Z := {zu, zϕ} ∈ V ×W such that

A′(U)(Φ, δZ) = J ′(U)(Φ) ∀Φ := {ϕu, ϕϕ} ∈ V ×W, (4)

where J(·) is the goal functional under consideration.

3 GOAL-ORIENTED ERROR ESTIMATION WITH THE DUAL-WEIGHTED RESID-
UAL METHOD

A relevant example for J(·) is a flux evaluation, i.e., J(U) =
∫

Γtop
∂nu ds. Employing the dual problem, the a

posteriori error estimator to such a functional reads [2]:

|J(U)− J(Uh)| ≤
∑
T∈Th

ρT (Uh)ωT (Z),

with the local residuals ρT (Uh) and sensitivity weights ωT (Z). Here, h denotes as usually the spatial discretization
parameter. The above dual solution Z ∈ V cannot be determined analytically but must be solved numerically as the
primal problem, i.e, we search for Zh ∈ Vh by solving Formulation 3.
To localize the error, we use a recently introduced variational localization formulation [3] that only needs a partition-
of-unity (PU),

∑
i χi ≡ 1. Specifically as PU, we consider the space of piece-wise bilinear elements V (1)

h (without
restrictions on Dirichlet boundaries) with usual nodal basis {χi

h, i = 1, . . . , N}. The reason is that the local
influence of neighboring cells is collected via the PU rather than integration by parts and face-term evaluation as
originally suggested [1, 2]. The latter (well-known) classical technique becomes computationally expensive and
intractable for multiphysics problems (such as coupled elasticity phase-field) with many equations.
Taking into account that the phase-field variable ϕ is an auxiliary variable determining the crack path, we formu-
late the error estimator ‘only’ in terms of the physical displacements. Furthermore, we restrict ourselves to study
estimates for varying h while keeping the regularization parameters ε and κ fixed.
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Proposition 1 Let Uε be the continuous solution for fixed ε and Uε,h the corresponding discretized solution. We
have the (reduced) a posteriori error estimate for the displacement-phase-field problem:

|J(Uε)− J(Uε,h)| ≤
N∑
i

|ηi| =
N∑
i

∣∣∣(−((1− κ)ϕ̃2 − κ
)
σ(u), e(w)

)∣∣∣,
where ηi are the local (nodal-based) error indicators and their absolute value |ηi| is used for mesh refinement. The
weighting function (composed of the dual problem) [2] is defined as w := (w

(2)
2h − wh)χi

h. Furthermore, ϕ̃ is an
extrapolation of the true ϕ as suggested and discussed in [16].

4 A NUMERICAL EXAMPLE: FLUX EVALUATION ON A BOUNDARY
In this section, a numerical example is used to substantiate our developments. We consider the slit domain in
Ω := (−1, 1)2 with a displacement discontinuity (i.e., the crack). In [17, 18], a manufactured solution for the
displacement field has been constructed. The initial square domain is first five times globally refined; this mesh
level is to be considered as the coarse mesh.

Figure 1: Numerical example: phase-field fracture approximation in the slit domain. In the left sub-figure the
displacement field is shown in a three-dimensional view in order to highlight the displacement discontinuity. In the
middle, the phase-field function is observed; with values 0 in the fracture and 1 outside and smooth interpolation in
between. At right, the dual functional, here a flux evaluation on the top boundary {(x, y)|y = 1} is displayed.

The analytical solution on the slit domain Ω\{(x, 0)|−1 ≤ x ≤ 0} is given by [18] as (λr1/2 sinϕ/2; {(x, 0)|−∞ ≤
x ≤ 0}) where polar coordinates with r2 = x2 + y2 are used. Employing the boundary function g = λ sinϕ/2
on ∂Ω, we prescribe non-homogeneous Dirichlet conditions on all parts. Specifically, transforming g into Cartesian
coordinates we deal with

x ≤ 0 and y ≥ 0 : g(x, y) = λ/
√

(2) ∗
√√

x2 + y2 − x, x ≤ 0 and y ≤ 0 : g(x, y) = −λ/
√

(2) ∗
√√

x2 + y2 − x,

x ≥ 0 and y ≥ 0 : g(x, y) = λ/
√

(2) ∗
√√

x2 + y2 − x, x ≥ 0 and y ≤ 0 : g(x, y) = −λ/
√

(2) ∗
√√

x2 + y2 − x.

These conditions introduce a discontinuity on the boundary at (−1, 0) and consequently a crack with displacement
discontinuity as displayed in Figure 1. Here, ε is fixed by hcoarse = 8.84e − 2. The other model and material
parameters are given as: κ = 10−14, Gc = λ2

Gc
×
√
π/2, λGc

= 1.0, µ = 1.0. The goal functional is defined as

J(uε) =

∫
Γtop

∂nuε ds,

and the error J(uε)− J(uε,h) (for fixed ε) is subject to our investigation. A related example has been considered in
[19]. The primal problem is computed with Qc

1 (continuous bilinears) finite elements for both the displacement as
well as the phase-field approximation. The dual problem is computed with finite elements of higher order; namely
Qc

2 (continuous biquadratic); other options for discretizing the dual problem are outlined in [2].
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Our findings are displayed in Figure 2. First, we observe that the error and the DWR estimate converge with the
same order. Secondly, the effectivity index (fraction of true error with respect to DWR estimate) yield relative good
results for such a problem. The corresponding primal and dual solutions are displayed in Figure 1.
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Figure 2: Numerical example: phase-field fracture approximation in the slit domain. At left the error and the DWR
estimate are displayed including a comparison of the convergence order. Observing the error and the DWR estimate
yield a relative good effectivity index while both show the similar convergence order. In the right sub-figure, the
resulting locally adapted mesh and the crack contour ϕ = 0.1 (colorized in red) are shown. Here, the mesh is refined
primarily around the top boundary (where the goal functional is evaluated) but also at the tip of the fracture in (0, 0).

5 CONCLUSIONS
In this study, we combined the dual-weighted residual method with phase-field fracture propagation. Using phase-
field, two solution variables, for the displacements and a smoothed indicator function must be solved. In the dual-
weighted residual estimator only the displacement equation is considered for the error approximation. The devel-
opments are substantiated with a numerical test in which the error and the DWR estimator converge with the same
order and secondly, the effectivity is relatively satisfactory, while observing slight underestimation of the true error.
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